
6TiSCH Working Group M. Vucinic, Ed.
Internet-Draft University of Montenegro
Intended status: Standards Track J. Simon
Expires: September 6, 2018 Analog Devices
 K. Pister
 University of California Berkeley
 M. Richardson
 Sandelman Software Works
 March 05, 2018

 Minimal Security Framework for 6TiSCH
 draft-ietf-6tisch-minimal-security-05

Abstract

 This document describes the minimal framework required for a new
 device, called "pledge", to securely join a 6TiSCH (IPv6 over the
 TSCH mode of IEEE 802.15.4e) network. The framework requires that
 the pledge and the JRC (join registrar/coordinator, a central
 entity), share a symmetric key. How this key is provisioned is out
 of scope of this document. Through a single CoAP (Constrained
 Application Protocol) request-response exchange secured by OSCORE
 (Object Security for Constrained RESTful Environments), the pledge
 requests admission into the network and the JRC configures it with
 link-layer keying material and a short link-layer address. This
 specification defines the message format, a new Stateless-Proxy CoAP
 option, and configures the rest of the 6TiSCH communication stack for
 this join process to occur in a secure manner. Additional security
 mechanisms may be added on top of this minimal framework.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2018.

Vucinic, et al. Expires September 6, 2018 [Page 1]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Identifiers . 4
 4. One-Touch Assumption . 5
 5. Join Overview . 5
 5.1. Step 1 - Enhanced Beacon 7
 5.2. Step 2 - Neighbor Discovery 7
 5.3. Step 3 - Join Request 8
 5.4. Step 4 - Join Response 8
 6. Link-layer Configuration 9
 7. Network-layer Configuration 9
 7.1. Identification of Join Request Traffic 10
 7.2. Identification of Join Response Traffic 11
 8. Application-level Configuration 11
 8.1. OSCORE Security Context 12
 9. 6TiSCH Join Protocol . 13
 9.1. Specification of the Join Request 14
 9.2. Specification of the Join Response 15
 9.3. Error Handling and Retransmission 17
 9.4. Rekeying and Rejoining 18
 9.5. Parameters . 18
 9.6. Mandatory to Implement Algorithms 18
 10. Stateless-Proxy CoAP Option 19
 11. Security Considerations 20
 12. Privacy Considerations 21
 13. IANA Considerations . 21
 13.1. CoAP Option Numbers Registry 21
 14. Acknowledgments . 22
 15. References . 22
 15.1. Normative References 22
 15.2. Informative References 23

Vucinic, et al. Expires September 6, 2018 [Page 2]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 Appendix A. Example . 24
 Authors’ Addresses . 27

1. Introduction

 This document presumes a 6TiSCH network as described by [RFC7554] and
 [RFC8180]. By design, nodes in a 6TiSCH network [RFC7554] have their
 radio turned off most of the time, to conserve energy. As a
 consequence, the link used by a new device for joining the network
 has limited bandwidth [RFC8180]. The secure join solution defined in
 this document therefore keeps the number of over-the-air exchanges
 for join purposes to a minimum.

 The micro-controllers at the heart of 6TiSCH nodes have a small
 amount of code memory. It is therefore paramount to reuse existing
 protocols available as part of the 6TiSCH stack. At the application
 layer, the 6TiSCH stack already relies on CoAP [RFC7252] for web
 transfer, and on OSCORE [I-D.ietf-core-object-security] for its end-
 to-end security. The secure join solution defined in this document
 therefore reuses those two protocols as its building blocks.

 This document defines a secure join solution for a new device, called
 "pledge", to securely join a 6TiSCH network. The specification
 defines a 6TiSCH Join Protocol (6JP) used by the pledge to request
 admission into a network managed by the JRC, and for the JRC to
 configure the pledge with the necessary parameters, a new CoAP
 option, and configures different layers of the 6TiSCH protocol stack
 for the join process to occur in a secure manner.

 It assumes the presence of a JRC (join registrar/coordinator), a
 central entity. It further assumes that the pledge and the JRC share
 a symmetric key, called PSK (pre-shared key). The PSK is used to
 configure OSCORE to provide a secure channel to 6JP. How the PSK is
 installed is out of scope of this document.

 When the pledge seeks admission to a 6TiSCH network, it first
 synchronizes to it, by initiating the passive scan defined in
 [IEEE802.15.4-2015]. The pledge then exchanges messages with the
 JRC; these messages can be forwarded by nodes already part of the
 6TiSCH network. The messages exchanged allow the JRC and the pledge
 to mutually authenticate, based on the PSK. They also allow the JRC
 to configure the pledge with link-layer keying material and a short
 link-layer address. After this secure join process successfully
 completes, the joined node can interact with its neighbors to request
 additional bandwidth using the 6top Protocol
 [I-D.ietf-6tisch-6top-protocol] and start sending the application
 traffic.

Vucinic, et al. Expires September 6, 2018 [Page 3]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. These
 words may also appear in this document in lowercase, absent their
 normative meanings.

 The reader is expected to be familiar with the terms and concepts
 defined in [I-D.ietf-6tisch-terminology], [RFC7252],
 [I-D.ietf-core-object-security], and [RFC8152].

 The specification also includes a set of informative examples using
 the CBOR diagnostic notation [I-D.ietf-cbor-cddl].

 The following terms defined in [I-D.ietf-6tisch-terminology] are used
 extensively throughout this document:

 o pledge

 o joined node

 o join proxy (JP)

 o join registrar/coordinator (JRC)

 o enhanced beacon (EB)

 o join protocol

 o join process

 In addition, we use the generic terms "network identifier" and
 "pledge identifier". See Section 3.

3. Identifiers

 The "network identifier" uniquely identifies the 6TiSCH network in
 the namespace managed by a JRC. Typically, this is the 16-bit
 Personal Area Network Identifier (PAN ID) defined in
 [IEEE802.15.4-2015]. Companion documents can specify the use of a
 different network identifier for join purposes, but this is out of
 scope of this specification. Such identifier needs to be carried
 within Enhanced Beacon (EB) frames.

