
ACE P. van der Stok
Internet-Draft Consultant
Intended status: Standards Track P. Kampanakis
Expires: July 9, 2020 Cisco Systems
 M. Richardson
 SSW
 S. Raza
 RISE SICS
 January 6, 2020

 EST over secure CoAP (EST-coaps)
 draft-ietf-ace-coap-est-18

Abstract

 Enrollment over Secure Transport (EST) is used as a certificate
 provisioning protocol over HTTPS. Low-resource devices often use the
 lightweight Constrained Application Protocol (CoAP) for message
 exchanges. This document defines how to transport EST payloads over
 secure CoAP (EST-coaps), which allows constrained devices to use
 existing EST functionality for provisioning certificates.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 9, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

van der Stok, et al. Expires July 9, 2020 [Page 1]

Internet-Draft EST-coaps January 2020

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Change Log . 3
 2. Introduction . 7
 3. Terminology . 7
 4. DTLS and conformance to RFC7925 profiles 7
 5. Protocol Design . 10
 5.1. Discovery and URIs 10
 5.2. Mandatory/optional EST Functions 13
 5.3. Payload formats . 13
 5.4. Message Bindings . 15
 5.5. CoAP response codes 15
 5.6. Message fragmentation 16
 5.7. Delayed Responses . 17
 5.8. Server-side Key Generation 19
 6. HTTPS-CoAPS Registrar . 21
 7. Parameters . 23
 8. Deployment limitations 23
 9. IANA Considerations . 24
 9.1. Content-Format Registry 24
 9.2. Resource Type registry 24
 9.3. Well-Known URIs Registry 25
 10. Security Considerations 25
 10.1. EST server considerations 25
 10.2. HTTPS-CoAPS Registrar considerations 27
 11. Contributors . 28
 12. Acknowledgements . 28
 13. References . 28
 13.1. Normative References 28
 13.2. Informative References 30
 Appendix A. EST messages to EST-coaps 32
 A.1. cacerts . 33
 A.2. enroll / reenroll . 35
 A.3. serverkeygen . 37
 A.4. csrattrs . 39
 Appendix B. EST-coaps Block message examples 40
 B.1. cacerts . 40
 B.2. enroll / reenroll . 44
 Appendix C. Message content breakdown 45
 C.1. cacerts . 45
 C.2. enroll / reenroll . 46

van der Stok, et al. Expires July 9, 2020 [Page 2]

Internet-Draft EST-coaps January 2020

 C.3. serverkeygen . 48
 Authors’ Addresses . 50

1. Change Log

 EDNOTE: Remove this section before publication

 -18

 IESG Reviews fixes.

 Removed spurious lines introduced in v-17 due to xml2rfc v3.

 -17

 v16 remnants by Ben K.

 Typos.

 -16

 Updates to address Yaron S.’s Secdir review.

 Updates to address David S.’s Gen-ART review.

 -15

 Updates to addressed Ben’s AD follow up feedback.

 -14

 Updates to complete Ben’s AD review feedback and discussions.

 -13

 Updates based on AD’s review and discussions

 Examples redone without password

 -12

 Updated section 5 based on Esko’s comments and nits identified.

 Nits and some clarifications for Esko’s new review from 5/21/2019.

 Nits and some clarifications for Esko’s new review from 5/28/2019.

 -11

van der Stok, et al. Expires July 9, 2020 [Page 3]

Internet-Draft EST-coaps January 2020

 Updated Server-side keygen to simplify motivation and added
 paragraphs in Security considerations to point out that random
 numbers are still needed (feedback from Hannes).

 -10

 Addressed WGLC comments

 More consistent request format in the examples.

 Explained root resource difference when there is resource
 discovery

 Clarified when the client is supposed to do discovery

 Fixed nits and minor Option length inaccurracies in the examples.

 -09

 WGLC comments taken into account

 consensus about discovery of content-format

 added additional path for content-format selection

 merged DTLS sections

 -08

 added application/pkix-cert Content-Format TBD287.

 discovery text clarified

 Removed text on ct negotiation in connection to multipart-core

 removed text that duplicates or contradicts RFC7252 (thanks Klaus)

 Stated that well-known/est is compulsory

 Use of response codes clarified.

 removed bugs: Max-Age and Content-Format Options in Request

 Accept Option explained for est/skg and added in enroll example

 Added second URI /skc for server-side key gen and a simple cert
 (not PKCS#7)

van der Stok, et al. Expires July 9, 2020 [Page 4]

Internet-Draft EST-coaps January 2020

 Persistence of DTLS connection clarified.

 Minor text fixes.

 -07:

 redone examples from scratch with openssl

 Updated authors.

 Added CoAP RST as a MAY for an equivalent to an HTTP 204 message.

 Added serialization example of the /skg CBOR response.

 Added text regarding expired IDevIDs and persistent DTLS
 connection that will start using the Explicit TA Database in the
 new DTLS connection.

 Nits and fixes

 Removed CBOR envelop for binary data

 Replaced TBD8 with 62.

 Added RFC8174 reference and text.

 Clarified MTI for server-side key generation and Content-Formats.
 Defined the /skg MTI (PKCS#8) and the cases where CMS encryption
 will be used.

 Moved Fragmentation section up because it was referenced in
 sections above it.

 -06:

 clarified discovery section, by specifying that no discovery may
 be needed for /.well-known/est URI.

 added resource type values for IANA

 added list of compulsory to implement and optional functions.

 Fixed issues pointed out by the idnits tool.

 Updated CoAP response codes section with more mappings between EST
 HTTP codes and EST-coaps CoAP codes.

 Minor updates to the MTI EST Functions section.

van der Stok, et al. Expires July 9, 2020 [Page 5]

Internet-Draft EST-coaps January 2020

 Moved Change Log section higher.

 -05:

 repaired again

 TBD8 = 62 removed from C-F registration, to be done in CT draft.

 -04:

 Updated Delayed response section to reflect short and long delay
 options.

 -03:

 Removed observe and simplified long waits

 Repaired Content-Format specification

 -02:

 Added parameter discussion in section 8

 Concluded Content-Format specification using multipart-ct draft

 examples updated

 -01:

 Editorials done.

 Redefinition of proxy to Registrar in Section 6. Explained better
 the role of https-coaps Registrar, instead of "proxy"

 Provide "observe" Option examples

 extended block message example.

 inserted new server key generation text in Section 5.8 and
 motivated server key generation.

 Broke down details for DTLS 1.3

 New Media-Type uses CBOR array for multiple Content-Format
 payloads

 provided new Content-Format tables

van der Stok, et al. Expires July 9, 2020 [Page 6]

Internet-Draft EST-coaps January 2020

 new media format for IANA

 -00

 copied from vanderstok-ace-coap-04

2. Introduction

 "Classical" Enrollment over Secure Transport (EST) [RFC7030] is used
 for authenticated/authorized endpoint certificate enrollment (and
 optionally key provisioning) through a Certificate Authority (CA) or
 Registration Authority (RA). EST transports messages over HTTPS.

 This document defines a new transport for EST based on the
 Constrained Application Protocol (CoAP) since some Internet of Things
 (IoT) devices use CoAP instead of HTTP. Therefore, this
 specification utilizes DTLS [RFC6347] and CoAP [RFC7252] instead of
 TLS [RFC8446] and HTTP [RFC7230].

 EST responses can be relatively large and for this reason this
 specification also uses CoAP Block-Wise Transfer [RFC7959] to offer a
 fragmentation mechanism of EST messages at the CoAP layer.

 This document also profiles the use of EST to only support
 certificate-based client authentication. HTTP Basic or Digest
 authentication (as described in Section 3.2.3 of [RFC7030]) are not
 supported.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Many of the concepts in this document are taken from [RFC7030].
 Consequently, much text is directly traceable to [RFC7030].

4. DTLS and conformance to RFC7925 profiles

 This section describes how EST-coaps conforms to the profiles of low-
 resource devices described in [RFC7925]. EST-coaps can transport
 certificates and private keys. Certificates are responses to
 (re-)enrollment requests or requests for a trusted certificate list.
 Private keys can be transported as responses to a server-side key
 generation request as described in Section 4.4 of [RFC7030] (and
 subsections) and discussed in Section 5.8 of this document.

van der Stok, et al. Expires July 9, 2020 [Page 7]

Internet-Draft EST-coaps January 2020

 EST-coaps depends on a secure transport mechanism that secures the
 exchanged CoAP messages. DTLS is one such secure protocol. No other
 changes are necessary regarding the secure transport of EST messages.

 +--+
 | EST request/response messages |
 +--+
 | CoAP for message transfer and signaling |
 +--+
 | Secure Transport |
 +--+

 Figure 1: EST-coaps protocol layers

 In accordance with sections 3.3 and 4.4 of [RFC7925], the mandatory
 cipher suite for DTLS in EST-coaps is
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 [RFC7251]. Curve secp256r1 MUST
 be supported [RFC8422]; this curve is equivalent to the NIST P-256
 curve. After the publication of [RFC7748], support for Curve25519
 will likely be required in the future by (D)TLS Profiles for the
 Internet of Things [RFC7925].

 DTLS 1.2 implementations must use the Supported Elliptic Curves and
 Supported Point Formats Extensions in [RFC8422]. Uncompressed point
 format must also be supported. DTLS 1.3 [I-D.ietf-tls-dtls13]
 implementations differ from DTLS 1.2 because they do not support
 point format negotiation in favor of a single point format for each
 curve. Thus, support for DTLS 1.3 does not mandate point format
 extensions and negotiation. In addition, in DTLS 1.3 the Supported
 Elliptic Curves extension has been renamed to Supported Groups.

 CoAP was designed to avoid IP fragmentation. DTLS is used to secure
 CoAP messages. However, fragmentation is still possible at the DTLS
 layer during the DTLS handshake when using ECC ciphersuites. If
 fragmentation is necessary, "DTLS provides a mechanism for
 fragmenting a handshake message over several records, each of which
 can be transmitted separately, thus avoiding IP fragmentation"
 [RFC6347].

 The authentication of the EST-coaps server by the EST-coaps client is
 based on certificate authentication in the DTLS handshake. The EST-
 coaps client MUST be configured with at least an Implicit TA database
 which will enable the authentication of the server the first time
 before updating its trust anchor (Explicit TA) [RFC7030].

 The authentication of the EST-coaps client MUST be with a client
 certificate in the DTLS handshake. This can either be

van der Stok, et al. Expires July 9, 2020 [Page 8]

Internet-Draft EST-coaps January 2020

 o a previously issued client certificate (e.g., an existing
 certificate issued by the EST CA); this could be a common case for
 simple re-enrollment of clients.

 o a previously installed certificate (e.g., manufacturer IDevID
 [ieee802.1ar] or a certificate issued by some other party).
 IDevID’s are expected to have a very long life, as long as the
 device, but under some conditions could expire. In that case, the
 server MAY authenticate a client certificate against its trust
 store although the certificate is expired (Section 10).

 EST-coaps supports the certificate types and Trust Anchors (TA) that
 are specified for EST in Section 3 of [RFC7030].

 As described in Section 2.1 of [RFC5272] proof-of-identity refers to
 a value that can be used to prove that an end-entity or client is in
 the possession of and can use the private key corresponding to the
 certified public key. Additionally, channel-binding information can
 link proof-of-identity with an established connection. Connection-
 based proof-of-possession is OPTIONAL for EST-coaps clients and
 servers. When proof-of-possession is desired, a set of actions are
 required regarding the use of tls-unique, described in Section 3.5 in
 [RFC7030]. The tls-unique information consists of the contents of
 the first "Finished" message in the (D)TLS handshake between server
 and client [RFC5929]. The client adds the "Finished" message as a
 ChallengePassword in the attributes section of the PKCS#10 Request
 [RFC5967] to prove that the client is indeed in control of the
 private key at the time of the (D)TLS session establishment.

 In the case of handshake message fragmentation, if proof-of-
 possession is desired, the Finished message added as the
 ChallengePassword in the CSR is calculated as specified by the DTLS
 standards. We summarize it here for convenience. For DTLS 1.2, in
 the event of handshake message fragmentation, the Hash of the
 handshake messages used in the MAC calculation of the Finished
 message must be computed on each reassembled message, as if each
 message had not been fragmented (Section 4.2.6 of [RFC6347]). The
 Finished message is calculated as shown in Section 7.4.9 of
 [RFC5246]. Similarly, for DTLS 1.3, the Finished message must be
 computed as if each handshake message had been sent as a single
 fragment (Section 5.8 of [I-D.ietf-tls-dtls13]) following the
 algorithm described in 4.4.4 of [RFC8446].

 In a constrained CoAP environment, endpoints can’t always afford to
 establish a DTLS connection for every EST transaction. An EST-coaps
 DTLS connection MAY remain open for sequential EST transactions,
 which was not the case with [RFC7030]. For example, if a /crts
 request is followed by a /sen request, both can use the same

van der Stok, et al. Expires July 9, 2020 [Page 9]

Internet-Draft EST-coaps January 2020

 authenticated DTLS connection. However, when a /crts request is
 included in the set of sequential EST transactions, some additional
 security considerations apply regarding the use of the Implicit and
 Explicit TA database as explained in Section 10.1.

 Given that after a successful enrollment, it is more likely that a
 new EST transaction will not take place for a significant amount of
 time, the DTLS connections SHOULD only be kept alive for EST messages
 that are relatively close to each other. These could include a /sen
 immediatelly following a /crts when a device is getting bootstrapped.
 In some cases, like NAT rebinding, keeping the state of a connection
 is not possible when devices sleep for extended periods of time. In
 such occasions, [I-D.ietf-tls-dtls-connection-id] negotiates a
 connection ID that can eliminate the need for new handshake and its
 additional cost; or DTLS session resumption provides a less costly
 alternative than re-doing a full DTLS handshake.

5. Protocol Design

 EST-coaps uses CoAP to transfer EST messages, aided by Block-Wise
 Transfer [RFC7959] to avoid IP fragmentation. The use of Blocks for
 the transfer of larger EST messages is specified in Section 5.6.
 Figure 1 shows the layered EST-coaps architecture.

 The EST-coaps protocol design follows closely the EST design. The
 supported message types in EST-coaps are:

 o CA certificate retrieval needed to receive the complete set of CA
 certificates.

 o Simple enroll and re-enroll for a CA to sign client identity
 public key.

 o Certificate Signing Request (CSR) attribute messages that informs
 the client of the fields to include in a CSR.

 o Server-side key generation messages to provide a client identity
 private key when the client chooses so.

 While [RFC7030] permits a number of the EST functions to be used
 without authentication, this specification requires that the client
 MUST be authenticated for all functions.

5.1. Discovery and URIs

 EST-coaps is targeted for low-resource networks with small packets.
 Two types of installations are possible: (1) rigid ones, where the
 address and the supported functions of the EST server(s) are known,

van der Stok, et al. Expires July 9, 2020 [Page 10]

Internet-Draft EST-coaps January 2020

 and (2) a flexible one, where the EST server and its supported
 functions need to be discovered.

