IPv6 Prefix Delegation for Hosts

Fred L. Templin (fltemplin@acm.org)
IETF100 v6ops Working Group
November 16, 2017
Draft History

• Draft -00 posted 11/06/2015 and announced to v6ops
• Draft -01 resolved list comments on MLD/DAD
• Draft -02 published 6/27/2016 and was reviewed by Internet Draft Review Team July/August 2016; resulted in publication of -03
• List discussion August 2016 resulted in publication of -04
• -04 expired and was replaced by -05 March 2017
• September 2017 – present there have been 10 updates (now at -15) In parallel with considerable list discussion
IPv6 Prefix Delegation for Hosts

• IPv6 Prefix Delegation entails:
 1) the communication of a prefix from a delegating router to a requesting router,
 2) a representation of the prefix in the delegating router's routing table, and
 3) a control messaging service between the delegating and requesting routers to maintain prefix lifetimes.

• Example service is DHCPv6 Prefix Delegation (DHCPv6 PD)

• Document considers the case where the “requesting router” is a host that obtains a delegated prefix for its own internal multi-addressing purpose or to attach a tethered “Internet of Things”
Case 1: Classic Routing Model

- ‘D’ delegates prefix ‘P’ to ‘R’
- ‘R’ can delegate sub-prefixes from ‘P’ to downstream networks and/or assign addresses ‘A(i)’ taken from ‘P’ to a downstream interface
- Hosts ‘H(j)’ assign addresses ‘A(i)’ taken from ‘P’, and may also further delegate sub-prefixes from ‘P’ on their own downstream interfaces
- Example 1: cellphone with tethered external network (e.g., bluetooth)
- Example 2: laptop with an internal virtual network of VMs
Case 2: Weak End System Model

- ‘D’ delegates ‘P’ to ‘R’
- ‘R’ can assign addresses ‘A(i)’ to an internal virtual interface (e.g., a loopback) without invoking MLD/DAD on the upstream interface
- Example: any host with an internal virtual interface on which addresses can be assigned
Case 3: Strong End System Model

- ‘D’ delegates ‘P’ to ‘R’
- ‘R’ can assign addresses ‘A(i)’ to an upstream interface without invoking MLD/DAD
- Example: any host that cannot assign addresses to any other interfaces besides the upstream
Additional Considerations

- MLD/DAD Implications
 - The host does not use MLD to join the solicited-node multicast group and does not perform DAD over the upstream interface in any of the three cases.
 - Acceptable because PD guarantees that no other node will receive the prefix.

- Dynamic Routing Protocol Implications
 - Host can be configured to participate or not participate in a routing protocol over the upstream interface.
 - Nodes that do not participate in routing protocol send all outbound packets to the delegating router as their default router.
 - Future Redirects may inform host of a better first hop.
Additional Considerations (cont’d)

- IPv6 ND Implications
 - Node acts as a simple host to send RS messages over the upstream interface
 - Node sets “Router” flag to TRUE in NA messages
 - Node does not send RA messages over upstream interface (upstream interface is not an advertising interface)
 - Delegating router may return a Redirect informing node of a better first hop via the upstream interface

- ICMPv6 Implications
 - Routers send Destination Unreachable (DU) “No route to destination” and “Address unreachable” to remote sources as necessary
 - Hosts send DU “Address unreachable” to local sources and “Port unreachable” to remote sources as necessary
 - Hosts that maintain prefix delegations per this document observe the ICMPv6 specifications for both hosts and routers
Implications for Vendors and Operators

• Hosts that require prefix delegations act like routers from the standpoint of prefix delegation but act as hosts from the standpoint of their local applications (but the network doesn’t care!)

• Allows for unlimited multi-addressing in the spirit of RFC7934

• Multi-addressing does not cause any MLD/DAD messaging over the upstream interface

• Opens new possibilities (e.g., a different and unique IPv6 address for each of the host’s local applications)
Next Steps

V6ops Working Group item?
Backups