 The "pledge identifier" uniquely identifies the pledge in the
 namespace managed by a JRC. The pledge identifier is typically the
 globally unique 64-bit Extended Unique Identifier (EUI-64) of the

Vucinic, et al. Expires September 6, 2018 [Page 4]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 IEEE 802.15.4 device. This identifier is used to generate the IPv6
 addresses of the pledge and to identify it during the execution of
 the join protocol. For privacy reasons, it is possible to use an
 identifier different from the EUI-64 (e.g. a random string). See
 Section 12.

4. One-Touch Assumption

 This document assumes a one-touch scenario. The pledge is
 provisioned with certain parameters before attempting to join the
 network, and the same parameters are provisioned to the JRC.

 There are many ways by which this provisioning can be done.
 Physically, the parameters can be written into the pledge using a
 number of mechanisms, such as a JTAG interface, a serial (craft)
 console interface, pushing buttons simultaneously on different
 devices, over-the-air configuration in a Faraday cage, etc. The
 provisioning can be done by the vendor, the manufacturer, the
 integrator, etc.

 Details of how this provisioning is done is out of scope of this
 document. What is assumed is that there can be a secure, private
 conversation between the JRC and the pledge, and that the two devices
 can exchange the parameters.

 Parameters that are provisioned to the pledge include:

 o Pre-Shared Key (PSK). The JRC additionally needs to store the
 identifier of the pledge bound to the given PSK. The PSK SHOULD
 be at least 128 bits in length, generated uniformly at random. It
 is RECOMMENDED to generate the PSK with a cryptographically secure
 pseudorandom number generator. Each pledge SHOULD be provisioned
 with a unique PSK.

 o Optionally, a network identifier. Provisioning the network
 identifier to the pledge is RECOMMENDED, as it significantly
 speeds up the join process. In case this parameter is not
 provisioned, the pledge attempts to join one network at a time.

 o Optionally, any non-default algorithms. Mandatory to implement
 and default algorithms are specified in Section 9.6.

5. Join Overview

 This section describes the steps taken by a pledge in a 6TiSCH
 network. When a pledge seeks admission to a 6TiSCH network, the
 following exchange occurs:

Vucinic, et al. Expires September 6, 2018 [Page 5]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 1. The pledge listens for an Enhanced Beacon (EB) frame
 [IEEE802.15.4-2015]. This frame provides network synchronization
 information, and tells the device when it can send a frame to the
 node sending the beacons, which plays the role of join proxy (JP)
 for the pledge, and when it can expect to receive a frame.

 2. The pledge configures its link-local IPv6 address and advertises
 it to the join proxy (JP).

 3. The pledge sends a Join Request to the JP in order to securely
 identify itself to the network. The Join Request is directed to
 the JRC, which may be co-located on the JP or another device.

 4. In case of successful processing of the request, the pledge
 receives a join response from JRC (via the JP) that sets up one
 or more link-layer keys used to authenticate and encrypt
 subsequent transmissions to peers, and a short link-layer address
 for the pledge.

 From the pledge’s perspective, joining is a local phenomenon - the
 pledge only interacts with the JP, and it needs not know how far it
 is from the 6LBR, or how to route to the JRC. Only after
 establishing one or more link-layer keys does it need to know about
 the particulars of a 6TiSCH network.

 The join process is shown as a transaction diagram in Figure 1:

 +--------+ +-------+ +--------+
 | pledge | | JP | | JRC |
 | | | | | |
 +--------+ +-------+ +--------+
 | | |
 |<---Enhanced Beacon (1)---| |
 | | |
 |<-Neighbor Discovery (2)->| |
 | | |
 |-----Join Request (3)-----|------Join Request (3a)-->| \
 | | | | 6JP
 |<---Join Response (4)-----|-----Join Response (4a)---| /
 | | |

 Figure 1: Overview of a successful join process. 6JP stands for
 6TiSCH Join Protocol.

 The details of each step are described in the following sections.

Vucinic, et al. Expires September 6, 2018 [Page 6]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

5.1. Step 1 - Enhanced Beacon

 The pledge synchronizes to the network by listening for, and
 receiving, an Enhanced Beacon (EB) sent by a node already in the
 network. This process is entirely defined by [IEEE802.15.4-2015],
 and described in [RFC7554].

 Once the pledge hears an EB, it synchronizes to the joining schedule
 using the cells contained in the EB. The pledge can hear multiple
 EBs; the selection of which EB to use is out of the scope for this
 document, and is discussed in [RFC7554]. Implementers should make
 use of information such as: what network identifier the EB contains,
 whether the source link-layer address of the EB has been tried
 before, what signal strength the different EBs were received at, etc.
 In addition, the pledge may be pre-configured to search for EBs with
 a specific network identifier.

 If the pledge is not provisioned with the network identifier, it
 attempts to join one network at a time, as described in Section 9.3.

 Once the pledge selects the EB, it synchronizes to it and transitions
 into a low-power mode. It deeply duty cycles its radio, switching
 the radio on when the provided schedule indicates slots which the
 pledge may use for the join process. During the remainder of the
 join process, the node that has sent the EB to the pledge plays the
 role of JP.

 At this point, the pledge may proceed to step 2, or continue to
 listen for additional EBs.

5.2. Step 2 - Neighbor Discovery

 The pledge forms its link-local IPv6 address based on the interface
 identifier, as per [RFC4944]. The pledge MAY perform the Neighbor
 Solicitation / Neighbor Advertisement exchange with the JP, as per
 Section 5.5.1 of [RFC6775]. The pledge and the JP use their link-
 local IPv6 addresses for all subsequent communication during the join
 process.

 Note that Neighbor Discovery exchanges at this point are not
 protected with link-layer security as the pledge is not in possession
 of the keys. How JP accepts these unprotected frames is discussed in
 Section 6.

Vucinic, et al. Expires September 6, 2018 [Page 7]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

5.3. Step 3 - Join Request

 The Join Request is a message sent from the pledge to the JP, and
 which the JP forwards to the JRC. The JP forwards the Join Request
 to the JRC on the existing 6TiSCH network. How exactly this happens
 is out of scope of this document; some networks may wish to dedicate
 specific slots for this join traffic.

