draft-friel-tls-over-http-00
Application Layer ATLS

Friel, Barnes, Pritikin

cisco.com

Related drafts

* draft-tschofenig-layered-tls-00
* Layered DTLS/TLS

* draft-ietf-anima-bootstrapping-keyinfra-09
* Bootstrapping Remote Secure Key Infrastructures (BRSKI)

Motivation — Device Bootstrap

* Installer unboxes and powers up a device that needs to establish a
secure connection to a cloud service

o T
C

o T

here is a TLS Terminating middlebox between the device and the

oud

ne device cannot do TLS certificate va

the private CA root used by the middle

idation as it does not yet trust
DOX

* The device fails to connect to the cloud

service

Potential Solutions

* Address via explicit, expensive configuration by operator or vendor

1. Operator-specific configuration installed on device prior to shipping to customer
- expensive and limited applicability

2. Operator disables TLS interception on middlebox for specific domains - does
not meet customer InfoSec requirements

3. Operator manually installs private root on device - expensive and time
consuming
* Device logic to work around infrastructure restrictions

4. Device establishes an application layer encrypted channel with cloud service

* Device could simply download middlebox trust information using this channel and then
switch to network TLS

Application layer encrypted channel
options

* Multiple potential solutions including but not limited to
1. Define a handshake using JOSE/JWE/JWT
2. Define an encapsulation for Noise
3. Reuse TLS stack and exchange TLS Records

* Design goal: do this with as few lines of code as possible and minimise
library dependencies

* Proposal rationale: device already calls TLS stack APls at network
layer, just get the device to call the APIs twice.

Transporting TLSin HTTP

* Transport (flights of) TLS Records in HTTP message bodies

* Lowest common denominator and greatest chance of traversing
middleboxes

* ATLS server addressed with HTTPS URI vs. host/port
* Could host application directly
* Or do something more elaborate, like an HTTP reverse proxy

* Top-level applications suited to things that “look like” HTTP
* Could alternatively run over a websocket

Architecture

Fomm e + N +
Handshake Records | | Handshake Records | |
------------------- > TLS e — |
| | | Byte |
Unencrypted Data | Software | Encrypted Data | |
——————————————————— >| |------------------->| Buffers |
| Stack | | |
Encrypted Data | | Unencrypted Data | |
——————————————————— > |- |
oo + S I — +
e +
| | Rpp
| | Data +———— +
| Application |<-—-—-—-——- > App | +———————— +
| | TLS | TLS | —-=>] TLS |
| | Records | Session | | Stack |
| B | | e +
| | | Fo——— - + -
| | | |
| | | TLS +———— + - + +———— +
| | | Records | HITE | | Tramsport | | TCESIF |
| +——2 | »| Stack |-—-->| TLS Sesszion |-—->| Tramsport |
R + Fomo—— + o + R — +

Working proof-of-concept:

* OpenSSL C client talking ATLS over HTTPS to

* Java JSSE Spring Web Server

* Easy to consume OpenSSL and JSSE APIs summarised in draft Appendix

Discussion Points

Turtles all the way down
* Will middleboxes block encrypted application layer data?
* Generally applicable for any application layer crypto: JOSE/JWE, Noise, etc.

Use ATLS just for handshake or for application data too
* Could just use ATLS for 2xRTTs and then use RFC5705 (Keying Material Exporters) and switch to RFC8188
(Encrypted Content-Encoding)
HTTP Transport Reliability
* Transport DTLS records in HTTP bodies
* Just using ATLS for handshake 2xRTTs also mitigates somewhat

Why not use HTTP CONNECT tunnels?

* HTTP CONNECT and TLS Intercept are logically different functions

* HTTP CONNECT tunnel establishment could succeed but there could still be a TLS middlebox behind the HTTP Proxy
in the local network

Server -> Client signalling
* Upgrade to a websocket if necessary

	Slide 1
	Related drafts
	Motivation – Device Bootstrap
	Potential Solutions
	Application layer encrypted channel options
	Transporting TLS in HTTP
	Architecture
	Discussion Points