 For both types of installations, saving header space is important and
 short EST-coaps URIs are specified in this document. These URIs are
 shorter than the ones in [RFC7030]. Two example EST-coaps resource
 path names are:

 coaps://example.com:<port>/.well-known/est/<short-est>
 coaps://example.com:<port>/.well-known/est/ArbitraryLabel/<short-est>

 The short-est strings are defined in Table 1. Arbitrary Labels are
 usually defined and used by EST CAs in order to route client requests
 to the appropriate certificate profile. Implementers should consider
 using short labels to minimize transmission overhead.

 The EST-coaps server URIs, obtained through discovery of the EST-
 coaps resource(s) as shown below, are of the form:

 coaps://example.com:<port>/<root-resource>/<short-est>
 coaps://example.com:<port>/<root-resource>/ArbitraryLabel/<short-est>

 Figure 5 in Section 3.2.2 of [RFC7030] enumerates the operations and
 corresponding paths which are supported by EST. Table 1 provides the
 mapping from the EST URI path to the shorter EST-coaps URI path.

 +-------------------+-------------------------------+
 | EST | EST-coaps |
 +-------------------+-------------------------------+
 | /cacerts | /crts |
 | /simpleenroll | /sen |
 | /simplereenroll | /sren |
 | /serverkeygen | /skg (PKCS#7) |
 | /serverkeygen | /skc (application/pkix-cert) |
 | /csrattrs | /att |
 +-------------------+-------------------------------+

 Table 1: Short EST-coaps URI path

 The /skg message is the EST /serverkeygen equivalent where the client
 requests a certificate in PKCS#7 format and a private key. If the
 client prefers a single application/pkix-cert certificate instead of
 PKCS#7, it will make an /skc request. In both cases (i.e., /skg,
 /skc) a private key MUST be returned.

 Clients and servers MUST support the short resource EST-coaps URIs.

van der Stok, et al. Expires July 9, 2020 [Page 11]

Internet-Draft EST-coaps January 2020

 In the context of CoAP, the presence and location of (path to) the
 EST resources are discovered by sending a GET request to "/.well-
 known/core" including a resource type (RT) parameter with the value
 "ace.est*" [RFC6690]. The example below shows the discovery over
 CoAPS of the presence and location of EST-coaps resources. Linefeeds
 are included only for readability.

 REQ: GET /.well-known/core?rt=ace.est*

 RES: 2.05 Content
 </est/crts>;rt="ace.est.crts";ct="281 TBD287",
 </est/sen>;rt="ace.est.sen";ct="281 TBD287",
 </est/sren>;rt="ace.est.sren";ct="281 TBD287",
 </est/att>;rt="ace.est.att";ct=285,
 </est/skg>;rt="ace.est.skg";ct=62,
 </est/skc>;rt="ace.est.skc";ct=62

 The first three lines, describing ace.est.crts, ace.est.sen, and
 ace.est.sren, of the discovery response above MUST be returned if the
 server supports resource discovery. The last three lines are only
 included if the corresponding EST functions are implemented (see
 Table 2). The Content-Formats in the response allow the client to
 request one that is supported by the server. These are the values
 that would be sent in the client request with an Accept option.

 Discoverable port numbers can be returned in the response payload.
 An example response payload for non-default CoAPS server port 61617
 follows below. Linefeeds are included only for readability.

 REQ: GET /.well-known/core?rt=ace.est*

 RES: 2.05 Content
 <coaps://[2001:db8:3::123]:61617/est/crts>;rt="ace.est.crts";
 ct="281 TBD287",
 <coaps://[2001:db8:3::123]:61617/est/sen>;rt="ace.est.sen";
 ct="281 TBD287",
 <coaps://[2001:db8:3::123]:61617/est/sren>;rt="ace.est.sren";
 ct="281 TBD287",
 <coaps://[2001:db8:3::123]:61617/est/att>;rt="ace.est.att";
 ct=285,
 <coaps://[2001:db8:3::123]:61617/est/skg>;rt="ace.est.skg";
 ct=62,
 <coaps://[2001:db8:3::123]:61617/est/skc>;rt="ace.est.skc";
 ct=62

 The server MUST support the default /.well-known/est root resource.
 The server SHOULD support resource discovery when it supports non-
 default URIs (like /est or /est/ArbitraryLabel) or ports. The client

van der Stok, et al. Expires July 9, 2020 [Page 12]

Internet-Draft EST-coaps January 2020

 SHOULD use resource discovery when it is unaware of the available
 EST-coaps resources.

 Throughout this document the example root resource of /est is used.

5.2. Mandatory/optional EST Functions

 This specification contains a set of required-to-implement functions,
 optional functions, and not specified functions. The unspecified
 functions are deemed too expensive for low-resource devices in
 payload and calculation times.

 Table 2 specifies the mandatory-to-implement or optional
 implementation of the EST-coaps functions. Discovery of the
 existence of optional functions is described in Section 5.1.

 +-------------------+--------------------------+
 | EST Functions | EST-coaps implementation |
 +-------------------+--------------------------+
 | /cacerts | MUST |
 | /simpleenroll | MUST |
 | /simplereenroll | MUST |
 | /fullcmc | Not specified |
 | /serverkeygen | OPTIONAL |
 | /csrattrs | OPTIONAL |
 +-------------------+--------------------------+

 Table 2: List of EST-coaps functions

5.3. Payload formats

 EST-coaps is designed for low-resource devices and hence does not
 need to send Base64-encoded data. Simple binary is more efficient
 (30% smaller payload for DER-encoded ASN.1) and well supported by
 CoAP. Thus, the payload for a given Media-Type follows the ASN.1
 structure of the Media-Type and is transported in binary format.

 The Content-Format (HTTP Content-Type equivalent) of the CoAP message
 determines which EST message is transported in the CoAP payload. The
 Media-Types specified in the HTTP Content-Type header field
 (Section 3.2.2 of [RFC7030]) are specified by the Content-Format
 Option (12) of CoAP. The combination of URI-Path and Content-Format
 in EST-coaps MUST map to an allowed combination of URI and Media-Type
 in EST. The required Content-Formats for these requests and response
 messages are defined in Section 9.1. The CoAP response codes are
 defined in Section 5.5.

van der Stok, et al. Expires July 9, 2020 [Page 13]

Internet-Draft EST-coaps January 2020

 Content-Format TBD287 can be used in place of 281 to carry a single
 certificate instead of a PKCS#7 container in a /crts, /sen, /sren or
 /skg response. Content-Format 281 MUST be supported by EST-coaps
 servers. Servers MAY also support Content-Format TBD287. It is up
 to the client to support only Content-Format 281, TBD287 or both.
 The client will use a COAP Accept Option in the request to express
 the preferred response Content-Format. If an Accept Option is not
 included in the request, the client is not expressing any preference
 and the server SHOULD choose format 281.

 Content-Format 286 is used in /sen, /sren and /skg requests and 285
 in /att responses.

 A representation with Content-Format identifier 62 contains a
 collection of representations along with their respective Content-
 Format. The Content-Format identifies the Media-Type application/
 multipart-core specified in [I-D.ietf-core-multipart-ct]. For
 example, a collection, containing two representations in response to
 a EST-coaps server-side key generation /skg request, could include a
 private key in PKCS#8 [RFC5958] with Content-Format identifier 284
 (0x011C) and a single certificate in a PKCS#7 container with Content-
 Format identifier 281 (0x0119). Such a collection would look like
 [284,h’0123456789abcdef’, 281,h’fedcba9876543210’] in diagnostic CBOR
 notation. The serialization of such CBOR content would be

 84 # array(4)
 19 011C # unsigned(284)
 48 # bytes(8)
 0123456789ABCDEF # "\x01#Eg\x89\xAB\xCD\xEF"
 19 0119 # unsigned(281)
 48 # bytes(8)
 FEDCBA9876543210 # "\xFE\xDC\xBA\x98vT2\x10"

 Multipart /skg response serialization

 When the client makes an /skc request the certificate returned with
 the private key is a single X.509 certificate (not a PKCS#7
 container) with Content-Format identifier TBD287 (0x011F) instead of
 281. In cases where the private key is encrypted with CMS (as
 explained in Section 5.8) the Content-Format identifier is 280
 (0x0118) instead of 284. The content format used in the response is
 summarized in Table 3.

van der Stok, et al. Expires July 9, 2020 [Page 14]

Internet-Draft EST-coaps January 2020

 +----------+-----------------+-----------------+
 | Function | Response part 1 | Response part 2 |
 +----------+-----------------+-----------------+
 | /skg | 284 | 281 |
 | /skc | 280 | TBD287 |
 +----------+-----------------+-----------------+

 Table 3: response content formats for skg and skc

 The key and certificate representations are DER-encoded ASN.1, in its
 native binary form. An example is shown in Appendix A.3.

5.4. Message Bindings

 The general EST-coaps message characteristics are:

 o EST-coaps servers sometimes need to provide delayed responses
 which are preceded by an immediately returned empty ACK or an ACK
 containing response code 5.03 as explained in Section 5.7. Thus,
 it is RECOMMENDED for implementers to send EST-coaps requests in
 confirmable CON CoAP messages.

 o The CoAP Options used are Uri-Host, Uri-Path, Uri-Port, Content-
 Format, Block1, Block2, and Accept. These CoAP Options are used
 to communicate the HTTP fields specified in the EST REST messages.
 The Uri-host and Uri-Port Options can be omitted from the COAP
 message sent on the wire. When omitted, they are logically
 assumed to be the transport protocol destination address and port
 respectively. Explicit Uri-Host and Uri-Port Options are
 typically used when an endpoint hosts multiple virtual servers and
 uses the Options to route the requests accordingly. Other COAP
 Options should be handled in accordance with [RFC7252].

 o EST URLs are HTTPS based (https://), in CoAP these are assumed to
 be translated to CoAPS (coaps://)

 Table 1 provides the mapping from the EST URI path to the EST-coaps
 URI path. Appendix A includes some practical examples of EST
 messages translated to CoAP.

5.5. CoAP response codes

 Section 5.9 of [RFC7252] and Section 7 of [RFC8075] specify the
 mapping of HTTP response codes to CoAP response codes. The success
 code in response to an EST-coaps GET request (/crts, /att), is 2.05.
 Similarly, 2.04 is used in successful response to EST-coaps POST
 requests (/sen, /sren, /skg, /skc).

van der Stok, et al. Expires July 9, 2020 [Page 15]

Internet-Draft EST-coaps January 2020

 EST makes use of HTTP 204 or 404 responses when a resource is not
 available for the client. In EST-coaps 2.04 is used in response to a
 POST (/sen, /sren, /skg, /skc). 4.04 is used when the resource is not
 available for the client.

 HTTP response code 202 with a Retry-After header field in [RFC7030]
 has no equivalent in CoAP. HTTP 202 with Retry-After is used in EST
 for delayed server responses. Section 5.7 specifies how EST-coaps
 handles delayed messages with 5.03 responses with a Max-Age Option.

 Additionally, EST’s HTTP 400, 401, 403, 404 and 503 status codes have
 their equivalent CoAP 4.00, 4.01, 4.03, 4.04 and 5.03 response codes
 in EST-coaps. Table 4 summarizes the EST-coaps response codes.

 +-----------------+-----------------+-------------------------------+
 | operation | EST-coaps | Description |
 | | response code | |
 +-----------------+-----------------+-------------------------------+
/crts, /att	2.05	Success. Certs included in
		the response payload.
	4.xx / 5.xx	Failure.
/sen, /skg,	2.04	Success. Cert included in the
/sren, /skc		response payload.
	5.03	Retry in Max-Age Option time.
	4.xx / 5.xx	Failure.
 +-----------------+-----------------+-------------------------------+

 Table 4: EST-coaps response codes

5.6. Message fragmentation

 DTLS defines fragmentation only for the handshake and not for secure
 data exchange (DTLS records). [RFC6347] states that to avoid using
 IP fragmentation, which involves error-prone datagram reconstitution,
 invokers of the DTLS record layer should size DTLS records so that
 they fit within any Path MTU estimates obtained from the record
 layer. In addition, invokers residing on a 6LoWPAN over IEEE
 802.15.4 [ieee802.15.4] network are recommended to size CoAP messages
 such that each DTLS record will fit within one or two IEEE 802.15.4
 frames.

 That is not always possible in EST-coaps. Even though ECC
 certificates are small in size, they can vary greatly based on
 signature algorithms, key sizes, and Object Identifier (OID) fields
 used. For 256-bit curves, common ECDSA cert sizes are 500-1000 bytes
 which could fluctuate further based on the algorithms, OIDs, Subject
 Alternative Names (SAN) and cert fields. For 384-bit curves, ECDSA
 certificates increase in size and can sometimes reach 1.5KB.

van der Stok, et al. Expires July 9, 2020 [Page 16]

Internet-Draft EST-coaps January 2020

 Additionally, there are times when the EST cacerts response from the
 server can include multiple certificates that amount to large
 payloads. Section 4.6 of CoAP [RFC7252] describes the possible
 payload sizes: "if nothing is known about the size of the headers,
 good upper bounds are 1152 bytes for the message size and 1024 bytes
 for the payload size". Section 4.6 of [RFC7252] also suggests that
 IPv4 implementations may want to limit themselves to more
 conservative IPv4 datagram sizes such as 576 bytes. Even with ECC,
 EST-coaps messages can still exceed MTU sizes on the Internet or
 6LoWPAN [RFC4919] (Section 2 of [RFC7959]). EST-coaps needs to be
 able to fragment messages into multiple DTLS datagrams.

 To perform fragmentation in CoAP, [RFC7959] specifies the Block1
 Option for fragmentation of the request payload and the Block2 Option
 for fragmentation of the return payload of a CoAP flow. As explained
 in Section 1 of [RFC7959], block-wise transfers should be used in
 Confirmable CoAP messages to avoid the exacerbation of lost blocks.
 EST-coaps servers MUST implement Block1 and Block2. EST-coaps
 clients MUST implement Block2. EST-coaps clients MUST implement
 Block1 only if they are expecting to send EST-coaps requests with a
 packet size that exceeds the Path MTU.

 [RFC7959] also defines Size1 and Size2 Options to provide size
 information about the resource representation in a request and
 response. EST-client and server MAY support Size1 and Size2 Options.

 Examples of fragmented EST-coaps messages are shown in Appendix B.

5.7. Delayed Responses

 Server responses can sometimes be delayed. According to
 Section 5.2.2 of [RFC7252], a slow server can acknowledge the request
 and respond later with the requested resource representation. In
 particular, a slow server can respond to an EST-coaps enrollment
 request with an empty ACK with code 0.00, before sending the
 certificate to the client after a short delay. If the certificate
 response is large, the server will need more than one Block2 block to
 transfer it.