 The Join Request is authenticated/encrypted end-to-end using an AEAD
 (Authenticated Encryption with Associated Data) algorithm from
 [RFC8152] and a key derived from the PSK, the pledge identifier and a
 request-specific constant value. Algorithms which MUST be
 implemented are specified in Section 9.6.

 The nonce used when securing the Join Request is derived from the
 PSK, the pledge identifier and a monotonically increasing counter
 initialized to 0 when first starting.

 Join Request message is specified in Section 9.1, while the details
 on security processing can be found in Section 7 of
 [I-D.ietf-core-object-security].

5.4. Step 4 - Join Response

 The Join Response is sent by the JRC to the pledge, and is forwarded
 through the JP as it serves as a stateless relay. The packet
 containing the Join Response travels from the JRC to JP using the
 operating routes in the 6TiSCH network. The JP delivers it to the
 pledge. The JP operates as the application-layer proxy, and does not
 keep any state to relay the message. It uses information sent in the
 clear within the Join Response to decide where to forward to.

 The Join Response is authenticated/encrypted end-to-end using an AEAD
 algorithm from [RFC8152]. The key used to protect the response is
 different from the one used to protect the request (both are derived
 from the PSK, as explained in Section 8.1). The response is
 protected using the same nonce as in the request.

 The Join Response contains one or more link-layer key(s) that the
 pledge will use for subsequent communication. Each key that is
 provided by the JRC is associated with an 802.15.4 key identifier.
 In other link-layer technologies, a different identifier may be
 substituted. The Join Response also contains an IEEE 802.15.4 short
 address [IEEE802.15.4-2015] assigned by the JRC to the pledge, and
 optionally the IPv6 address of the JRC.

Vucinic, et al. Expires September 6, 2018 [Page 8]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 Join Response message is specified in Section 9.2, while the details
 on security processing can be found in Section 7 of
 [I-D.ietf-core-object-security].

6. Link-layer Configuration

 In an operational 6TiSCH network, all frames MUST use link-layer
 frame security [RFC8180]. The IEEE 802.15.4 security attributes MUST
 include frame authenticity, and MAY include frame confidentiality
 (i.e. encryption).

 As specified in [RFC8180], the network uses a key termed as K1 to
 authenticate EBs and a key termed as K2 to authenticate and
 optionally encrypt DATA and ACKNOWLEDGMENT frames. The keys K1 and
 K2 MAY be the same key (same value and IEEE 802.15.4 index). How the
 JRC communicates these keys to 6LBR is out of scope of this
 specification.

 The pledge does not initially do any authenticity check of the EB
 frames, as it does not know the K1 key. The pledge is still able to
 parse the contents of the received EBs and synchronize to the
 network, as EBs are not encrypted [RFC8180].

 When sending frames during the join process, the pledge sends
 unencrypted and unauthenticated frames. The JP accepts these frames
 (using the "exempt mode" in 802.15.4) for the duration of the join
 process. How the JP learns whether the join process is ongoing is
 out of scope of this specification.

 As the EB itself cannot be authenticated by the pledge, an attacker
 may craft a frame that appears to be a valid EB, since the pledge can
 neither know the ASN a priori nor verify the address of the JP. This
 opens up a possibility of DoS attack, as discussed in Section 11.
 Beacon authentication keys are discussed in [RFC8180].

7. Network-layer Configuration

 The pledge and the JP SHOULD keep a separate neighbor cache for
 untrusted entries and use it to store each other’s information during
 the join process. Mixing neighbor entries belonging to pledges and
 nodes that are part of the network opens up the JP to a DoS attack.
 How the pledge and the JP decide to transition each other from
 untrusted to trusted cache, once the join process completes, is out
 of scope. One implementation technique is to use the information
 whether the incoming frames are secured at the link layer.

 The pledge does not communicate with the JRC at the network layer.
 This allows the pledge to join without knowing the IPv6 address of

Vucinic, et al. Expires September 6, 2018 [Page 9]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 the JRC. Instead, the pledge communicates with the JP at the network
 layer, and with the JRC at the application layer, as specified in
 Section 8.

 The JP communicates with the JRC over global IPv6 addresses. The JP
 discovers the network prefix and configures its global IPv6 address
 upon successful completion of the join process and the obtention of
 link-layer keys. The pledge learns the actual IPv6 address of the
 JRC from the Join Response, as specified in Section 9.2; it uses it
 once joined in order to operate as a JP.

 The JRC can be co-located on the 6LBR. In this special case, the
 IPv6 address of the JRC can be omitted from the Join Response message
 for space optimization. The 6LBR then MUST set the DODAGID field in
 RPL DIOs [RFC6550] to its IPv6 address. The pledge learns the
 address of the JRC once joined and upon the reception of a first RPL
 DIO message, and uses it to operate as a JP.

 Before the 6TiSCH network is started, the 6LBR MUST be provisioned
 with the IPv6 address of the JRC.

7.1. Identification of Join Request Traffic

 The join request traffic that is proxied by the Join Proxy comes from
 unauthenticated nodes, and there may be an arbitrary amount of it.
 In particular, an attacker may send fraudulent traffic in attempt to
 overwhelm the network.

 When operating as part of a [RFC8180] 6TiSCH minimal network using
 reasonable scheduling algorithms, the join request traffic present
 may cause intermediate nodes to request additional bandwidth. An
 attacker could use this property to cause the network to overcommit
 bandwidth (and energy) to the join process.

 The Join Proxy is aware of what traffic is join request traffic, and
 so can avoid allocating additional bandwidth itself. The Join Proxy
 SHOULD implement a bandwidth cap on outgoing join request traffic.
 This cap will not protect intermediate nodes as they can not tell
 join request traffic from regular traffic. Despite the bandwidth cap
 implemented separately on each Join Proxy, the aggregate join request
 traffic from many Join Proxies may cause intermediate nodes to decide
 to allocate additional cells. It is undesirable to to so in response
 to the join request traffic. In order to permit the intermediate
 nodes to avoid this, the traffic needs to be tagged in some way.

 [RFC2597] defines a set of per-hop behaviors that may be encoded into
 the Diffserv Code Points (DSCPs). The Join Proxy SHOULD set the DSCP

Vucinic, et al. Expires September 6, 2018 [Page 10]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 of join request packets that it produces as part of the relay process
 to AF43 code point (See Section 6 of [RFC2597]).

