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Related drafts

* draft-tschofenig-layered-tls-00
* Layered DTLS/TLS

* draft-ietf-anima-bootstrapping-keyinfra-09
* Bootstrapping Remote Secure Key Infrastructures (BRSKI)



Motivation — Device Bootstrap

* Installer unboxes and powers up a device that needs to establish a
secure connection to a cloud service
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Potential Solutions

* Address via explicit, expensive configuration by operator or vendor

1. Operator-specific configuration installed on device prior to shipping to customer
- expensive and limited applicability

2. Operator disables TLS interception on middlebox for specific domains - does
not meet customer InfoSec requirements

3. Operator manually installs private root on device - expensive and time
consuming
* Device logic to work around infrastructure restrictions

4. Device establishes an application layer encrypted channel with cloud service

* Device could simply download middlebox trust information using this channel and then
switch to network TLS



Application layer encrypted channel
options

* Multiple potential solutions including but not limited to
1. Define a handshake using JOSE/JWE/JWT
2. Define an encapsulation for Noise
3. Reuse TLS stack and exchange TLS Records

* Design goal: do this with as few lines of code as possible and minimise
library dependencies

* Proposal rationale: device already calls TLS stack APls at network
layer, just get the device to call the APIs twice.



Transporting TLSin HTTP

* Transport (flights of) TLS Records in HTTP message bodies

* Lowest common denominator and greatest chance of traversing
middleboxes

* ATLS server addressed with HTTPS URI vs. host/port
* Could host application directly
* Or do something more elaborate, like an HTTP reverse proxy

* Top-level applications suited to things that “look like” HTTP
* Could alternatively run over a websocket



Architecture
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Working proof-of-concept:

* OpenSSL C client talking ATLS over HTTPS to

* Java JSSE Spring Web Server

* Easy to consume OpenSSL and JSSE APIs summarised in draft Appendix



Discussion Points

Turtles all the way down
* Will middleboxes block encrypted application layer data?
* Generally applicable for any application layer crypto: JOSE/JWE, Noise, etc.

Use ATLS just for handshake or for application data too
* Could just use ATLS for 2xRTTs and then use RFC5705 (Keying Material Exporters) and switch to RFC8188
(Encrypted Content-Encoding)
HTTP Transport Reliability
* Transport DTLS records in HTTP bodies
* Just using ATLS for handshake 2xRTTs also mitigates somewhat

Why not use HTTP CONNECT tunnels?

* HTTP CONNECT and TLS Intercept are logically different functions

* HTTP CONNECT tunnel establishment could succeed but there could still be a TLS middlebox behind the HTTP Proxy
in the local network

Server -> Client signalling
* Upgrade to a websocket if necessary
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