 This situation is shown in Figure 2. The client sends an enrollment
 request that uses N1+1 Block1 blocks. The server uses an empty 0.00
 ACK to announce the delayed response which is provided later with
 2.04 messages containing N2+1 Block2 Options. The first 2.04 is a
 confirmable message that is acknowledged by the client. Onwards, the
 client acknowledges all subsequent Block2 blocks. The notation of
 Figure 2 is explained in Appendix B.1.

van der Stok, et al. Expires July 9, 2020 [Page 17]

Internet-Draft EST-coaps January 2020

POST [2001:db8::2:1]:61616/est/sen (CON)(1:0/1/256) {CSR (frag# 1)} -->
 <-- (ACK) (1:0/1/256) (2.31 Continue)
POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256) {CSR (frag# 2)} -->
 <-- (ACK) (1:1/1/256) (2.31 Continue)
 .
 .
 .
POST [2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256){CSR (frag# N1+1)}-->
 <-- (0.00 empty ACK)
 |
 ... Short delay before the certificate is ready ...
 |
 <-- (CON) (1:N1/0/256)(2:0/1/256)(2.04 Changed) {Cert resp (frag# 1)}
 (ACK) -->
POST [2001:db8::2:1]:61616/est/sen (CON)(2:1/0/256) -->
 <-- (ACK) (2:1/1/256) (2.04 Changed) {Cert resp (frag# 2)}
 .
 .
 .
POST [2001:db8::2:1]:61616/est/sen (CON)(2:N2/0/256) -->
 <-- (ACK) (2:N2/0/256) (2.04 Changed) {Cert resp (frag# N2+1)}

 Figure 2: EST-COAP enrollment with short wait

 If the server is very slow (for example, manual intervention is
 required which would take minutes), it SHOULD respond with an ACK
 containing response code 5.03 (Service unavailable) and a Max-Age
 Option to indicate the time the client SHOULD wait before sending
 another request to obtain the content. After a delay of Max-Age, the
 client SHOULD resend the identical CSR to the server. As long as the
 server continues to respond with response code 5.03 (Service
 Unavailable) with a Max-Age Option, the client will continue to delay
 for Max-Age and then resend the enrollment request until the server
 responds with the certificate or the client abandons the request for
 policy or other reasons.

 To demonstrate this scenario, Figure 3 shows a client sending an
 enrollment request that uses N1+1 Block1 blocks to send the CSR to
 the server. The server needs N2+1 Block2 blocks to respond, but also
 needs to take a long delay (minutes) to provide the response.
 Consequently, the server uses a 5.03 ACK response with a Max-Age
 Option. The client waits for a period of Max-Age as many times as it
 receives the same 5.03 response and retransmits the enrollment
 request until it receives a certificate in a fragmented 2.04
 response.

van der Stok, et al. Expires July 9, 2020 [Page 18]

Internet-Draft EST-coaps January 2020

POST [2001:db8::2:1]:61616/est/sen (CON)(1:0/1/256) {CSR (frag# 1)} -->
 <-- (ACK) (1:0/1/256) (2.31 Continue)
POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256) {CSR (frag# 2)} -->
 <-- (ACK) (1:1/1/256) (2.31 Continue)
 .
 .
 .
POST [2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256){CSR (frag# N1+1)}-->
 <-- (ACK) (1:N1/0/256) (5.03 Service Unavailable) (Max-Age)
 |
 |
 ... Client tries again after Max-Age with identical payload ...
 |
 |
POST [2001:db8::2:1]:61616/est/sen(CON)(1:0/1/256){CSR (frag# 1)}-->
 <-- (ACK) (1:0/1/256) (2.31 Continue)
POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256) {CSR (frag# 2)} -->
 <-- (ACK) (1:1/1/256) (2.31 Continue)
 .
 .
 .
POST [2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256){CSR (frag# N1+1)}-->
 |
 ... Immediate response when certificate is ready ...
 |
 <-- (ACK) (1:N1/0/256) (2:0/1/256) (2.04 Changed){Cert resp (frag# 1)}
POST [2001:db8::2:1]:61616/est/sen (CON)(2:1/0/256) -->
 <-- (ACK) (2:1/1/256) (2.04 Changed) {Cert resp (frag# 2)}
 .
 .
 .
POST [2001:db8::2:1]:61616/est/sen (CON)(2:N2/0/256) -->
 <-- (ACK) (2:N2/0/256) (2.04 Changed) {Cert resp (frag# N2+1)}

 Figure 3: EST-COAP enrollment with long wait

5.8. Server-side Key Generation

 Private keys can be generated on the server to support scenarios
 where serer-side key generation is needed. Such scenarios include
 those where it is considered more secure to generate the long-lived,
 random private key that identifies the client at the server, or where
 the resources spent to generate a random private key at the client
 are considered scarce, or where the security policy requires that the
 certificate public and corresponding private keys are centrally
 generated and controlled. As always, it is necessary to use proper
 random numbers in various protocols such as (D)TLS (Section 10.1).

van der Stok, et al. Expires July 9, 2020 [Page 19]

Internet-Draft EST-coaps January 2020

 When requesting server-side key generation, the client asks for the
 server or proxy to generate the private key and the certificate,
 which are transferred back to the client in the server-side key
 generation response. In all respects, the server treats the CSR as
 it would treat any enroll or re-enroll CSR; the only distinction here
 is that the server MUST ignore the public key values and signature in
 the CSR. These are included in the request only to allow re-use of
 existing codebases for generating and parsing such requests.

 The client /skg request is for a certificate in a PKCS#7 container
 and private key in two application/multipart-core elements.
 Respectively, an /skc request is for a single application/pkix-cert
 certificate and a private key. The private key Content-Format
 requested by the client is indicated in the PKCS#10 CSR request. If
 the request contains SMIMECapabilities and DecryptKeyIdentifier or
 AsymmetricDecryptKeyIdentifier the client is expecting Content-Format
 280 for the private key. Then this private key is encrypted
 symmetrically or asymmetrically as per [RFC7030]. The symmetric key
 or the asymmetric keypair establishment method is out of scope of
 this specification. A /skg or /skc request with a CSR without
 SMIMECapabilities expects an application/multipart-core with an
 unencrypted PKCS#8 private key with Content-Format 284.

 The EST-coaps server-side key generation response is returned with
 Content-Format application/multipart-core
 [I-D.ietf-core-multipart-ct] containing a CBOR array with four items
 (Section 5.3). The two representations (each consisting of two CBOR
 array items) do not have to be in a particular order since each
 representation is preceded by its Content-Format ID. Depending on
 the request, the private key can be in unprotected PKCS#8 [RFC5958]
 format (Content-Format 284) or protected inside of CMS SignedData
 (Content-Format 280). The SignedData, placed in the outermost
 container, is signed by the party that generated the private key,
 which may be the EST server or the EST CA. SignedData placed within
 the Enveloped Data does not need additional signing as explained in
 Section 4.4.2 of [RFC7030]. In summary, the symmetrically encrypted
 key is included in the encryptedKey attribute in a KEKRecipientInfo
 structure. In the case where the asymmetric encryption key is
 suitable for transport key operations the generated private key is
 encrypted with a symmetric key. The symmetric key itself is
 encrypted by the client-defined (in the CSR) asymmetric public key
 and is carried in an encryptedKey attribute in a
 KeyTransRecipientInfo structure. Finally, if the asymmetric
 encryption key is suitable for key agreement, the generated private
 key is encrypted with a symmetric key. The symmetric key itself is
 encrypted by the client defined (in the CSR) asymmetric public key
 and is carried in an recipientEncryptedKeys attribute in a
 KeyAgreeRecipientInfo.

van der Stok, et al. Expires July 9, 2020 [Page 20]

Internet-Draft EST-coaps January 2020

 [RFC7030] recommends the use of additional encryption of the returned
 private key. For the context of this specification, clients and
 servers that choose to support server-side key generation MUST
 support unprotected (PKCS#8) private keys (Content-Format 284).
 Symmetric or asymmetric encryption of the private key (CMS
 EnvelopedData, Content-Format 280) SHOULD be supported for
 deployments where end-to-end encryption is needed between the client
 and a server. Such cases could include architectures where an entity
 between the client and the CA terminates the DTLS connection
 (Registrar in Figure 4). Although [RFC7030] strongly recommends that
 clients request the use of CMS encryption on top of the TLS channel’s
 protection, this document does not make such a recommendation; CMS
 encryption can still be used when mandated by the use-case.

6. HTTPS-CoAPS Registrar

 In real-world deployments, the EST server will not always reside
 within the CoAP boundary. The EST server can exist outside the
 constrained network in which case it will support TLS/HTTP instead of
 CoAPS. In such environments EST-coaps is used by the client within
 the CoAP boundary and TLS is used to transport the EST messages
 outside the CoAP boundary. A Registrar at the edge is required to
 operate between the CoAP environment and the external HTTP network as
 shown in Figure 4.

 Constrained Network
 .------. .----------------------------.
 | CA | |.--------------------------.|
 ’------’ || ||
 | || ||
 .------. HTTP .-----------------. CoAPS .-----------. ||
 | EST |<------->|EST-coaps-to-HTTPS|<------->| EST Client| ||
 |Server|over TLS | Registrar | ’-----------’ ||
 ’------’ ’-----------------’ ||
 || ||
 |’--------------------------’|
 ’----------------------------’

 Figure 4: EST-coaps-to-HTTPS Registrar at the CoAP boundary.

 The EST-coaps-to-HTTPS Registrar MUST terminate EST-coaps downstream
 and initiate EST connections over TLS upstream. The Registrar MUST
 authenticate and optionally authorize the client requests while it
 MUST be authenticated by the EST server or CA. The trust
 relationship between the Registrar and the EST server SHOULD be pre-
 established for the Registrar to proxy these connections on behalf of
 various clients.

van der Stok, et al. Expires July 9, 2020 [Page 21]

Internet-Draft EST-coaps January 2020

 When enforcing Proof-of-Possession (PoP) linking, the DTLS tls-unique
 value of the (D)TLS session is used to prove that the private key
 corresponding to the public key is in the possession of the client
 and was used to establish the connection as explained in Section 4.
 The PoP linking information is lost between the EST-coaps client and
 the EST server when a Registrar is present. The EST server becomes
 aware of the presence of a Registrar from its TLS client certificate
 that includes id-kp-cmcRA [RFC6402] extended key usage extension
 (EKU). As explained in Section 3.7 of [RFC7030], the "EST server
 SHOULD apply an authorization policy consistent with a Registrar
 client. For example, it could be configured to accept PoP linking
 information that does not match the current TLS session because the
 authenticated EST client Registrar has verified this information when
 acting as an EST server".

 Table 1 contains the URI mappings between EST-coaps and EST that the
 Registrar MUST adhere to. Section 5.5 of this specification and
 Section 7 of [RFC8075] define the mappings between EST-coaps and HTTP
 response codes, that determine how the Registrar MUST translate CoAP
 response codes from/to HTTP status codes. The mapping from CoAP
 Content-Format to HTTP Content-Type is defined in Section 9.1.
 Additionally, a conversion from CBOR major type 2 to Base64 encoding
 MUST take place at the Registrar. If CMS end-to-end encryption is
 employed for the private key, the encrypted CMS EnvelopedData blob
 MUST be converted at the Registrar to binary CBOR type 2 downstream
 to the client. This is a format conversion that does not require
 decryption of the CMS EnvelopedData.

 A deviation from the mappings in Table 1 could take place if clients
 that leverage server-side key generation preferred for the enrolled
 keys to be generated by the Registrar in the case the CA does not
 support server-side key generation. Such a Registrar is responsible
 for generating a new CSR signed by a new key which will be returned
 to the client along with the certificate from the CA. In these
 cases, the Registrar MUST use random number generation with proper
 entropy.

 Due to fragmentation of large messages into blocks, an EST-coaps-to-
 HTTP Registrar MUST reassemble the BLOCKs before translating the
 binary content to Base64, and consecutively relay the message
 upstream.

 The EST-coaps-to-HTTP Registrar MUST support resource discovery
 according to the rules in Section 5.1.

van der Stok, et al. Expires July 9, 2020 [Page 22]

Internet-Draft EST-coaps January 2020

7. Parameters

 This section addresses transmission parameters described in sections
 4.7 and 4.8 of [RFC7252]. EST does not impose any unique values on
 the CoAP parameters in [RFC7252], but the setting of the CoAP
 parameter values may have consequence for the setting of the EST
 parameter values.

 Implementations should follow the default CoAP configuration
 parameters [RFC7252]. However, depending on the implementation
 scenario, retransmissions and timeouts can also occur on other
 networking layers, governed by other configuration parameters. When
 a change in a server parameter has taken place, the parameter values
 in the communicating endpoints MUST be adjusted as necessary.
 Examples of how parameters could be adjusted include higher layer
 congestion protocols, provisioning agents and configurations included
 in firmware updates.

 Some further comments about some specific parameters, mainly from
 Table 2 in [RFC7252]:

 o NSTART: A parameter that controls the number of simultaneous
 outstanding interactions that a client maintains to a given
 server. An EST-coaps client is expected to control at most one
 interaction with a given server, which is the default NSTART value
 defined in [RFC7252].

 o DEFAULT_LEISURE: This setting is only relevant in multicast
 scenarios, outside the scope of EST-coaps.

 o PROBING_RATE: A parameter which specifies the rate of re-sending
 non-confirmable messages. In the rare situations that non-
 confirmable messages are used, the default PROBING_RATE value
 defined in [RFC7252] applies.

 Finally, the Table 3 parameters in [RFC7252] are mainly derived from
 Table 2. Directly changing parameters on one table would affect
 parameters on the other.

8. Deployment limitations

 Although EST-coaps paves the way for the utilization of EST by
 constrained devices in constrained networks, some classes of devices
 [RFC7228] will not have enough resources to handle the payloads that
 come with EST-coaps. The specification of EST-coaps is intended to
 ensure that EST works for networks of constrained devices that choose
 to limit their communications stack to DTLS/CoAP. It is up to the

van der Stok, et al. Expires July 9, 2020 [Page 23]

Internet-Draft EST-coaps January 2020

 network designer to decide which devices execute the EST protocol and
 which do not.

9. IANA Considerations

9.1. Content-Format Registry

 Additions to the sub-registry "CoAP Content-Formats", within the
 "CoRE Parameters" registry [COREparams] are specified in Table 5.
 These have been registered provisionally in the IETF Review or IESG
 Approval range (256-9999).

 +------------------------------+-------+----------------------------+
 | HTTP Content-Type | ID | Reference |
 +------------------------------+-------+----------------------------+
application/pkcs7-mime;	280	[RFC7030] [I-D.ietf-lamps-
smime-type=server-generated-		rfc5751-bis] [ThisRFC]
key		
application/pkcs7-mime;	281	[I-D.ietf-lamps-rfc5751-bi
smime-type=certs-only		s] [ThisRFC]
application/pkcs8	284	[RFC5958] [I-D.ietf-lamps-
		rfc5751-bis] [ThisRFC]
application/csrattrs	285	[RFC7030]
application/pkcs10	286	[RFC5967] [I-D.ietf-lamps-
		rfc5751-bis] [ThisRFC]
application/pkix-cert	TBD28	[RFC2585] [ThisRFC]
	7	
 +------------------------------+-------+----------------------------+

 Table 5: New CoAP Content-Formats

 It is suggested that 287 is allocated to TBD287.