 A Join Proxy that does not set the DSCP on traffic forwarded should
 set it to zero so that it is compressed out.

 A Scheduling Function (SF) running on 6TiSCH nodes SHOULD NOT
 allocate additional cells as a result of traffic with code point
 AF43. Companion SF documents SHOULD specify how this recommended
 behavior is achieved.

7.2. Identification of Join Response Traffic

 The JRC SHOULD set the DSCP of join response packets addressed to the
 Join Proxy to AF42 code point. Join response traffic can not be
 induced by an attacker as it is generated only in response to
 legitimate pledges (see Section 9.3). AF42 has lower drop
 probability than AF43, giving join response traffic priority in
 buffers over join request traffic.

 When the JRC is not co-located with the 6LBR, then the code point
 provides a clear indication to the 6LBR that this is join response
 traffic.

 Due to the convergecast nature of the DODAG, the 6LBR links are often
 the most congested, and from that point down there is progressively
 less (or equal) congestion. If the 6LBR paces itself when sending
 join response traffic then it ought to never exceed the bandwidth
 allocated to the best effort traffic cells. If the 6LBR has the
 capacity (if it is not constrained) then it should provide some
 buffers in order to satisfy the Assured Forwarding behavior.

 Companion SF documents SHOULD specify how traffic with code point
 AF42 is handled with respect to cell allocation.

8. Application-level Configuration

 The Join Request/Join Response exchange in Figure 1 is carried over
 CoAP [RFC7252] and secured using OSCORE
 [I-D.ietf-core-object-security]. The pledge plays the role of a CoAP
 client; the JRC plays the role of a CoAP server. The JP implements
 CoAP forward proxy functionality [RFC7252]. Because the JP can also
 be a constrained device, it cannot implement a cache. Rather, the JP
 processes forwarding-related CoAP options and makes requests on
 behalf of the pledge, in a stateless manner by using the Stateless-
 Proxy option defined in this document.

Vucinic, et al. Expires September 6, 2018 [Page 11]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 The pledge designates a JP as a proxy by including the Proxy-Scheme
 option in CoAP requests it sends to the JP. The pledge also includes
 in the requests the Uri-Host option with its value set to the well-
 known JRC’s alias, as specified in Section 9.1.

 The JP resolves the alias to the IPv6 address of the JRC that it
 learned when it acted as a pledge, and joined the network. This
 allows the JP to reach the JRC at the network layer and forward the
 requests on behalf of the pledge.

 The JP MUST add a Stateless-Proxy option to all the requests that it
 forwards on behalf of the pledge as part of the join process.

 The value of the Stateless-Proxy option is set to the internal JP
 state, needed to forward the Join Response message to the pledge.
 The Stateless-Proxy option handling is defined in Section 10.

 The JP also tags all packets carrying the Join Request message at the
 network layer, as specified in Section 7.1.

8.1. OSCORE Security Context

 Before the pledge and the JRC may start exchanging CoAP messages
 protected with OSCORE, they need to derive the OSCORE security
 context from the parameters provisioned out-of-band, as discussed in
 Section 4.

 The OSCORE security context MUST be derived at the pledge and the JRC
 as per Section 3 of [I-D.ietf-core-object-security].

 o the Master Secret MUST be the PSK.

 o the Master Salt MUST be the pledge identifier.

 o the Sender ID of the pledge MUST be set to byte string 0x00.

 o the Recipient ID (ID of the JRC) MUST be set to byte string 0x01.

 o the Algorithm MUST be set to the value from [RFC8152], agreed out-
 of-band by the same mechanism used to provision the PSK. The
 default is AES-CCM-16-64-128.

 o the Key Derivation Function MUST be agreed out-of-band. Default
 is HKDF SHA-256 [RFC5869].

 The derivation in [I-D.ietf-core-object-security] results in traffic
 keys and a common IV for each side of the conversation. Nonces are
 constructed by XOR’ing the common IV with the current sequence number

Vucinic, et al. Expires September 6, 2018 [Page 12]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 and sender identifier. For details on nonce construction, refer to
 [I-D.ietf-core-object-security].

 Implementations MUST ensure that multiple CoAP requests to different
 JRCs result in the use of the same OSCORE context, so that the
 sequence numbers are properly incremented for each request. The
 pledge typically sends requests to different JRCs if it is not
 provisioned with the network identifier and attempts to join one
 network at a time. A simple implementation technique is to
 instantiate the OSCORE security context with a given PSK only once
 and use it for all subsequent requests. Failure to comply will break
 the confidentiality property of the AEAD algorithm due to the nonce
 reuse.

8.1.1. Persistency

 Implementations MUST ensure that mutable OSCORE context parameters
 (Sender Sequence Number, Replay Window) are stored in persistent
 memory. A technique that prevents reuse of sequence numbers,
 detailed in Section 6.5.1 of [I-D.ietf-core-object-security], MUST be
 implemented. Each update of the OSCORE Replay Window MUST be written
 to persistent memory.

 This is an important security requirement in order to guarantee nonce
 uniqueness and resistance to replay attacks across reboots and
 rejoins. Traffic between the pledge and the JRC is rare, making
 security outweigh the cost of writing to persistent memory.

9. 6TiSCH Join Protocol

 6TiSCH Join Protocol (6JP) is a lightweight protocol over CoAP
 [RFC7252] and a secure channel provided by OSCORE
 [I-D.ietf-core-object-security]. 6JP allows the pledge to request
 admission into a network managed by the JRC, and for the JRC to
 configure the pledge with the parameters necessary for joining the
 network. These parameters are: link-layer keys in use, IEEE 802.15.4
 short address assigned to the pledge, and the IPv6 address of the
 JRC.

 This section specifies the 6JP bindings to CoAP and OSCORE, 6JP
 message formats and the semantics of different fields.

 6JP relies on the security properties provided by OSCORE. This
 includes end-to-end confidentiality, data authenticity, replay
 protection, and a secure binding of responses to requests.

