
draft-friel-tls-over-http-00
Application Layer ATLS
Friel, Barnes, Pritikin

cisco.com



Related drafts

• draft-tschofenig-layered-tls-00
• Layered DTLS/TLS

• draft-ietf-anima-bootstrapping-keyinfra-09
• Bootstrapping Remote Secure Key Infrastructures (BRSKI)



Motivation – Device Bootstrap

• Installer unboxes and powers up a device that needs to establish a 
secure connection to a cloud service

• There is a TLS Terminating middlebox between the device and the 
cloud

• The device cannot do TLS certificate validation as it does not yet trust 
the private CA root used by the middlebox

• The device fails to connect to the cloud service



Potential Solutions

• Address via explicit, expensive configuration by operator or vendor
1. Operator-specific configuration installed on device prior to shipping to customer 

– expensive and limited applicability

2. Operator disables TLS interception on middlebox for specific domains – does 
not meet customer InfoSec requirements

3. Operator manually installs private root on device – expensive and time 
consuming

• Device logic to work around infrastructure restrictions
4. Device establishes an application layer encrypted channel with cloud service

• Device could simply download middlebox trust information using this channel and then 
switch to network TLS



Application layer encrypted channel 
options
• Multiple potential solutions including but not limited to

1. Define a handshake using JOSE/JWE/JWT

2. Define an encapsulation for Noise

3. Reuse TLS stack and exchange TLS Records

• Design goal: do this with as few lines of code as possible and minimise 
library dependencies

• Proposal rationale: device already calls TLS stack APIs at network 
layer, just get the device to call the APIs twice.



Transporting TLS in HTTP

• Transport (flights of) TLS Records in HTTP message bodies

• Lowest common denominator and greatest chance of traversing 
middleboxes

• ATLS server addressed with HTTPS URI vs. host/port
• Could host application directly

• Or do something more elaborate, like an HTTP reverse proxy

• Top-level applications suited to things that “look like” HTTP
• Could alternatively run over a websocket



Architecture

Working proof-of-concept:
• OpenSSL C client talking ATLS over HTTPS to
• Java JSSE Spring Web Server
• Easy to consume OpenSSL and JSSE APIs summarised in draft Appendix



Discussion Points
• Turtles all the way down

• Will middleboxes block encrypted application layer data?

• Generally applicable for any application layer crypto: JOSE/JWE, Noise, etc.

• Use ATLS just for handshake or for application data too

• Could just use ATLS for 2xRTTs and then use RFC5705 (Keying Material Exporters) and switch to RFC8188 
(Encrypted Content-Encoding)

• HTTP Transport Reliability

• Transport DTLS records in HTTP bodies

• Just using ATLS for handshake 2xRTTs also mitigates somewhat

• Why not use HTTP CONNECT tunnels?
• HTTP CONNECT and TLS Intercept are logically different functions

• HTTP CONNECT tunnel establishment could succeed but there could still be a TLS middlebox behind the HTTP Proxy 
in the local network

• Server -> Client signalling

• Upgrade to a websocket if necessary


	Slide 1
	Related drafts
	Motivation – Device Bootstrap
	Potential Solutions
	Application layer encrypted channel options
	Transporting TLS in HTTP
	Architecture
	Discussion Points