9.2. Resource Type registry

 This memo registers new Resource Type (rt=) Link Target Attributes in
 the "Resource Type (rt=) Link Target Attribute Values" subregistry
 under the "Constrained RESTful Environments (CoRE) Parameters"
 registry.

 o rt="ace.est.crts". This resource depicts the support of EST get
 cacerts.

 o rt="ace.est.sen". This resource depicts the support of EST simple
 enroll.

 o rt="ace.est.sren". This resource depicts the support of EST
 simple reenroll.

van der Stok, et al. Expires July 9, 2020 [Page 24]

Internet-Draft EST-coaps January 2020

 o rt="ace.est.att". This resource depicts the support of EST get
 CSR attributes.

 o rt="ace.est.skg". This resource depicts the support of EST
 server-side key generation with the returned certificate in a
 PKCS#7 container.

 o rt="ace.est.skc". This resource depicts the support of EST
 server-side key generation with the returned certificate in
 application/pkix-cert format.

9.3. Well-Known URIs Registry

 A new additional reference is requested for the est URI in the Well-
 Known URIs registry:

 +------+--------+---------+---------+----------+---------+----------+
URI	Change	Referen	Status	Related	Date Re	Date
Suff	Contro	ces		Informat	gistere	Modified
ix	ller			ion	d	
+------+--------+---------+---------+----------+---------+----------+						
est	IETF	[RFC703	permane		2013-08	[THIS
		0]	nt		-16	RFC’s pu
		[THIS				blicatio
		RFC]				n date]
 +------+--------+---------+---------+----------+---------+----------+

10. Security Considerations

10.1. EST server considerations

 The security considerations of Section 6 of [RFC7030] are only
 partially valid for the purposes of this document. As HTTP Basic
 Authentication is not supported, the considerations expressed for
 using passwords do not apply. The other portions of the security
 considerations of [RFC7030] continue to apply.

 Modern security protocols require random numbers to be available
 during the protocol run, for example for nonces and ephemeral (EC)
 Diffie-Hellman key generation. This capability to generate random
 numbers is also needed when the constrained device generates the
 private key (that corresponds to the public key enrolled in the CSR).
 When server-side key generation is used, the constrained device
 depends on the server to generate the private key randomly, but it
 still needs locally generated random numbers for use in security
 protocols, as explained in Section 12 of [RFC7925]. Additionally,
 the transport of keys generated at the server is inherently risky.
 For those deploying server-side key generation, analysis SHOULD be

van der Stok, et al. Expires July 9, 2020 [Page 25]

Internet-Draft EST-coaps January 2020

 done to establish whether server-side key generation increases or
 decreases the probability of digital identity theft.

 It is important to note that, as pointed out in [PsQs], sources
 contributing to the randomness pool used to generate random numbers
 on laptops or desktop PCs, such as mouse movement, timing of
 keystrokes, or air turbulence on the movement of hard drive heads,
 are not available on many constrained devices. Other sources have to
 be used or dedicated hardware has to be added. Selecting hardware
 for an IoT device that is capable of producing high-quality random
 numbers is therefore important [RSAfact].

 As discussed in Section 6 of [RFC7030], it is "RECOMMENDED that the
 Implicit Trust Anchor database used for EST server authentication is
 carefully managed to reduce the chance of a third-party CA with poor
 certification practices jeopardizing authentication. Disabling the
 Implicit Trust Anchor database after successfuly receiving the
 Distribution of CA certificates response (Section 4.1.3) limits any
 risk to the first TLS exchange". Alternatively, in a case where a
 /sen request immediately follows a /crts, a client MAY choose to keep
 the connection authenticated by the Implicit TA open for efficiency
 reasons (Section 4). A client that interleaves EST-coaps /crts
 request with other requests in the same DTLS connection SHOULD
 revalidate the server certificate chain against the updated Explicit
 TA from the /crts response before proceeding with the subsequent
 requests. If the server certificate chain does not authenticate
 against the database, the client SHOULD close the connection without
 completing the rest of the requests. The updated Explicit TA MUST
 continue to be used in new DTLS connections.

 In cases where the IDevID used to authenticate the client is expired
 the server MAY still authenticate the client because IDevIDs are
 expected to live as long as the device itself (Section 4). In such
 occasions, checking the certificate revocation status or authorizing
 the client using another method is important for the server to raise
 its confidence that the client can be trusted.

 In accordance with [RFC7030], TLS cipher suites that include
 "_EXPORT_" and "_DES_" in their names MUST NOT be used. More
 recommendations for secure use of TLS and DTLS are included in
 [BCP195].

 As described in CMC, Section 6.7 of [RFC5272], "For keys that can be
 used as signature keys, signing the certification request with the
 private key serves as a PoP on that key pair". The inclusion of tls-
 unique in the certificate request links the proof-of-possession to
 the TLS proof-of-identity. This implies but does not prove that only
 the authenticated client currently has access to the private key.

van der Stok, et al. Expires July 9, 2020 [Page 26]

Internet-Draft EST-coaps January 2020

 What’s more, CMC PoP linking uses tls-unique as it is defined in
 [RFC5929]. The 3SHAKE attack [tripleshake] poses a risk by allowing
 a man-in-the-middle to leverage session resumption and renegotiation
 to inject himself between a client and server even when channel
 binding is in use. Implementers should use the Extended Master
 Secret Extension in DTLS [RFC7627] to prevent such attacks. In the
 context of this specification, an attacker could invalidate the
 purpose of the PoP linking ChallengePassword in the client request by
 resuming an EST-coaps connection. Even though the practical risk of
 such an attack to EST-coaps is not devastating, we would rather use a
 more secure channel binding mechanism. Such a mechanism could
 include an updated tls-unique value generation like the tls-unique-
 prf defined in [I-D.josefsson-sasl-tls-cb] by using a TLS exporter
 [RFC5705] in TLS 1.2 or TLS 1.3’s updated exporter (Section 7.5 of
 [RFC8446]) value in place of the tls-unique value in the CSR. Such
 mechanism has not been standardized yet. Adopting a channel binding
 value generated from an exporter would break backwards compatibility
 for an RA that proxies through to a classic EST server. Thus, in
 this specification we still depend on the tls-unique mechanism
 defined in [RFC5929], especially since a 3SHAKE attack does not
 expose messages exchanged with EST-coaps.

 Interpreters of ASN.1 structures should be aware of the use of
 invalid ASN.1 length fields and should take appropriate measures to
 guard against buffer overflows, stack overruns in particular, and
 malicious content in general.

10.2. HTTPS-CoAPS Registrar considerations

 The Registrar proposed in Section 6 must be deployed with care, and
 only when direct client-server connections are not possible. When
 PoP linking is used the Registrar terminating the DTLS connection
 establishes a new TLS connection with the upstream CA. Thus, it is
 impossible for PoP linking to be enforced end-to-end for the EST
 transaction. The EST server could be configured to accept PoP
 linking information that does not match the current TLS session
 because the authenticated EST Registrar is assumed to have verified
 PoP linking downstream to the client.

 The introduction of an EST-coaps-to-HTTP Registrar assumes the client
 can authenticate the Registrar using its implicit or explicit TA
 database. It also assumes the Registrar has a trust relationship
 with the upstream EST server in order to act on behalf of the
 clients. When a client uses the Implicit TA database for certificate
 validation, it SHOULD confirm if the server is acting as an RA by the
 presence of the id-kp-cmcRA EKU [RFC6402] in the server certificate.

van der Stok, et al. Expires July 9, 2020 [Page 27]

Internet-Draft EST-coaps January 2020

 In a server-side key generation case, if no end-to-end encryption is
 used, the Registrar may be able see the private key as it acts as a
 man-in-the-middle. Thus, the client puts its trust on the Registrar
 not exposing the private key.

 Clients that leverage server-side key generation without end-to-end
 encryption of the private key (Section 5.8) have no knowledge if the
 Registrar will be generating the private key and enrolling the
 certificates with the CA or if the CA will be responsible for
 generating the key. In such cases, the existence of a Registrar
 requires the client to put its trust on the registrar when it is
 generating the private key.

11. Contributors

 Martin Furuhed contributed to the EST-coaps specification by
 providing feedback based on the Nexus EST over CoAPS server
 implementation that started in 2015. Sandeep Kumar kick-started this
 specification and was instrumental in drawing attention to the
 importance of the subject.

12. Acknowledgements

 The authors are very grateful to Klaus Hartke for his detailed
 explanations on the use of Block with DTLS and his support for the
 Content-Format specification. The authors would like to thank Esko
 Dijk and Michael Verschoor for the valuable discussions that helped
 in shaping the solution. They would also like to thank Peter
 Panburana for his feedback on technical details of the solution.
 Constructive comments were received from Benjamin Kaduk, Eliot Lear,
 Jim Schaad, Hannes Tschofenig, Julien Vermillard, John Manuel, Oliver
 Pfaff, Pete Beal and Carsten Bormann.

 Interop tests were done by Oliver Pfaff, Thomas Werner, Oskar
 Camezind, Bjorn Elmers and Joel Hoglund.

 Robert Moskowitz provided code to create the examples.

13. References

13.1. Normative References

 [I-D.ietf-core-multipart-ct]
 Fossati, T., Hartke, K., and C. Bormann, "Multipart
 Content-Format for CoAP", draft-ietf-core-multipart-ct-04
 (work in progress), August 2019.

van der Stok, et al. Expires July 9, 2020 [Page 28]

Internet-Draft EST-coaps January 2020

 [I-D.ietf-lamps-rfc5751-bis]
 Schaad, J., Ramsdell, B., and S. Turner, "Secure/
 Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
 Message Specification", draft-ietf-lamps-rfc5751-bis-12
 (work in progress), September 2018.

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-34 (work in progress),
 November 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2585] Housley, R. and P. Hoffman, "Internet X.509 Public Key
 Infrastructure Operational Protocols: FTP and HTTP",
 RFC 2585, DOI 10.17487/RFC2585, May 1999,
 <https://www.rfc-editor.org/info/rfc2585>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958,
 DOI 10.17487/RFC5958, August 2010,
 <https://www.rfc-editor.org/info/rfc5958>.

 [RFC5967] Turner, S., "The application/pkcs10 Media Type", RFC 5967,
 DOI 10.17487/RFC5967, August 2010,
 <https://www.rfc-editor.org/info/rfc5967>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/info/rfc6690>.

 [RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

van der Stok, et al. Expires July 9, 2020 [Page 29]

Internet-Draft EST-coaps January 2020

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016,
 <https://www.rfc-editor.org/info/rfc7925>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8075] Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
 E. Dijk, "Guidelines for Mapping Implementations: HTTP to
 the Constrained Application Protocol (CoAP)", RFC 8075,
 DOI 10.17487/RFC8075, February 2017,
 <https://www.rfc-editor.org/info/rfc8075>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8422] Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
 Curve Cryptography (ECC) Cipher Suites for Transport Layer
 Security (TLS) Versions 1.2 and Earlier", RFC 8422,
 DOI 10.17487/RFC8422, August 2018,
 <https://www.rfc-editor.org/info/rfc8422>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

13.2. Informative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, May 2015,
 <https://www.rfc-editor.org/info/bcp195>.

 [COREparams]
 "Constrained RESTful Environments (CoRE) Parameters",
 <https://www.iana.org/assignments/core-parameters/core-
 parameters.xhtml>.

van der Stok, et al. Expires July 9, 2020 [Page 30]

Internet-Draft EST-coaps January 2020

 [I-D.ietf-tls-dtls-connection-id]
 Rescorla, E., Tschofenig, H., and T. Fossati, "Connection
 Identifiers for DTLS 1.2", draft-ietf-tls-dtls-connection-
 id-07 (work in progress), October 2019.

 [I-D.josefsson-sasl-tls-cb]
 Josefsson, S., "Channel Bindings for TLS based on the
 PRF", draft-josefsson-sasl-tls-cb-03 (work in progress),
 March 2015.

 [I-D.moskowitz-ecdsa-pki]
 Moskowitz, R., Birkholz, H., Xia, L., and M. Richardson,
 "Guide for building an ECC pki", draft-moskowitz-ecdsa-
 pki-07 (work in progress), August 2019.

 [ieee802.15.4]
 "IEEE Standard 802.15.4-2006", 2006.

 [ieee802.1ar]
 "IEEE 802.1AR Secure Device Identifier", December 2009.

 [PsQs] "Mining Your Ps and Qs: Detection of Widespread Weak Keys
 in Network Devices", USENIX Security Symposium 2012 ISBN
 978-931971-95-9, August 2012.

 [RFC4919] Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
 over Low-Power Wireless Personal Area Networks (6LoWPANs):
 Overview, Assumptions, Problem Statement, and Goals",
 RFC 4919, DOI 10.17487/RFC4919, August 2007,
 <https://www.rfc-editor.org/info/rfc4919>.

 [RFC5272] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
 <https://www.rfc-editor.org/info/rfc5272>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
 <https://www.rfc-editor.org/info/rfc5929>.

 [RFC6402] Schaad, J., "Certificate Management over CMS (CMC)
 Updates", RFC 6402, DOI 10.17487/RFC6402, November 2011,
 <https://www.rfc-editor.org/info/rfc6402>.

van der Stok, et al. Expires July 9, 2020 [Page 31]

Internet-Draft EST-coaps January 2020

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7251] McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
 CCM Elliptic Curve Cryptography (ECC) Cipher Suites for
 TLS", RFC 7251, DOI 10.17487/RFC7251, June 2014,
 <https://www.rfc-editor.org/info/rfc7251>.

 [RFC7299] Housley, R., "Object Identifier Registry for the PKIX
 Working Group", RFC 7299, DOI 10.17487/RFC7299, July 2014,
 <https://www.rfc-editor.org/info/rfc7299>.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",
 RFC 7627, DOI 10.17487/RFC7627, September 2015,
 <https://www.rfc-editor.org/info/rfc7627>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RSAfact] "Factoring RSA keys from certified smart cards:
 Coppersmith in the wild", Advances in Cryptology
 - ASIACRYPT 2013, August 2013.

 [tripleshake]
 "Triple Handshakes and Cookie Cutters: Breaking and Fixing
 Authentication over TLS", IEEE Security and Privacy ISBN
 978-1-4799-4686-0, May 2014.

Appendix A. EST messages to EST-coaps

 This section shows similar examples to the ones presented in
 Appendix A of [RFC7030]. The payloads in the examples are the hex
 encoded binary, generated with ’xxd -p’, of the PKI certificates
 created following [I-D.moskowitz-ecdsa-pki]. Hex is used for
 visualization purposes because a binary representation cannot be
 rendered well in text. The hexadecimal representations would not be
 transported in hex, but in binary. The payloads are shown

van der Stok, et al. Expires July 9, 2020 [Page 32]

Internet-Draft EST-coaps January 2020

 unencrypted. In practice the message content would be transferred
 over an encrypted DTLS channel.

 The certificate responses included in the examples contain Content-
 Format 281 (application/pkcs7). If the client had requested Content-
 Format TBD287 (application/pkix-cert) by querying /est/skc, the
 server would respond with a single DER binary certificate in the
 multipart-core container.

 These examples assume a short resource path of "/est". Even though
 omitted from the examples for brevity, before making the EST-coaps
 requests, a client would learn about the server supported EST-coaps
 resources with a GET request for /.well-known/core?rt=ace.est* as
 explained in Section 5.1.