Vucinic, et al. Expires September 6, 2018 [Page 13]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 +-----------------------------------+
 | 6TiSCH Join Protocol (6JP) |
 +-----------------------------------+
 +-----------------------------------+ \
 | Requests / Responses | |
 |-----------------------------------| |
 | OSCORE | | CoAP
 |-----------------------------------| |
 | Messaging Layer / Message Framing | |
 +-----------------------------------+ /
 +-----------------------------------+
 | UDP |
 +-----------------------------------+

 Figure 2: Abstract layering of 6JP.

 6JP consists of two messages:

 o the Join Request message, sent by the pledge to the JRC, proxied
 by the JP. The Join Request message and its mapping to CoAP is
 specified in Section 9.1.

 o the Join Response message, sent by the JRC to the pledge if the
 JRC successfully processes the Join Request using OSCORE and it
 determines through a mechanism that is out of scope of this
 specification that the pledge is authorized to join the network.
 The Join Response message is proxied by the JP. The Join Response
 message and its mapping to CoAP is specified in Section 9.2.

 The payload of 6JP messages is encoded with CBOR [RFC7049], with some
 parameters being optional. The first byte of the CBOR-encoded byte
 string contains the CBOR major type and additional information (e.g.
 the number of elements in an array). In case of an array, the CBOR
 decoder decides based on this additional information if a certain
 optional parameter is present or not.

9.1. Specification of the Join Request

 The Join Request the pledge sends SHALL be mapped to a CoAP request:

 o The request method is POST.

 o The type is Non-confirmable (NON).

 o The Proxy-Scheme option is set to "coap".

 o The Uri-Host option is set to "6tisch.arpa".

Vucinic, et al. Expires September 6, 2018 [Page 14]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 o The Uri-Path option is set to "j".

 o The Object-Security option SHALL be set according to
 [I-D.ietf-core-object-security]. The OSCORE security context used
 is the one derived in Section 8.1. The OSCORE Context Hint SHALL
 be set to the pledge identifier. The OSCORE Context Hint allows
 the JRC to retrieve the security context for a given pledge.

 o The payload is a CBOR array [RFC7049] containing, in order:

 * Byte string, containing the identifier of the network that the
 pledge is attempting to join. This enables the JRC to manage
 multiple 6TiSCH networks.

 request_payload = [
 network_identifier : bstr,
]

9.2. Specification of the Join Response

 The Join Response the JRC sends SHALL be mapped to a CoAP response:

 o The response Code is 2.04 (Changed).

 o The payload is a CBOR array [RFC7049] containing, in order:

 * the COSE Key Set, specified in [RFC8152], containing one or
 more link-layer keys. The mapping of individual keys to
 802.15.4-specific parameters is described in Section 9.2.1.

 * the link-layer short address to be used by the pledge. The
 format of the short address follows Section 9.2.2.

 * optionally, the IPv6 address of the JRC, encoded as a byte
 string, with the length of 16 bytes. If the IPv6 address of
 the JRC is not present in the Join Response, this indicates the
 JRC is co-located with the 6LBR, and has the same IPv6 address
 as the 6LBR. See Section 7.

 response_payload = [
 COSE_KeySet,
 short_address,
 ? JRC_address : bstr,
]

Vucinic, et al. Expires September 6, 2018 [Page 15]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

9.2.1. Link-layer Keys Transported in the COSE Key Set

 Each key in the COSE Key Set [RFC8152] SHALL be a symmetric key. The
 first key in the COSE Key Set SHALL be used as the K1 key from
 [RFC8180]. The second key in the COSE Key Set SHALL be used as the
 K2 key from [RFC8180]. In the case where the network uses the same
 key for K1 and K2, the COSE Key Set SHALL carry a single key.

 If the COSE Key Set carries more than 2 keys, the implementation
 SHOULD consider the response as malformed.

 If the "kid" parameter of the COSE Key structure is present, the
 corresponding key SHALL be used as IEEE 802.15.4 KeyIdMode 0x01
 (index). In that case, parameter "kid" of the COSE Key structure
 SHALL be used to carry the IEEE 802.15.4 KeyIndex value.

 If the length of the "kid" parameter is more than 1 byte (length
 defined by [IEEE802.15.4-2015]), the implementation SHOULD consider
 the response as malformed.

 If the "kid" parameter is not present in the transported key, the
 implementation SHALL consider the key to be an IEEE 802.15.4
 KeyIdMode 0x00 (implicit) key.

 This document does not support IEEE 802.15.4 KeyIdMode 0x02 and 0x03
 class keys. In the case that the response is considered malformed,
 the implementation SHOULD indicate to the user through an out-of-band
 mechanism the presence of an error condition.

9.2.2. Short Address

 The "short_address" structure transported as part of the join
 response payload represents the IEEE 802.15.4 short address assigned
 to the pledge. It is encoded as a CBOR array object, containing, in
 order:

 o Byte string, containing the 16-bit address.

 o Optionally, the lease time parameter, "lease_asn". The value of
 the "lease_asn" parameter is the 5-byte Absolute Slot Number (ASN)
 corresponding to its expiration, carried as a byte string in
 network byte order.

 short_address = [
 address : bstr,
 ? lease_asn : bstr,
]

Vucinic, et al. Expires September 6, 2018 [Page 16]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 It is up to the joined node to request a new short address before the
 expiry of its previous address. The mechanism by which the node
 requests renewal is the same as during join procedure, as described
 in Section 9.4.

9.3. Error Handling and Retransmission

 Since the Join Request is mapped to a Non-confirmable CoAP message,
 OSCORE processing at the JRC will silently drop the request in case
 of a failure. This may happen for a number of reasons, including
 failed lookup of an appropriate security context (e.g. the pledge
 attempting to join a wrong network), failed decryption, positive
 replay window lookup, formatting errors (possibly due to malicious
 alterations in transit). Silently dropping the Join Request at the
 JRC prevents a DoS attack where an attacker could force the pledge to
 attempt joining one network at a time, until all networks have been
 tried.

 Using a Non-confirmable CoAP message to transport the Join Request
 also helps minimize the required CoAP state at the pledge and the
 Join Proxy, keeping it to a minimum typically needed to perform CoAP
 congestion control. It does, however, introduce some complexity as
 the pledge needs to implement a retransmission mechanism.