 The corresponding CoAP headers are only shown in Appendix A.1.
 Creating CoAP headers is assumed to be generally understood.

 The message content breakdown is presented in Appendix C.

A.1. cacerts

 In EST-coaps, a cacerts message can be:

 GET example.com:9085/est/crts
 (Accept: 281)

 The corresponding CoAP header fields are shown below. The use of
 block and DTLS are worked out in Appendix B.

van der Stok, et al. Expires July 9, 2020 [Page 33]

Internet-Draft EST-coaps January 2020

 Ver = 1
 T = 0 (CON)
 Code = 0x01 (0.01 is GET)
 Token = 0x9a (client generated)
 Options
 Option (Uri-Host)
 Option Delta = 0x3 (option# 3)
 Option Length = 0xB
 Option Value = "example.com"
 Option (Uri-Port)
 Option Delta = 0x4 (option# 3+4=7)
 Option Length = 0x2
 Option Value = 9085
 Option (Uri-Path)
 Option Delta = 0x4 (option# 7+4=11)
 Option Length = 0x3
 Option Value = "est"
 Option (Uri-Path)
 Option Delta = 0x0 (option# 11+0=11)
 Option Length = 0x4
 Option Value = "crts"
 Option (Accept)
 Option Delta = 0x6 (option# 11+6=17)
 Option Length = 0x2
 Option Value = 281
 Payload = [Empty]

 As specified in Section 5.10.1 of [RFC7252], the Uri-Host and Uri-
 Port Options can be omitted if they coincide with the transport
 protocol destination address and port respectively.

 A 2.05 Content response with a cert in EST-coaps will then be

 2.05 Content (Content-Format: 281)
 {payload with certificate in binary format}

 with CoAP fields

van der Stok, et al. Expires July 9, 2020 [Page 34]

Internet-Draft EST-coaps January 2020

 Ver = 1
 T = 2 (ACK)
 Code = 0x45 (2.05 Content)
 Token = 0x9a (copied from request by server)
 Options
 Option (Content-Format)
 Option Delta = 0xC (option# 12)
 Option Length = 0x2
 Option Value = 281

 [The hexadecimal representation below would NOT be transported
 in hex, but in binary. Hex is used because a binary representation
 cannot be rendered well in text.]

 Payload =
 3082027a06092a864886f70d010702a082026b308202670201013100300b
 06092a864886f70d010701a082024d30820249308201efa0030201020208
 0b8bb0fe604f6a1e300a06082a8648ce3d0403023067310b300906035504
 0613025553310b300906035504080c024341310b300906035504070c024c
 4131143012060355040a0c0b4578616d706c6520496e6331163014060355
 040b0c0d63657274696669636174696f6e3110300e06035504030c07526f
 6f74204341301e170d3139303133313131323730335a170d333930313236
 3131323730335a3067310b3009060355040613025553310b300906035504
 080c024341310b300906035504070c024c4131143012060355040a0c0b45
 78616d706c6520496e6331163014060355040b0c0d636572746966696361
 74696f6e3110300e06035504030c07526f6f742043413059301306072a86
 48ce3d020106082a8648ce3d030107034200040c1b1e82ba8cc72680973f
 97edb8a0c72ab0d405f05d4fe29b997a14ccce89008313d09666b6ce375c
 595fcc8e37f8e4354497011be90e56794bd91ad951ab45a3818430818130
 1d0603551d0e041604141df1208944d77b5f1d9dcb51ee244a523f3ef5de
 301f0603551d230418301680141df1208944d77b5f1d9dcb51ee244a523f
 3ef5de300f0603551d130101ff040530030101ff300e0603551d0f0101ff
 040403020106301e0603551d110417301581136365727469667940657861
 6d706c652e636f6d300a06082a8648ce3d040302034800304502202b891d
 d411d07a6d6f621947635ba4c43165296b3f633726f02e51ecf464bd4002
 2100b4be8a80d08675f041fbc719acf3b39dedc85dc92b3035868cb2daa8
 f05db196a1003100

 The breakdown of the payload is shown in Appendix C.1.

A.2. enroll / reenroll

 During the (re-)enroll exchange the EST-coaps client uses a CSR
 (Content-Format 286) request in the POST request payload. The Accept
 option tells the server that the client is expecting Content-Format
 281 (PKCS#7) in the response. As shown in Appendix C.2, the CSR
 contains a ChallengePassword which is used for PoP linking
 (Section 4).

van der Stok, et al. Expires July 9, 2020 [Page 35]

Internet-Draft EST-coaps January 2020

 POST [2001:db8::2:321]:61616/est/sen
 (Token: 0x45)
 (Accept: 281)
 (Content-Format: 286)

 [The hexadecimal representation below would NOT be transported
 in hex, but in binary. Hex is used because a binary representation
 cannot be rendered well in text.]

 3082018b30820131020100305c310b3009060355040613025553310b3009
 06035504080c024341310b300906035504070c024c413114301206035504
 0a0c0b6578616d706c6520496e63310c300a060355040b0c03496f54310f
 300d060355040513065774313233343059301306072a8648ce3d02010608
 2a8648ce3d03010703420004c8b421f11c25e47e3ac57123bf2d9fdc494f
 028bc351cc80c03f150bf50cff958d75419d81a6a245dffae790be95cf75
 f602f9152618f816a2b23b5638e59fd9a073303406092a864886f70d0109
 0731270c2576437630292a264a4b4a3bc3a2c280c2992f3e3c2e2c3d6b6e
 7634332323403d204e787e60303b06092a864886f70d01090e312e302c30
 2a0603551d1104233021a01f06082b06010505070804a013301106092b06
 010401b43b0a01040401020304300a06082a8648ce3d0403020348003045
 02210092563a546463bd9ecff170d0fd1f2ef0d3d012160e5ee90cffedab
 ec9b9a38920220179f10a3436109051abad17590a09bc87c4dce5453a6fc
 1135a1e84eed754377

 After verification of the CSR by the server, a 2.04 Changed response
 with the issued certificate will be returned to the client.

van der Stok, et al. Expires July 9, 2020 [Page 36]

Internet-Draft EST-coaps January 2020

 2.04 Changed
 (Token: 0x45)
 (Content-Format: 281)

 [The hexadecimal representation below would NOT be transported
 in hex, but in binary. Hex is used because a binary representation
 cannot be rendered well in text.]

 3082026e06092a864886f70d010702a082025f3082025b0201013100300b
 06092a864886f70d010701a08202413082023d308201e2a0030201020208
 7e7661d7b54e4632300a06082a8648ce3d040302305d310b300906035504
 0613025553310b300906035504080c02434131143012060355040a0c0b45
 78616d706c6520496e6331163014060355040b0c0d636572746966696361
 74696f6e3113301106035504030c0a3830322e3141522043413020170d31
 39303133313131323931365a180f39393939313233313233353935395a30
 5c310b3009060355040613025553310b300906035504080c024341310b30
 0906035504070c024c4131143012060355040a0c0b6578616d706c652049
 6e63310c300a060355040b0c03496f54310f300d06035504051306577431
 3233343059301306072a8648ce3d020106082a8648ce3d03010703420004
 c8b421f11c25e47e3ac57123bf2d9fdc494f028bc351cc80c03f150bf50c
 ff958d75419d81a6a245dffae790be95cf75f602f9152618f816a2b23b56
 38e59fd9a3818a30818730090603551d1304023000301d0603551d0e0416
 041496600d8716bf7fd0e752d0ac760777ad665d02a0301f0603551d2304
 183016801468d16551f951bfc82a431d0d9f08bc2d205b1160300e060355
 1d0f0101ff0404030205a0302a0603551d1104233021a01f06082b060105
 05070804a013301106092b06010401b43b0a01040401020304300a06082a
 8648ce3d0403020349003046022100c0d81996d2507d693f3c48eaa5ee94
 91bda6db214099d98117c63b361374cd86022100a774989f4c321a5cf25d
 832a4d336a08ad67df20f1506421188a0ade6d349236a1003100

 The breakdown of the request and response is shown in Appendix C.2.

A.3. serverkeygen

 In a serverkeygen exchange the CoAP POST request looks like

van der Stok, et al. Expires July 9, 2020 [Page 37]

Internet-Draft EST-coaps January 2020

 POST 192.0.2.1:8085/est/skg
 (Token: 0xa5)
 (Accept: 62)
 (Content-Format: 286)

 [The hexadecimal representation below would NOT be transported
 in hex, but in binary. Hex is used because a binary representation
 cannot be rendered well in text.]

 3081d03078020100301631143012060355040a0c0b736b67206578616d70
 6c653059301306072a8648ce3d020106082a8648ce3d03010703420004c8
 b421f11c25e47e3ac57123bf2d9fdc494f028bc351cc80c03f150bf50cff
 958d75419d81a6a245dffae790be95cf75f602f9152618f816a2b23b5638
 e59fd9a000300a06082a8648ce3d040302034800304502207c553981b1fe
 349249d8a3f50a0346336b7dfaa099cf74e1ec7a37a0a760485902210084
 79295398774b2ff8e7e82abb0c17eaef344a5088fa69fd63ee611850c34b
 0a

 The response would follow [I-D.ietf-core-multipart-ct] and could look
 like

van der Stok, et al. Expires July 9, 2020 [Page 38]

Internet-Draft EST-coaps January 2020

 2.04 Changed
 (Token: 0xa5)
 (Content-Format: 62)

 [The hexadecimal representations below would NOT be transported
 in hex, but in binary. Hex is used because a binary representation
 cannot be rendered well in text.]

 84 # array(4)
 19 011C # unsigned(284)
 58 8A # bytes(138)
 308187020100301306072a8648ce3d020106082a8648ce3d030107046d30
 6b020101042061336a86ac6e7af4a96f632830ad4e6aa0837679206094d7
 679a01ca8c6f0c37a14403420004c8b421f11c25e47e3ac57123bf2d9fdc
 494f028bc351cc80c03f150bf50cff958d75419d81a6a245dffae790be95
 cf75f602f9152618f816a2b23b5638e59fd9
 19 0119 # unsigned(281)
 59 01D3 # bytes(467)
 308201cf06092a864886f70d010702a08201c0308201bc0201013100300b
 06092a864886f70d010701a08201a23082019e30820144a0030201020209
 00b3313e8f3fc9538e300a06082a8648ce3d040302301631143012060355
 040a0c0b736b67206578616d706c65301e170d3139303930343037343430
 335a170d3339303833303037343430335a301631143012060355040a0c0b
 736b67206578616d706c653059301306072a8648ce3d020106082a8648ce
 3d03010703420004c8b421f11c25e47e3ac57123bf2d9fdc494f028bc351
 cc80c03f150bf50cff958d75419d81a6a245dffae790be95cf75f602f915
 2618f816a2b23b5638e59fd9a37b307930090603551d1304023000302c06
 096086480186f842010d041f161d4f70656e53534c2047656e6572617465
 64204365727469666963617465301d0603551d0e0416041496600d8716bf
 7fd0e752d0ac760777ad665d02a0301f0603551d2304183016801496600d
 8716bf7fd0e752d0ac760777ad665d02a0300a06082a8648ce3d04030203
 48003045022100e95bfa25a08976652246f2d96143da39fce0dc4c9b26b9
 cce1f24164cc2b12b602201351fd8eea65764e3459d324e4345ff5b2a915
 38c04976111796b3698bf6379ca1003100

 The private key in the response above is without CMS EnvelopedData
 and has no additional encryption beyond DTLS (Section 5.8).

 The breakdown of the request and response is shown in Appendix C.3

A.4. csrattrs

 Below is a csrattrs exchange

van der Stok, et al. Expires July 9, 2020 [Page 39]

Internet-Draft EST-coaps January 2020

 REQ:
 GET example.com:61616/est/att

 RES:
 2.05 Content
 (Content-Format: 285)

 [The hexadecimal representation below would NOT be transported
 in hex, but in binary. Hex is used because a binary representation
 cannot be rendered well in text.]

 307c06072b06010101011630220603883701311b131950617273652053455
 420617320322e3939392e31206461746106092a864886f70d010907302c06
 0388370231250603883703060388370413195061727365205345542061732
 0322e3939392e32206461746106092b240303020801010b06096086480165
 03040202

 A 2.05 Content response should contain attributes which are relevant
 for the authenticated client. This example is copied from
 Section A.2 in [RFC7030], where the base64 representation is replaced
 with a hexadecimal representation of the equivalent binary format.
 The EST-coaps server returns attributes that the client can ignore if
 they are unknown to him.

Appendix B. EST-coaps Block message examples

 Two examples are presented in this section:

 1. a cacerts exchange shows the use of Block2 and the block headers

 2. an enroll exchange shows the Block1 and Block2 size negotiation
 for request and response payloads.

 The payloads are shown unencrypted. In practice the message contents
 would be binary formatted and transferred over an encrypted DTLS
 tunnel. The corresponding CoAP headers are only shown in
 Appendix B.1. Creating CoAP headers is assumed to be generally
 known.

B.1. cacerts

 This section provides a detailed example of the messages using DTLS
 and BLOCK option Block2. The example block length is taken as 64
 which gives an SZX value of 2.

 The following is an example of a cacerts exchange over DTLS. The
 content length of the cacerts response in appendix A.1 of [RFC7030]
 contains 639 bytes in binary in this example. The CoAP message adds

van der Stok, et al. Expires July 9, 2020 [Page 40]

Internet-Draft EST-coaps January 2020

 around 10 bytes in this exmple, the DTLS record around 29 bytes. To
 avoid IP fragmentation, the CoAP Block Option is used and an MTU of
 127 is assumed to stay within one IEEE 802.15.4 packet. To stay
 below the MTU of 127, the payload is split in 9 packets with a
 payload of 64 bytes each, followed by a last tenth packet of 63
 bytes. The client sends an IPv6 packet containing a UDP datagram
 with DTLS record protection that encapsulates a CoAP request 10 times
 (one fragment of the request per block). The server returns an IPv6
 packet containing a UDP datagram with the DTLS record that
 encapsulates the CoAP response. The CoAP request-response exchange
 with block option is shown below. Block Option is shown in a
 decomposed way (block-option:NUM/M/size) indicating the kind of Block
 Option (2 in this case) followed by a colon, and then the block
 number (NUM), the more bit (M = 0 in Block2 response means it is last
 block), and block size with exponent (2**(SZX+4)) separated by
 slashes. The Length 64 is used with SZX=2. The CoAP Request is sent
 confirmable (CON) and the Content-Format of the response, even though
 not shown, is 281 (application/pkcs7-mime; smime-type=certs-only).
 The transfer of the 10 blocks with partially filled block NUM=9 is
 shown below

 GET example.com:9085/est/crts (2:0/0/64) -->
 <-- (2:0/1/64) 2.05 Content
 GET example.com:9085/est/crts (2:1/0/64) -->
 <-- (2:1/1/64) 2.05 Content
 |
 |
 |
 GET example.com:9085/est/crts (2:9/0/64) -->
 <-- (2:9/0/64) 2.05 Content

 The header of the GET request looks like

van der Stok, et al. Expires July 9, 2020 [Page 41]

Internet-Draft EST-coaps January 2020

 Ver = 1
 T = 0 (CON)
 Code = 0x01 (0.1 GET)
 Token = 0x9a (client generated)
 Options
 Option (Uri-Host)
 Option Delta = 0x3 (option# 3)
 Option Length = 0xB
 Option Value = "example.com"
 Option (Uri-Port)
 Option Delta = 0x4 (option# 3+4=7)
 Option Length = 0x2
 Option Value = 9085
 Option (Uri-Path)
 Option Delta = 0x4 (option# 7+4=11)
 Option Length = 0x3
 Option Value = "est"
 Option (Uri-Path)Uri-Path)
 Option Delta = 0x0 (option# 11+0=11)
 Option Length = 0x4
 Option Value = "crts"
 Option (Accept)
 Option Delta = 0x6 (option# 11+6=17)
 Option Length = 0x2
 Option Value = 281
 Payload = [Empty]

 The Uri-Host and Uri-Port Options can be omitted if they coincide
 with the transport protocol destination address and port
 respectively. Explicit Uri-Host and Uri-Port Options are typically
 used when an endpoint hosts multiple virtual servers and uses the
 Options to route the requests accordingly.

 For further detailing the CoAP headers, the first two and the last
 blocks are written out below. The header of the first Block2
 response looks like

van der Stok, et al. Expires July 9, 2020 [Page 42]

Internet-Draft EST-coaps January 2020

 Ver = 1
 T = 2 (ACK)
 Code = 0x45 (2.05 Content)
 Token = 0x9a (copied from request by server)
 Options
 Option
 Option Delta = 0xC (option# 12 Content-Format)
 Option Length = 0x2
 Option Value = 281
 Option
 Option Delta = 0xB (option# 12+11=23 Block2)
 Option Length = 0x1
 Option Value = 0x0A (block#=0, M=1, SZX=2)

 [The hexadecimal representation below would NOT be transported
 in hex, but in binary. Hex is used because a binary representation
 cannot be rendered well in text.]

 Payload =
 3082027b06092a864886f70d010702a082026c308202680201013100300b
 06092a864886f70d010701a082024e3082024a308201f0a0030201020209
 009189bc

 The second Block2:

 Ver = 1
 T = 2 (means ACK)
 Code = 0x45 (2.05 Content)
 Token = 0x9a (copied from request by server)
 Options
 Option
 Option Delta = 0xC (option# 12 Content-Format)
 Option Length = 0x2
 Option Value = 281
 Option
 Option Delta = 0xB (option 12+11=23 Block2)
 Option Length = 0x1
 Option Value = 0x1A (block#=1, M=1, SZX=2)

 [The hexadecimal representation below would NOT be transported
 in hex, but in binary. Hex is used because a binary representation
 cannot be rendered well in text.]

 Payload =
 df9c99244b300a06082a8648ce3d0403023067310b300906035504061302
 5553310b300906035504080c024341310b300906035504070c024c413114
 30120603

van der Stok, et al. Expires July 9, 2020 [Page 43]

Internet-Draft EST-coaps January 2020

 The 10th and final Block2:

 Ver = 1
 T = 2 (means ACK)
 Code = 0x45 (2.05 Content)
 Token = 0x9a (copied from request by server)
 Options
 Option
 Option Delta = 0xC (option# 12 Content-Format)
 Option Length = 0x2
 Option Value = 281
 Option
 Option Delta = 0xB (option# 12+11=23 Block2)
 Option Length = 0x1
 Option Value = 0x92 (block#=9, M=0, SZX=2)

 [The hexadecimal representation below would NOT be transported
 in hex, but in binary. Hex is used because a binary representation
 cannot be rendered well in text.]

 Payload =
 2ec0b4af52d46f3b7ecc9687ddf267bcec368f7b7f1353272f022047a28a
 e5c7306163b3c3834bab3c103f743070594c089aaa0ac870cd13b902caa1
 003100

B.2. enroll / reenroll

 In this example, the requested Block2 size of 256 bytes, required by
 the client, is transferred to the server in the very first request
 message. The block size 256=(2**(SZX+4)) which gives SZX=4. The
 notation for block numbering is the same as in Appendix B.1. The
 header fields and the payload are omitted for brevity.

van der Stok, et al. Expires July 9, 2020 [Page 44]

Internet-Draft EST-coaps January 2020

POST [2001:db8::2:1]:61616/est/sen (CON)(1:0/1/256) {CSR (frag# 1)} -->

 <-- (ACK) (1:0/1/256) (2.31 Continue)
POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256) {CSR (frag# 2)} -->
 <-- (ACK) (1:1/1/256) (2.31 Continue)
 .
 .
 .
POST [2001:db8::2:1]:61616/est/sen (CON)(1:N1/0/256){CSR(frag# N1+1)}-->
 |
 Immediate response
 |
 <-- (ACK) (1:N1/0/256)(2:0/1/256)(2.04 Changed){Cert resp (frag# 1)}
POST [2001:db8::2:1]:61616/est/sen (CON)(2:1/0/256) -->
 <-- (ACK) (2:1/1/256)(2.04 Changed) {Cert resp (frag# 2)}
 .
 .
 .
POST [2001:db8::2:321]:61616/est/sen (CON)(2:N2/0/256) -->
 <-- (ACK) (2:N2/0/256) (2.04 Changed) {Cert resp (frag# N2+1)}

 Figure 5: EST-COAP enrollment with multiple blocks

 N1+1 blocks have been transferred from client to the server and N2+1
 blocks have been transferred from server to client.

Appendix C. Message content breakdown

 This appendix presents the breakdown of the hexadecimal dumps of the
 binary payloads shown in Appendix A.

C.1. cacerts

 The breakdown of cacerts response containing one root CA certificate
 is

van der Stok, et al. Expires July 9, 2020 [Page 45]

Internet-Draft EST-coaps January 2020

 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 831953162763987486 (0xb8bb0fe604f6a1e)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: C=US, ST=CA, L=LA, O=Example Inc,
 OU=certification, CN=Root CA
 Validity
 Not Before: Jan 31 11:27:03 2019 GMT
 Not After : Jan 26 11:27:03 2039 GMT
 Subject: C=US, ST=CA, L=LA, O=Example Inc,
 OU=certification, CN=Root CA
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:0c:1b:1e:82:ba:8c:c7:26:80:97:3f:97:ed:b8:
 a0:c7:2a:b0:d4:05:f0:5d:4f:e2:9b:99:7a:14:cc:
 ce:89:00:83:13:d0:96:66:b6:ce:37:5c:59:5f:cc:
 8e:37:f8:e4:35:44:97:01:1b:e9:0e:56:79:4b:d9:
 1a:d9:51:ab:45
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 1D:F1:20:89:44:D7:7B:5F:1D:9D:CB:51:EE:24:4A:52:3F:3E:F5:DE
 X509v3 Authority Key Identifier:
 keyid:
 1D:F1:20:89:44:D7:7B:5F:1D:9D:CB:51:EE:24:4A:52:3F:3E:F5:DE

 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
 X509v3 Subject Alternative Name:
 email:certify@example.com
 Signature Algorithm: ecdsa-with-SHA256
 30:45:02:20:2b:89:1d:d4:11:d0:7a:6d:6f:62:19:47:63:5b:
 a4:c4:31:65:29:6b:3f:63:37:26:f0:2e:51:ec:f4:64:bd:40:
 02:21:00:b4:be:8a:80:d0:86:75:f0:41:fb:c7:19:ac:f3:b3:
 9d:ed:c8:5d:c9:2b:30:35:86:8c:b2:da:a8:f0:5d:b1:96

C.2. enroll / reenroll

 The breakdown of the enrollment request is

van der Stok, et al. Expires July 9, 2020 [Page 46]

Internet-Draft EST-coaps January 2020

 Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: C=US, ST=CA, L=LA, O=example Inc,
 OU=IoT/serialNumber=Wt1234
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
 9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
 0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
 be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
 56:38:e5:9f:d9
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 Attributes:
 challengePassword: <256-bit PoP linking value>
 Requested Extensions:
 X509v3 Subject Alternative Name:
 othername:<unsupported>
 Signature Algorithm: ecdsa-with-SHA256
 30:45:02:21:00:92:56:3a:54:64:63:bd:9e:cf:f1:70:d0:fd:
 1f:2e:f0:d3:d0:12:16:0e:5e:e9:0c:ff:ed:ab:ec:9b:9a:38:
 92:02:20:17:9f:10:a3:43:61:09:05:1a:ba:d1:75:90:a0:9b:
 c8:7c:4d:ce:54:53:a6:fc:11:35:a1:e8:4e:ed:75:43:77

 The CSR contains a ChallengePassword which is used for PoP linking
 (Section 4). The CSR also contains an id-on-hardwareModuleName
 hardware identifier to customize the returned certificate to the
 requesting device (See [RFC7299] and [I-D.moskowitz-ecdsa-pki]).

 The breakdown of the issued certificate is

van der Stok, et al. Expires July 9, 2020 [Page 47]

Internet-Draft EST-coaps January 2020

 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 9112578475118446130 (0x7e7661d7b54e4632)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: C=US, ST=CA, O=Example Inc,
 OU=certification, CN=802.1AR CA
 Validity
 Not Before: Jan 31 11:29:16 2019 GMT
 Not After : Dec 31 23:59:59 9999 GMT
 Subject: C=US, ST=CA, L=LA, O=example Inc,
 OU=IoT/serialNumber=Wt1234
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
 9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
 0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
 be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
 56:38:e5:9f:d9
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Subject Key Identifier:
 96:60:0D:87:16:BF:7F:D0:E7:52:D0:AC:76:07:77:AD:66:5D:02:A0
 X509v3 Authority Key Identifier:
 keyid:
 68:D1:65:51:F9:51:BF:C8:2A:43:1D:0D:9F:08:BC:2D:20:5B:11:60

 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
 X509v3 Subject Alternative Name:
 othername:<unsupported>
 Signature Algorithm: ecdsa-with-SHA256
 30:46:02:21:00:c0:d8:19:96:d2:50:7d:69:3f:3c:48:ea:a5:
 ee:94:91:bd:a6:db:21:40:99:d9:81:17:c6:3b:36:13:74:cd:
 86:02:21:00:a7:74:98:9f:4c:32:1a:5c:f2:5d:83:2a:4d:33:
 6a:08:ad:67:df:20:f1:50:64:21:18:8a:0a:de:6d:34:92:36

C.3. serverkeygen

 The following is the breakdown of the server-side key generation
 request.

van der Stok, et al. Expires July 9, 2020 [Page 48]

Internet-Draft EST-coaps January 2020

 Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: O=skg example
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
 9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
 0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
 be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
 56:38:e5:9f:d9
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 Attributes:
 a0:00
 Signature Algorithm: ecdsa-with-SHA256
 30:45:02:20:7c:55:39:81:b1:fe:34:92:49:d8:a3:f5:0a:03:
 46:33:6b:7d:fa:a0:99:cf:74:e1:ec:7a:37:a0:a7:60:48:59:
 02:21:00:84:79:29:53:98:77:4b:2f:f8:e7:e8:2a:bb:0c:17:
 ea:ef:34:4a:50:88:fa:69:fd:63:ee:61:18:50:c3:4b:0a

 Following is the breakdown of the private key content of the server-
 side key generation response.

 Private-Key: (256 bit)
 priv:
 61:33:6a:86:ac:6e:7a:f4:a9:6f:63:28:30:ad:4e:
 6a:a0:83:76:79:20:60:94:d7:67:9a:01:ca:8c:6f:
 0c:37
 pub:
 04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
 9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
 0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
 be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
 56:38:e5:9f:d9
 ASN1 OID: prime256v1
 NIST CURVE: P-256

 The following is the breakdown of the certificate in the server-side
 key generation response payload.

van der Stok, et al. Expires July 9, 2020 [Page 49]

Internet-Draft EST-coaps January 2020

 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 b3:31:3e:8f:3f:c9:53:8e
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: O=skg example
 Validity
 Not Before: Sep 4 07:44:03 2019 GMT
 Not After : Aug 30 07:44:03 2039 GMT
 Subject: O=skg example
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
 9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
 0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
 be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
 56:38:e5:9f:d9
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 96:60:0D:87:16:BF:7F:D0:E7:52:D0:AC:76:07:77:AD:66:5D:02:A0
 X509v3 Authority Key Identifier:
 keyid:
 96:60:0D:87:16:BF:7F:D0:E7:52:D0:AC:76:07:77:AD:66:5D:02:A0

 Signature Algorithm: ecdsa-with-SHA256
 30:45:02:21:00:e9:5b:fa:25:a0:89:76:65:22:46:f2:d9:61:
 43:da:39:fc:e0:dc:4c:9b:26:b9:cc:e1:f2:41:64:cc:2b:12:
 b6:02:20:13:51:fd:8e:ea:65:76:4e:34:59:d3:24:e4:34:5f:
 f5:b2:a9:15:38:c0:49:76:11:17:96:b3:69:8b:f6:37:9c

Authors’ Addresses

 Peter van der Stok
 Consultant

 Email: consultancy@vanderstok.org

van der Stok, et al. Expires July 9, 2020 [Page 50]

Internet-Draft EST-coaps January 2020

 Panos Kampanakis
 Cisco Systems

 Email: pkampana@cisco.com

 Michael C. Richardson
 Sandelman Software Works

 Email: mcr+ietf@sandelman.ca
 URI: http://www.sandelman.ca/

 Shahid Raza
 RISE SICS
 Isafjordsgatan 22
 Kista, Stockholm 16440
 SE

 Email: shahid@sics.se

van der Stok, et al. Expires July 9, 2020 [Page 51]

ACE M. Jones
Internet-Draft Microsoft
Intended status: Standards Track L. Seitz
Expires: May 3, 2020 RISE SICS
 G. Selander
 Ericsson AB
 S. Erdtman
 Spotify
 H. Tschofenig
 Arm Ltd.
 October 31, 2019

 Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs)
 draft-ietf-ace-cwt-proof-of-possession-11

Abstract

 This specification describes how to declare in a CBOR Web Token (CWT)
 (which is defined by RFC 8392) that the presenter of the CWT
 possesses a particular proof-of-possession key. Being able to prove
 possession of a key is also sometimes described as being the holder-
 of-key. This specification provides equivalent functionality to
 "Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs)" (RFC
 7800) but using Concise Binary Object Representation (CBOR) and CWTs
 rather than JavaScript Object Notation (JSON) and JSON Web Tokens
 (JWTs).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2020.