 The following binary exponential back-off algorithm is inspired by
 the one described in [RFC7252]. For each Join Request the pledge
 sends while waiting for a Join Response, the pledge MUST keep track
 of a timeout and a retransmission counter. For a new Join Request,
 the timeout is set to a random value between TIMEOUT_BASE and
 (TIMEOUT_BASE * TIMEOUT_RANDOM_FACTOR), and the retransmission
 counter is set to 0. When the timeout is triggered and the
 retransmission counter is less than MAX_RETRANSMIT, the Join Request
 is retransmitted, the retransmission counter is incremented, and the
 timeout is doubled. Note that the retransmitted Join Request passes
 new OSCORE processing, such that the sequence number in the OSCORE
 context is properly incremented. If the retransmission counter
 reaches MAX_RETRANSMIT on a timeout, the pledge SHOULD attempt to
 join the next advertised 6TiSCH network. If the pledge receives a
 Join Response that successfully passes OSCORE processing, it cancels
 the pending timeout and processes the response. The pledge MUST
 silently discard any response not protected with OSCORE, including
 error codes. For default values of retransmission parameters, see
 Section 9.5.

 If all join attempts to advertised networks have failed, the pledge
 SHOULD signal to the user the presence of an error condition, through
 some out-of-band mechanism.

Vucinic, et al. Expires September 6, 2018 [Page 17]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

9.4. Rekeying and Rejoining

 This specification handles initial keying of the pledge. For reasons
 such as rejoining after a long sleep, expiry of the short address, or
 node-initiated rekeying, the joined node MAY send a new Join Request
 using the already-established OSCORE security context. The JRC then
 responds with up-to-date keys and a (possibly new) short address.
 How the joined node decides when to rekey is out of scope of this
 document. Mechanisms for rekeying the network are defined in
 companion specifications.

9.5. Parameters

 6JP uses the following parameters:

 +-----------------------+----------------+
 | Name | Default Value |
 +-----------------------+----------------+
 | TIMEOUT_BASE | 10 s |
 +-----------------------+----------------+
 | TIMEOUT_RANDOM_FACTOR | 1.5 |
 +-----------------------+----------------+
 | MAX_RETRANSMIT | 4 |
 +--+

 The values of TIMEOUT_BASE, TIMEOUT_RANDOM_FACTOR, MAX_RETRANSMIT may
 be configured to values specific to the deployment. The default
 values have been chosen to accommodate a wide range of deployments,
 taking into account dense networks.

9.6. Mandatory to Implement Algorithms

 The mandatory to implement AEAD algorithm for use with OSCORE is AES-
 CCM-16-64-128 from [RFC8152]. This is the algorithm used for
 securing 802.15.4 frames, and hardware acceleration for it is present
 in virtually all compliant radio chips. With this choice, CoAP
 messages are protected with an 8-byte CCM authentication tag, and the
 algorithm uses 13-byte long nonces.

 The mandatory to implement hash algorithm is SHA-256 [RFC4231].

 The mandatory to implement key derivation function is HKDF [RFC5869],
 instantiated with a SHA-256 hash.

Vucinic, et al. Expires September 6, 2018 [Page 18]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

10. Stateless-Proxy CoAP Option

 The CoAP proxy defined in [RFC7252] keeps per-client state
 information in order to forward the response towards the originator
 of the request. This state information includes at least the CoAP
 token, the IPv6 address of the host, and the UDP source port number.
 If the JP used the stateful CoAP proxy defined in [RFC7252], it would
 be prone to Denial-of-Service (DoS) attacks, due to its limited
 memory.

 The Stateless-Proxy CoAP option Figure 3 allows the JP to be entirely
 stateless. This option inserts, in the request, the state
 information needed for relaying the response back to the client. The
 proxy still keeps some general state (e.g. for congestion control or
 request retransmission), but no per-client state.

 The Stateless-Proxy CoAP option is critical, Safe-to-Forward, not
 part of the cache key, not repeatable and opaque. When processed by
 OSCORE, the Stateless-Proxy option is neither encrypted nor integrity
 protected.

 +-----+---+---+---+---+-----------------+--------+--------+
 | No. | C | U | N | R | Name | Format | Length |
 +-----+---+---+---+---+-----------------+--------+--------|
 | TBD | x | | x | | Stateless-Proxy | opaque | 1-255 |
 +-----+---+---+---+---+-----------------+--------+--------+
 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 Figure 3: Stateless-Proxy CoAP Option

 Upon reception of a Stateless-Proxy option, the CoAP server MUST echo
 it in the response. The value of the Stateless-Proxy option is
 internal proxy state that is opaque to the server. Example state
 information includes the IPv6 address of the client, its UDP source
 port, and the CoAP token. For security reasons, the state
 information MUST be authenticated, MUST include a freshness indicator
 (e.g. a sequence number or timestamp) and MAY be encrypted. The
 proxy may use an appropriate COSE structure [RFC8152] to wrap the
 state information as the value of the Stateless-Proxy option. The
 key used for encryption/authentication of the state information may
 be known only to the proxy.

 Once the proxy has received the CoAP response with a Stateless-Proxy
 option present, it decrypts/authenticates it, checks the freshness
 indicator and constructs the response for the client, based on the
 information present in the option value.

Vucinic, et al. Expires September 6, 2018 [Page 19]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 Note that a CoAP proxy using the Stateless-Proxy option is not able
 to return a 5.04 Gateway Timeout Response Code in case the request to
 the server times out. Likewise, if the response to the proxy’s
 request does not contain the Stateless-Proxy option, for example when
 the option is not supported by the server, the proxy is not able to
 return the response to the client.

11. Security Considerations

 This document recommends that the pledge and JRC are provisioned with
 unique PSKs. The nonce used for the Join Request and the Join
 Response is the same, but used under a different key. The design
 differentiates between keys derived for requests and keys derived for
 responses by different sender identifiers (0x00 for pledge and 0x01
 for JRC). Note that the address of the JRC does not take part in
 nonce or key construction. Even in the case of a misconfiguration in
 which the same PSK is used for several pledges, the keys used to
 protect the requests/responses from/towards different pledges are
 different, as they are derived using the pledge identifier as Master
 Salt. The PSK is still important for mutual authentication of the
 pledge and the JRC. Should an attacker come to know the PSK, then a
 man-in-the-middle attack is possible. The well-known problem with
 Bluetooth headsets with a "0000" pin applies here.