Jones, et al. Expires May 3, 2020 [Page 1]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Representations for Proof-of-Possession Keys 3
 3.1. Confirmation Claim 4
 3.2. Representation of an Asymmetric Proof-of-Possession Key . 5
 3.3. Representation of an Encrypted Symmetric Proof-of-
 Possession Key . 6
 3.4. Representation of a Key ID for a Proof-of-Possession Key 7
 3.5. Specifics Intentionally Not Specified 8
 4. Security Considerations 8
 5. Privacy Considerations 9
 6. Operational Considerations 9
 7. IANA Considerations . 10
 7.1. CBOR Web Token Claims Registration 11
 7.1.1. Registry Contents 11
 7.2. CWT Confirmation Methods Registry 11
 7.2.1. Registration Template 11
 7.2.2. Initial Registry Contents 12
 8. References . 12
 8.1. Normative References 12
 8.2. Informative References 13
 Acknowledgements . 14
 Document History . 14
 Authors’ Addresses . 16

1. Introduction

 This specification describes how a CBOR Web Token (CWT) [RFC8392] can
 declare that the presenter of the CWT possesses a particular proof-
 of-possession (PoP) key. Proof of possession of a key is also
 sometimes described as being the holder-of-key. This specification

Jones, et al. Expires May 3, 2020 [Page 2]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

 provides equivalent functionality to "Proof-of-Possession Key
 Semantics for JSON Web Tokens (JWTs)" [RFC7800] but using Concise
 Binary Object Representation (CBOR) [RFC7049] and CWTs [RFC8392]
 rather than JavaScript Object Notation (JSON) [RFC8259] and JSON Web
 Tokens (JWTs) [JWT].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification uses terms defined in the CBOR Web Token (CWT)
 [RFC8392], CBOR Object Signing and Encryption (COSE) [RFC8152], and
 Concise Binary Object Representation (CBOR) [RFC7049] specifications.

 These terms are defined by this specification:

 Issuer
 Party that creates the CWT and binds the claims about the subject
 to the proof-of-possession key.

 Presenter
 Party that proves possession of a private key (for asymmetric key
 cryptography) or secret key (for symmetric key cryptography) to a
 recipient of a CWT.
 In the context of OAuth, this party is also called the OAuth
 Client.

 Recipient
 Party that receives the CWT containing the proof-of-possession key
 information from the presenter.
 In the context of OAuth, this party is also called the OAuth
 Resource Server.

 This specification provides examples in CBOR extended diagnostic
 notation, as defined in Appendix G of [RFC8610]. The examples
 include line breaks for readability.

3. Representations for Proof-of-Possession Keys

 By including a "cnf" (confirmation) claim in a CWT, the issuer of the
 CWT declares that the presenter possesses a particular key and that
 the recipient can cryptographically confirm that the presenter has
 possession of that key. The value of the "cnf" claim is a CBOR map

Jones, et al. Expires May 3, 2020 [Page 3]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

 (which is defined in Section 2.1 of [RFC7049]) and the members of
 that map identify the proof-of-possession key.

 The presenter can be identified in one of several ways by the CWT,
 depending upon the application requirements. For instance, some
 applications may use the CWT "sub" (subject) claim [RFC8392], to
 identify the presenter. Other applications may use the "iss"
 (issuer) claim [RFC8392] to identify the presenter. In some
 applications, the subject identifier might be relative to the issuer
 identified by the "iss" claim. The actual mechanism used is
 dependent upon the application. The case in which the presenter is
 the subject of the CWT is analogous to Security Assertion Markup
 Language (SAML) 2.0 [OASIS.saml-core-2.0-os] SubjectConfirmation
 usage.

3.1. Confirmation Claim

 The "cnf" claim in the CWT is used to carry confirmation methods.
 Some of them use proof-of-possession keys while others do not. This
 design is analogous to the SAML 2.0 [OASIS.saml-core-2.0-os]
 SubjectConfirmation element in which a number of different subject
 confirmation methods can be included (including proof-of-possession
 key information).

 The set of confirmation members that a CWT must contain to be
 considered valid is context dependent and is outside the scope of
 this specification. Specific applications of CWTs will require
 implementations to understand and process some confirmation members
 in particular ways. However, in the absence of such requirements,
 all confirmation members that are not understood by implementations
 MUST be ignored.

 This specification establishes the IANA "CWT Confirmation Methods"
 registry for these members in Section 7.2 and registers the members
 defined by this specification. Other specifications can register
 other members used for confirmation, including other members for
 conveying proof-of-possession keys using different key
 representations.

 The "cnf" claim value MUST represent only a single proof-of-
 possession key. At most one of the "COSE_Key" and
 "Encrypted_COSE_Key" confirmation values defined in Figure 1 may be
 present. Note that if an application needs to represent multiple
 proof-of-possession keys in the same CWT, one way for it to achieve
 this is to use other claim names, in addition to "cnf", to hold the
 additional proof-of-possession key information. These claims could
 use the same syntax and semantics as the "cnf" claim. Those claims
 would be defined by applications or other specifications and could be

Jones, et al. Expires May 3, 2020 [Page 4]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

 registered in the IANA "CBOR Web Token Claims" registry
 [IANA.CWT.Claims].

 /--------------------+-----+-------------------------------\
 | Name | Key | Value type |
 |--------------------+-----+-------------------------------|
COSE_Key	1	COSE_Key
Encrypted_COSE_Key	2	COSE_Encrypt or COSE_Encrypt0
kid	3	binary string
 \--------------------+-----+-------------------------------/

 Figure 1: Summary of the cnf names, keys, and value types

3.2. Representation of an Asymmetric Proof-of-Possession Key

 When the key held by the presenter is an asymmetric private key, the
 "COSE_Key" member is a COSE_Key [RFC8152] representing the
 corresponding asymmetric public key. The following example
 demonstrates such a declaration in the CWT Claims Set of a CWT:

 {
 /iss/ 1 : "coaps://server.example.com",
 /aud/ 3 : "coaps://client.example.org",
 /exp/ 4 : 1879067471,
 /cnf/ 8 :{
 /COSE_Key/ 1 :{
 /kty/ 1 : /EC2/ 2,
 /crv/ -1 : /P-256/ 1,
 /x/ -2 : h’d7cc072de2205bdc1537a543d53c60a6acb62eccd890c7fa27c9
 e354089bbe13’,
 /y/ -3 : h’f95e1d4b851a2cc80fff87d8e23f22afb725d535e515d020731e
 79a3b4e47120’
 }
 }
 }

 The COSE_Key MUST contain the required key members for a COSE_Key of
 that key type and MAY contain other COSE_Key members, including the
 "kid" (Key ID) member.

 The "COSE_Key" member MAY also be used for a COSE_Key representing a
 symmetric key, provided that the CWT is encrypted so that the key is
 not revealed to unintended parties. The means of encrypting a CWT is
 explained in [RFC8392]. If the CWT is not encrypted, the symmetric
 key MUST be encrypted as described in Section 3.3. This procedure is
 equivalent to the one defined in section 3.3 of [RFC7800].

Jones, et al. Expires May 3, 2020 [Page 5]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

3.3. Representation of an Encrypted Symmetric Proof-of-Possession Key

 When the key held by the presenter is a symmetric key, the
 "Encrypted_COSE_Key" member is an encrypted COSE_Key [RFC8152]
 representing the symmetric key encrypted to a key known to the
 recipient using COSE_Encrypt or COSE_Encrypt0.

 The following example illustrates a symmetric key that could
 subsequently be encrypted for use in the "Encrypted_COSE_Key" member:

 {
 /kty/ 1 : /Symmetric/ 4,
 /alg/ 3 : /HMAC 256-256/ 5,
 /k/ -1 : h’6684523ab17337f173500e5728c628547cb37df
 e68449c65f885d1b73b49eae1’
 }

 The COSE_Key representation is used as the plaintext when encrypting
 the key.

 The following example CWT Claims Set of a CWT illustrates the use of
 an encrypted symmetric key as the "Encrypted_COSE_Key" member value:

 {
 /iss/ 1 : "coaps://server.example.com",
 /sub/ 2 : "24400320",
 /aud/ 3: "s6BhdRkqt3",
 /exp/ 4 : 1311281970,
 /iat/ 5 : 1311280970,
 /cnf/ 8 : {
 /Encrypted_COSE_Key/ 2 : [
 /protected header/ h’A1010A’ /{ \alg\ 1:10 \AES-CCM-16-64-128\}/,
 /unprotected header/ { / iv / 5: h’636898994FF0EC7BFCF6D3F95B’},
 /ciphertext/ h’0573318A3573EB983E55A7C2F06CADD0796C9E584F1D0E3E
 A8C5B052592A8B2694BE9654F0431F38D5BBC8049FA7F13F’
]
 }
 }

 The example above was generated with the key:

 h’6162630405060708090a0b0c0d0e0f10’

Jones, et al. Expires May 3, 2020 [Page 6]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

3.4. Representation of a Key ID for a Proof-of-Possession Key

 The proof-of-possession key can also be identified using a Key ID
 instead of communicating the actual key, provided the recipient is
 able to obtain the identified key using the Key ID. In this case,
 the issuer of a CWT declares that the presenter possesses a
 particular key and that the recipient can cryptographically confirm
 proof of possession of the key by the presenter by including a "cnf"
 claim in the CWT whose value is a CBOR map with the CBOR map
 containing a "kid" member identifying the key.

 The following example demonstrates such a declaration in the CWT
 Claims Set of a CWT:

 {
 /iss/ 1 : "coaps://as.example.com",
 /aud/ 3 : "coaps://resource.example.org",
 /exp/ 4 : 1361398824,
 /cnf/ 8 : {
 /kid/ 3 : h’dfd1aa976d8d4575a0fe34b96de2bfad’
 }
 }

 The content of the "kid" value is application specific. For
 instance, some applications may choose to use a cryptographic hash of
 the public key value as the "kid" value.

 Note that the use of a Key ID to identify a proof-of-possession key
 needs to be carefully circumscribed, as described below and in
 Section 6. In cases where the Key ID is not a cryptographic value
 derived from the key or where not all of the parties involved are
 validating the cryptographic derivation, implementers should expect
 collisions, where different keys are assigned the same Key ID.
 Recipients of a CWT with a PoP key linked through only a Key ID
 should be prepared to handle such situations.

 In the world of constrained Internet of Things (IoT) devices, there
 is frequently a restriction on the size of Key IDs, either because of
 table constraints or a desire to keep message sizes small.

 Note that the value of a Key ID for a specific key is not necessarily
 the same for different parties. When sending a COSE encrypted
 message with a shared key, the Key ID may be different on both sides
 of the conversation, with the appropriate one being included in the
 message based on the recipient of the message.

Jones, et al. Expires May 3, 2020 [Page 7]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

3.5. Specifics Intentionally Not Specified

 Proof of possession is often demonstrated by having the presenter
 sign a value determined by the recipient using the key possessed by
 the presenter. This value is sometimes called a "nonce" or a
 "challenge". There are, however, also other means to demonstrate
 freshness of the exchange and to link the proof-of-possession key to
 the participating parties, as demonstrated by various authentication
 and key exchange protocols.

 The means of communicating the nonce and the nature of its contents
 are intentionally not described in this specification, as different
 protocols will communicate this information in different ways.
 Likewise, the means of communicating the signed nonce is also not
 specified, as this is also protocol specific.

 Note that other means of proving possession of the key exist, which
 could be used in conjunction with a CWT’s confirmation key.
 Applications making use of such alternate means are encouraged to
 register them in the IANA "CWT Confirmation Methods" registry
 established in Section 7.2.

4. Security Considerations

 All the security considerations that are discussed in [RFC8392] also
 apply here. In addition, proof of possession introduces its own
 unique security issues. Possessing a key is only valuable if it is
 kept secret. Appropriate means must be used to ensure that
 unintended parties do not learn private key or symmetric key values.

 Applications utilizing proof of possession SHOULD also utilize
 audience restriction, as described in Section 3.1.3 of [RFC8392], as
 it provides additional protections. Audience restriction can be used
 by recipients to reject messages intended for different recipients.
 (Of course, applications not using proof of possession can also
 benefit from using audience restriction to reject messages intended
 for different recipients.)

 CBOR Web Tokens with proof-of-possession keys are used in context of
 an architecture, such as the ACE OAuth Framework
 [I-D.ietf-ace-oauth-authz], in which protocols are used by a
 presenter to request these tokens and to subsequently use them with
 recipients. Proof of possession only provides the intended security
 gains when the proof is known to be current and not subject to replay
 attacks; security protocols using mechanisms such as nonces and
 timestamps can be used to avoid the risk of replay when performing
 proof of possession for a token. Note that a discussion of the

Jones, et al. Expires May 3, 2020 [Page 8]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

 architecture or specific protocols that CWT proof-of-possession
 tokens are used with is beyond the scope of this specification.

 As is the case with other information included in a CWT, it is
 necessary to apply data origin authentication and integrity
 protection (via a keyed message digest or a digital signature). Data
 origin authentication ensures that the recipient of the CWT learns
 about the entity that created the CWT since this will be important
 for any policy decisions. Integrity protection prevents an adversary
 from changing any elements conveyed within the CWT payload. Special
 care has to be applied when carrying symmetric keys inside the CWT
 since those not only require integrity protection but also
 confidentiality protection.

 As described in Section 6 (Key Identification) and Appendix D (Notes
 on Key Selection) of [JWS], it is important to make explicit trust
 decisions about the keys. Proof-of-possession signatures made with
 keys not meeting the application’s trust criteria MUST NOT be relied
 upon.

5. Privacy Considerations

 A proof-of-possession key can be used as a correlation handle if the
 same key is used on multiple occasions. Thus, for privacy reasons,
 it is recommended that different proof-of-possession keys be used
 when interacting with different parties.

6. Operational Considerations

 The use of CWTs with proof-of-possession keys requires additional
 information to be shared between the involved parties in order to
 ensure correct processing. The recipient needs to be able to use
 credentials to verify the authenticity and integrity of the CWT.
 Furthermore, the recipient may need to be able to decrypt either the
 whole CWT or the encrypted parts thereof (see Section 3.3). This
 requires the recipient to know information about the issuer.
 Likewise, there needs to be agreement between the issuer and the
 recipient about the claims being used (which is also true of CWTs in
 general).

 When an issuer creates a CWT containing a Key ID claim, it needs to
 make sure that it does not issue another CWT with different claims
 containing the same Key ID within the lifetime of the CWTs, unless
 intentionally desired. Failure to do so may allow one party to
 impersonate another party, with the potential to gain additional
 privileges. A case where such reuse of a Key ID would be intentional
 is when a presenter obtains a CWT with different claims (e.g.,
 extended scope) for the same recipient, but wants to continue using

Jones, et al. Expires May 3, 2020 [Page 9]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

 an existing security association (e.g., a DTLS session) bound to the
 key identified by the Key ID. Likewise, if PoP keys are used for
 multiple different kinds of CWTs in an application and the PoP keys
 are identified by Key IDs, care must be taken to keep the keys for
 the different kinds of CWTs segregated so that an attacker cannot
 cause the wrong PoP key to be used by using a valid Key ID for the
 wrong kind of CWT. Using an audience restriction for the CWT would
 be one strategy to mitigate this risk.

7. IANA Considerations

 The following registration procedure is used for all the registries
 established by this specification.

 Values are registered on a Specification Required [RFC8126] basis
 after a three-week review period on the cwt-reg-review@ietf.org
 mailing list, on the advice of one or more Designated Experts.
 However, to allow for the allocation of values prior to publication,
 the Designated Experts may approve registration once they are
 satisfied that such a specification will be published. [[Note to
 the RFC Editor: The name of the mailing list should be determined in
 consultation with the IESG and IANA. Suggested name: cwt-reg-
 review@ietf.org.]]