 Being a stateless relay, the JP blindly forwards the join traffic
 into the network. A simple bandwidth cap on the JP prevents it from
 forwarding more traffic than the network can handle. This forces
 attackers to use more than one Join Proxy if they wish to overwhelm
 the network. Marking the join traffic packets with a non-zero DSCP
 allows the network to carry the traffic if it has capacity, but
 encourages the network to drop the extra traffic rather than add
 bandwidth due to that traffic.

 The shared nature of the "minimal" cell used for the join traffic
 makes the network prone to DoS attacks by congesting the JP with
 bogus traffic. Such an attacker is limited by its maximum transmit
 power. The redundancy in the number of deployed JPs alleviates the
 issue and also gives the pledge a possibility to use the best
 available link for joining. How a network node decides to become a
 JP is out of scope of this specification.

 At the beginning of the join process, the pledge has no means of
 verifying the content in the EB, and has to accept it at "face
 value". In case the pledge tries to join an attacker’s network, the
 Join Response message will either fail the security check or time
 out. The pledge may implement a blacklist in order to filter out
 undesired EBs and try to join using the next seemingly valid EB.
 This blacklist alleviates the issue, but is effectively limited by

Vucinic, et al. Expires September 6, 2018 [Page 20]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 the node’s available memory. Bogus beacons prolong the join time of
 the pledge, and so the time spent in "minimal" [RFC8180] duty cycle
 mode.

12. Privacy Considerations

 The join solution specified in this document relies on the uniqueness
 of the pledge identifier within the namespace managed by the JRC.
 This identifier is transferred in clear as an OSCORE Context Hint.
 The use of the globally unique EUI-64 as pledge identifier simplifies
 the management but comes with certain privacy risks. The
 implications are thoroughly discussed in [RFC7721] and comprise
 correlation of activities over time, location tracking, address
 scanning and device-specific vulnerability exploitation. Since the
 join protocol is executed rarely compared to the network lifetime,
 long-term threats that arise from using EUI-64 as the pledge
 identifier are minimal. In addition, the Join Response message
 contains a short address which is assigned by the JRC to the pledge.
 The assigned short address SHOULD be uncorrelated with the long-term
 pledge identifier. The short address is encrypted in the response.
 Once the join process completes, the new node uses the short
 addresses for all further layer 2 (and layer-3) operations. This
 mitigates the aforementioned privacy risks as the short layer-2
 address (visible even when the network is encrypted) is not traceable
 between locations and does not disclose the manufacturer, as is the
 case of EUI-64.

13. IANA Considerations

 Note to RFC Editor: Please replace all occurrences of "[[this
 document]]" with the RFC number of this specification.

 This document allocates a well-known name under the .arpa name space
 according to the rules given in [RFC3172]. The name "6tisch.arpa" is
 requested. No subdomains are expected. No A, AAAA or PTR record is
 requested.

13.1. CoAP Option Numbers Registry

 The Stateless-Proxy option is added to the CoAP Option Numbers
 registry:

 +--------+-----------------+-------------------+
 | Number | Name | Reference |
 +--------+-----------------+-------------------+
 | TBD | Stateless-Proxy | [[this document]] |
 +--------+-----------------+-------------------+

Vucinic, et al. Expires September 6, 2018 [Page 21]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

14. Acknowledgments

 The work on this document has been partially supported by the
 European Union’s H2020 Programme for research, technological
 development and demonstration under grant agreement No 644852,
 project ARMOUR.

 The authors are grateful to Thomas Watteyne and Goeran Selander for
 reviewing, and to Klaus Hartke for providing input on the Stateless-
 Proxy CoAP option. The authors would also like to thank Francesca
 Palombini, Ludwig Seitz and John Mattsson for participating in the
 discussions that have helped shape the document.

15. References

15.1. Normative References

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-08 (work in
 progress), January 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2597] Heinanen, J., Baker, F., Weiss, W., and J. Wroclawski,
 "Assured Forwarding PHB Group", RFC 2597,
 DOI 10.17487/RFC2597, June 1999,
 <https://www.rfc-editor.org/info/rfc2597>.

 [RFC3172] Huston, G., Ed., "Management Guidelines & Operational
 Requirements for the Address and Routing Parameter Area
 Domain ("arpa")", BCP 52, RFC 3172, DOI 10.17487/RFC3172,
 September 2001, <https://www.rfc-editor.org/info/rfc3172>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

Vucinic, et al. Expires September 6, 2018 [Page 22]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

15.2. Informative References

 [I-D.ietf-6tisch-6top-protocol]
 Wang, Q., Vilajosana, X., and T. Watteyne, "6top Protocol
 (6P)", draft-ietf-6tisch-6top-protocol-09 (work in
 progress), October 2017.

 [I-D.ietf-6tisch-terminology]
 Palattella, M., Thubert, P., Watteyne, T., and Q. Wang,
 "Terminology in IPv6 over the TSCH mode of IEEE
 802.15.4e", draft-ietf-6tisch-terminology-09 (work in
 progress), June 2017.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-ietf-cbor-cddl-02
 (work in progress), February 2018.

 [I-D.richardson-6tisch-minimal-rekey]
 Richardson, M., "Minimal Security rekeying mechanism for
 6TiSCH", draft-richardson-6tisch-minimal-rekey-02 (work in
 progress), August 2017.

 [IEEE802.15.4-2015]
 IEEE standard for Information Technology, ., "IEEE Std
 802.15.4-2015 Standard for Low-Rate Wireless Personal Area
 Networks (WPANs)", 2015.

 [RFC4231] Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
 224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
 RFC 4231, DOI 10.17487/RFC4231, December 2005,
 <https://www.rfc-editor.org/info/rfc4231>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

Vucinic, et al. Expires September 6, 2018 [Page 23]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 [RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
 Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
 JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
 Low-Power and Lossy Networks", RFC 6550,
 DOI 10.17487/RFC6550, March 2012,
 <https://www.rfc-editor.org/info/rfc6550>.

 [RFC6775] Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C.
 Bormann, "Neighbor Discovery Optimization for IPv6 over
 Low-Power Wireless Personal Area Networks (6LoWPANs)",
 RFC 6775, DOI 10.17487/RFC6775, November 2012,
 <https://www.rfc-editor.org/info/rfc6775>.

 [RFC7554] Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using
 IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the
 Internet of Things (IoT): Problem Statement", RFC 7554,
 DOI 10.17487/RFC7554, May 2015,
 <https://www.rfc-editor.org/info/rfc7554>.

 [RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
 Considerations for IPv6 Address Generation Mechanisms",
 RFC 7721, DOI 10.17487/RFC7721, March 2016,
 <https://www.rfc-editor.org/info/rfc7721>.

 [RFC8180] Vilajosana, X., Ed., Pister, K., and T. Watteyne, "Minimal
 IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH)
 Configuration", BCP 210, RFC 8180, DOI 10.17487/RFC8180,
 May 2017, <https://www.rfc-editor.org/info/rfc8180>.

Appendix A. Example

 Figure 4 illustrates a successful join protocol exchange. The pledge
 instantiates the OSCORE context and derives the traffic keys and
 nonces from the PSK. It uses the instantiated context to protect the
 Join Request addressed with a Proxy-Scheme option, the well-known
 host name of the JRC in the Uri-Host option, and its EUI-64 as pledge
 identifier and OSCORE Context Hint. Triggered by the presence of a
 Proxy-Scheme option, the JP forwards the request to the JRC and adds
 the Stateless-Proxy option with value set to the internally needed
 state, authentication tag, and a freshness indicator. The JP has
 learned the IPv6 address of the JRC when it acted as a pledge and
 joined the network. Once the JRC receives the request, it looks up
 the correct context based on the Context Hint parameter. It
 reconstructs OSCORE’s external Additional Authenticated Data (AAD)
 needed for verification based on:

 o the Version of the received CoAP header.

Vucinic, et al. Expires September 6, 2018 [Page 24]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 o the Algorithm value agreed out-of-band, default being AES-CCM-
 16-64-128 from [RFC8152].

 o the Request ID being set to the value of the "kid" field of the
 received COSE object.

 o the Join Request sequence number set to the value of "Partial IV"
 field of the received COSE object.

 o Integrity-protected options received as part of the request.

 Replay protection is ensured by OSCORE and through persistent
 handling of mutable context parameters. Once the JP receives the
 Join Response, it authenticates the Stateless-Proxy option before
 deciding where to forward. The JP sets its internal state to that
 found in the Stateless-Proxy option, and forwards the Join Response
 to the correct pledge. Note that the JP does not possess the key to
 decrypt the COSE object (join_response) present in the payload. The
 Join Response is matched to the Join Request and verified for replay
 protection at the pledge using OSCORE processing rules. In this
 example, the Join Response does not contain the IPv6 address of the
 JRC, the pledge hence understands the JRC is co-located with the
 6LBR.

Vucinic, et al. Expires September 6, 2018 [Page 25]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 <---E2E OSCORE-->
 Client Proxy Server
 Pledge JP JRC
 | | |
 +------>| | Code: { 0.02 } (POST)
 | GET | | Token: 0x8c
 | | | Proxy-Scheme: [coap]
 | | | Uri-Host: [6tisch.arpa]
 | | | Object-Security: [kid: 0]
 | | | Payload: Context-Hint: EUI-64
 | | | [Partial IV: 1,
 | | | { Uri-Path:"j",
 | | | join_request },
 | | | <Tag>]
 | | |
 | +------>| Code: { 0.01 } (GET)
 | | GET | Token: 0x7b
 | | | Uri-Host: [6tisch.arpa]
 | | | Object-Security: [kid: 0]
 | | | Stateless-Proxy: opaque state
 | | | Payload: Context-Hint: EUI-64
 | | | [Partial IV: 1,
 | | | { Uri-Path:"j",
 | | | join_request },
 | | | <Tag>]
 | | |
 | |<------+ Code: { 2.05 } (Content)
 | | 2.05 | Token: 0x7b
 | | | Object-Security: -
 | | | Stateless-Proxy: opaque state
 | | | Payload: [{ join_response }, <Tag>]
 | | |
 |<------+ | Code: { 2.05 } (Content)
 | 2.05 | | Token: 0x8c
 | | | Object-Security: -
 | | | Payload: [{ join_response }, <Tag>]
 | | |

 Figure 4: Example of a successful join protocol exchange. { ... }
 denotes encryption and authentication, [...] denotes
 authentication.

 Where join_request is:

 join_request:
 [
 h’cafe’ / PAN ID of the network pledge is attempting to join /
]

Vucinic, et al. Expires September 6, 2018 [Page 26]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 The join_request encodes to h’8142cafe’ with a size of 4 bytes.

 And join_response is:

 join_response:
 [
 [/ COSE Key Set array with a single key /
 {
 1 : 4, / key type symmetric /
 2 : h’01’, / key id /
 -1 : h’e6bf4287c2d7618d6a9687445ffd33e6’ / key value /
 }
],
 [
 h’af93’ / assigned short address /
]
]

 The join_response encodes to
 h’8281a301040241012050e6bf4287c2d7618d6a9687445ffd33e68142af93’ with
 a size of 30 bytes.

Authors’ Addresses

 Malisa Vucinic (editor)
 University of Montenegro
 Dzordza Vasingtona bb
 Podgorica 81000
 Montenegro

 Email: malisav@ac.me

 Jonathan Simon
 Analog Devices
 32990 Alvarado-Niles Road, Suite 910
 Union City, CA 94587
 USA

 Email: jonathan.simon@analog.com

Vucinic, et al. Expires September 6, 2018 [Page 27]

Internet-Draft Minimal Security Framework for 6TiSCH March 2018

 Kris Pister
 University of California Berkeley
 512 Cory Hall
 Berkeley, CA 94720
 USA

 Email: pister@eecs.berkeley.edu

 Michael Richardson
 Sandelman Software Works
 470 Dawson Avenue
 Ottawa, ON K1Z5V7
 Canada

 Email: mcr+ietf@sandelman.ca

Vucinic, et al. Expires September 6, 2018 [Page 28]