 Registration requests sent to the mailing list for review should use
 an appropriate subject (e.g., "Request to Register CWT Confirmation
 Method: example"). Registration requests that are undetermined for a
 period longer than 21 days can be brought directly to IANA’s
 attention (using the iana@iana.org mailing list) for resolution.

 Designated Experts should determine whether a registration request
 contains enough information for the registry to be populated with the
 new values and whether the proposed new functionality already exists.
 In the case of an incomplete registration or an attempt to register
 already existing functionality, the Designated Experts should ask for
 corrections or reject the registration.

 It is suggested that multiple Designated Experts be appointed who are
 able to represent the perspectives of different applications using
 this specification in order to enable broadly informed review of
 registration decisions. In cases where a registration decision could
 be perceived as creating a conflict of interest for a particular
 Expert, that Expert should defer to the judgment of the other
 Experts.

Jones, et al. Expires May 3, 2020 [Page 10]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

7.1. CBOR Web Token Claims Registration

 This specification registers the "cnf" claim in the IANA "CBOR Web
 Token Claims" registry [IANA.CWT.Claims] established by [RFC8392].

7.1.1. Registry Contents

 o Claim Name: "cnf"
 o Claim Description: Confirmation
 o JWT Claim Name: "cnf"
 o Claim Key: TBD (maybe 8)
 o Claim Value Type(s): map
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

7.2. CWT Confirmation Methods Registry

 This specification establishes the IANA "CWT Confirmation Methods"
 registry for CWT "cnf" member values. The registry records the
 confirmation method member and a reference to the specification that
 defines it.

7.2.1. Registration Template

 Confirmation Method Name:
 The human-readable name requested (e.g., "kid").

 Confirmation Method Description:
 Brief description of the confirmation method (e.g., "Key
 Identifier").

 JWT Confirmation Method Name:
 Claim Name of the equivalent JWT confirmation method value, as
 registered in [IANA.JWT.Claims]. CWT claims should normally have
 a corresponding JWT claim. If a corresponding JWT claim would not
 make sense, the Designated Experts can choose to accept
 registrations for which the JWT Claim Name is listed as "N/A".

 Confirmation Key:
 CBOR map key value for the confirmation method.

 Confirmation Value Type(s):
 CBOR types that can be used for the confirmation method value.

 Change Controller:
 For Standards Track RFCs, list the "IESG". For others, give the
 name of the responsible party.

Jones, et al. Expires May 3, 2020 [Page 11]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

 Specification Document(s):
 Reference to the document or documents that specify the parameter,
 preferably including URIs that can be used to retrieve copies of
 the documents. An indication of the relevant sections may also be
 included but is not required. Note that the Designated Experts
 and IANA must be able to obtain copies of the specification
 document(s) to perform their work.

7.2.2. Initial Registry Contents

 o Confirmation Method Name: "COSE_Key"
 o Confirmation Method Description: COSE_Key Representing Public Key
 o JWT Confirmation Method Name: "jwk"
 o Confirmation Key: 1
 o Confirmation Value Type(s): COSE_Key structure
 o Change Controller: IESG
 o Specification Document(s): Section 3.2 of [[this document]]

 o Confirmation Method Name: "Encrypted_COSE_Key"
 o Confirmation Method Description: Encrypted COSE_Key
 o JWT Confirmation Method Name: "jwe"
 o Confirmation Key: 2
 o Confirmation Value Type(s): COSE_Encrypt or COSE_Encrypt0
 structure (with an optional corresponding COSE_Encrypt or
 COSE_Encrypt0 tag)
 o Change Controller: IESG
 o Specification Document(s): Section 3.3 of [[this document]]

 o Confirmation Method Name: "kid"
 o Confirmation Method Description: Key Identifier
 o JWT Confirmation Method Name: "kid"
 o Confirmation Key: 3
 o Confirmation Value Type(s): binary string
 o Change Controller: IESG
 o Specification Document(s): Section 3.4 of [[this document]]

8. References

8.1. Normative References

 [IANA.CWT.Claims]
 IANA, "CBOR Web Token Claims",
 <http://www.iana.org/assignments/cwt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Jones, et al. Expires May 3, 2020 [Page 12]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

8.2. Informative References

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-21
 (work in progress), February 2019.

 [IANA.JWT.Claims]
 IANA, "JSON Web Token Claims",
 <http://www.iana.org/assignments/jwt>.

 [JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-core-
 2.0-os, March 2005,
 <http://docs.oasis-open.org/security/saml/v2.0/>.

Jones, et al. Expires May 3, 2020 [Page 13]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Acknowledgements

 Thanks to the following people for their reviews of the
 specification: Roman Danyliw, Christer Holmberg, Benjamin Kaduk,
 Mirja Kuehlewind, Yoav Nir, Michael Richardson, Adam Roach, Eric
 Vyncke, and Jim Schaad.

 Ludwig Seitz and Goeran Selander worked on this document as part of
 the CelticPlus projects CyberWI and CRITISEC, with funding from
 Vinnova.

Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -11

 o Addressed remaining IESG review comment by Mirja Kuehlewind.

 -10

 o Addressed IESG review comments by Adam Roach and Eric Vyncke.

 -09

 o Addressed Gen-ART review comments by Christer Holmberg and SecDir
 review comments by Yoav Nir.

 -08

 o Addressed remaining Area Director review comments by Benjamin
 Kaduk.

Jones, et al. Expires May 3, 2020 [Page 14]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

 -07

 o Addressed Area Director review by Benjamin Kaduk.

 -06

 o Corrected nits identified by Roman Danyliw.

 -05

 o Added text suggested by Jim Schaad describing considerations when
 using the Key ID confirmation method.

 -04

 o Addressed additional WGLC comments by Jim Schaad and Roman
 Danyliw.

 -03

 o Addressed review comments by Jim Schaad, see https://www.ietf.org/
 mail-archive/web/ace/current/msg02798.html

 o Removed unnecessary sentence in the introduction regarding the use
 any strings that could be case-sensitive.

 o Clarified the terms Presenter and Recipient.

 o Clarified text about the confirmation claim.

 -02

 o Changed "typically" to "often" when describing ways of performing
 proof of possession.

 o Changed b64 to hex encoding in an example.

 o Changed to using the RFC 8174 boilerplate instead of the RFC 2119
 boilerplate.

 -01

 o Now uses CBOR diagnostic notation for the examples.

 o Added a table summarizing the "cnf" names, keys, and value types.

 o Addressed some of Jim Schaad’s feedback on -00.

Jones, et al. Expires May 3, 2020 [Page 15]

Internet-Draft Proof-of-Possession Key for CWTs October 2019

 -00

 o Created the initial working group draft from draft-jones-ace-cwt-
 proof-of-possession-01.

Authors’ Addresses

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Ludwig Seitz
 RISE SICS
 Scheelevaegen 17
 Lund 223 70
 Sweden

 Email: ludwig@ri.se

 Goeran Selander
 Ericsson AB
 Faeroegatan 6
 Kista 164 80
 Sweden

 Email: goran.selander@ericsson.com

 Samuel Erdtman
 Spotify

 Email: erdtman@spotify.com

 Hannes Tschofenig
 Arm Ltd.
 Hall in Tirol 6060
 Austria

 Email: Hannes.Tschofenig@arm.com

Jones, et al. Expires May 3, 2020 [Page 16]

ACE Working Group S. Gerdes
Internet-Draft O. Bergmann
Intended status: Standards Track C. Bormann
Expires: May 2, 2021 Universitaet Bremen TZI
 G. Selander
 Ericsson AB
 L. Seitz
 Combitech
 October 29, 2020

Datagram Transport Layer Security (DTLS) Profile for Authentication and
 Authorization for Constrained Environments (ACE)
 draft-ietf-ace-dtls-authorize-14

Abstract

 This specification defines a profile of the ACE framework that allows
 constrained servers to delegate client authentication and
 authorization. The protocol relies on DTLS version 1.2 for
 communication security between entities in a constrained network
 using either raw public keys or pre-shared keys. A resource-
 constrained server can use this protocol to delegate management of
 authorization information to a trusted host with less severe
 limitations regarding processing power and memory.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 2, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Gerdes, et al. Expires May 2, 2021 [Page 1]

Internet-Draft CoAP-DTLS October 2020

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. Protocol Overview . 4
 3. Protocol Flow . 5
 3.1. Communication Between the Client and the Authorization
 Server . 6
 3.2. RawPublicKey Mode . 7
 3.2.1. Access Token Retrieval from the Authorization Server 7
 3.2.2. DTLS Channel Setup Between Client and Resource Server 9
 3.3. PreSharedKey Mode . 10
 3.3.1. Access Token Retrieval from the Authorization Server 10
 3.3.2. DTLS Channel Setup Between Client and Resource Server 14
 3.4. Resource Access . 16
 4. Dynamic Update of Authorization Information 18
 5. Token Expiration . 19
 6. Secure Communication with an Authorization Server 19
 7. Security Considerations 20
 7.1. Reuse of Existing Sessions 21
 7.2. Multiple Access Tokens 22
 7.3. Out-of-Band Configuration 22
 8. Privacy Considerations 23
 9. IANA Considerations . 23
 10. Acknowledgments . 24
 11. References . 24
 11.1. Normative References 24
 11.2. Informative References 25
 Authors’ Addresses . 26

1. Introduction

 This specification defines a profile of the ACE framework
 [I-D.ietf-ace-oauth-authz]. In this profile, a client and a resource
 server use CoAP [RFC7252] over DTLS version 1.2 [RFC6347] to
 communicate. The client obtains an access token, bound to a key (the
 proof-of-possession key), from an authorization server to prove its
 authorization to access protected resources hosted by the resource

Gerdes, et al. Expires May 2, 2021 [Page 2]

Internet-Draft CoAP-DTLS October 2020

 server. Also, the client and the resource server are provided by the
 authorization server with the necessary keying material to establish
 a DTLS session. The communication between client and authorization
 server may also be secured with DTLS. This specification supports
 DTLS with Raw Public Keys (RPK) [RFC7250] and with Pre-Shared Keys
 (PSK) [RFC4279].

 The ACE framework requires that client and server mutually
 authenticate each other before any application data is exchanged.
 DTLS enables mutual authentication if both client and server prove
 their ability to use certain keying material in the DTLS handshake.
 The authorization server assists in this process on the server side
 by incorporating keying material (or information about keying
 material) into the access token, which is considered a "proof of
 possession" token.

 In the RPK mode, the client proves that it can use the RPK bound to
 the token and the server shows that it can use a certain RPK.

 The resource server needs access to the token in order to complete
 this exchange. For the RPK mode, the client must upload the access
 token to the resource server before initiating the handshake, as
 described in Section 5.8.1 of the ACE framework
 [I-D.ietf-ace-oauth-authz].

 In the PSK mode, client and server show with the DTLS handshake that
 they can use the keying material that is bound to the access token.
 To transfer the access token from the client to the resource server,
 the "psk_identity" parameter in the DTLS PSK handshake may be used
 instead of uploading the token prior to the handshake.

 As recommended in Section 5.8 of [I-D.ietf-ace-oauth-authz], this
 specification uses CBOR web tokens to convey claims within an access
 token issued by the server. While other formats could be used as
 well, those are out of scope for this document.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to be familiar with the terms and concepts
 described in [I-D.ietf-ace-oauth-authz] and in
 [I-D.ietf-ace-oauth-params].

Gerdes, et al. Expires May 2, 2021 [Page 3]

Internet-Draft CoAP-DTLS October 2020

 The authorization information (authz-info) resource refers to the
 authorization information endpoint as specified in
 [I-D.ietf-ace-oauth-authz]. The term "claim" is used in this
 document with the same semantics as in [I-D.ietf-ace-oauth-authz],
 i.e., it denotes information carried in the access token or returned
 from introspection.

2. Protocol Overview

 The CoAP-DTLS profile for ACE specifies the transfer of
 authentication information and, if necessary, authorization
 information between the client (C) and the resource server (RS)
 during setup of a DTLS session for CoAP messaging. It also specifies
 how the client can use CoAP over DTLS to retrieve an access token
 from the authorization server (AS) for a protected resource hosted on
 the resource server. As specified in Section 6.7 of
 [I-D.ietf-ace-oauth-authz], use of DTLS for one or both of these
 interactions is completely independent

 This profile requires the client to retrieve an access token for
 protected resource(s) it wants to access on the resource server as
 specified in [I-D.ietf-ace-oauth-authz]. Figure 1 shows the typical
 message flow in this scenario (messages in square brackets are
 optional):

 C RS AS
 | [---- Resource Request ------>]| |
 | | |
 | [<-AS Request Creation Hints-] | |
 | | |
 | ------- Token Request ----------------------------> |
 | | |
 | <---------------------------- Access Token --------- |
 | + Access Information |

 Figure 1: Retrieving an Access Token

 To determine the authorization server in charge of a resource hosted
 at the resource server, the client can send an initial Unauthorized
 Resource Request message to the resource server. The resource server
 then denies the request and sends an AS Request Creation Hints
 message containing the address of its authorization server back to
 the client as specified in Section 5.1.2 of
 [I-D.ietf-ace-oauth-authz].

 Once the client knows the authorization server’s address, it can send
 an access token request to the token endpoint at the authorization

Gerdes, et al. Expires May 2, 2021 [Page 4]

Internet-Draft CoAP-DTLS October 2020

 server as specified in [I-D.ietf-ace-oauth-authz]. As the access
 token request as well as the response may contain confidential data,
 the communication between the client and the authorization server
 must be confidentiality-protected and ensure authenticity. The
 client may have been registered at the authorization server via the
 OAuth 2.0 client registration mechanism as outlined in Section 5.3 of
 [I-D.ietf-ace-oauth-authz].

 The access token returned by the authorization server can then be
 used by the client to establish a new DTLS session with the resource
 server. When the client intends to use an asymmetric proof-of-
 possession key in the DTLS handshake with the resource server, the
 client MUST upload the access token to the authz-info resource, i.e.
 the authz-info endpoint, on the resource server before starting the
 DTLS handshake, as described in Section 5.8.1 of
 [I-D.ietf-ace-oauth-authz]. In case the client uses a symmetric
 proof-of-possession key in the DTLS handshake, the procedure as above
 MAY be used, or alternatively, the access token MAY instead be
 transferred in the DTLS ClientKeyExchange message (see
 Section 3.3.2). In any case, DTLS MUST be used in a mode that
 provides replay protection.

 Figure 2 depicts the common protocol flow for the DTLS profile after
 the client has retrieved the access token from the authorization
 server, AS.

 C RS AS
 | [--- Access Token ------>] | |
 | | |
 | <== DTLS channel setup ==> | |
 | | |
 | == Authorized Request ===> | |
 | | |
 | <=== Protected Resource == | |

 Figure 2: Protocol overview

3. Protocol Flow

 The following sections specify how CoAP is used to interchange
 access-related data between the resource server, the client and the
 authorization server so that the authorization server can provide the
 client and the resource server with sufficient information to
 establish a secure channel, and convey authorization information
 specific for this communication relationship to the resource server.

Gerdes, et al. Expires May 2, 2021 [Page 5]

Internet-Draft CoAP-DTLS October 2020

 Section 3.1 describes how the communication between the client (C)
 and the authorization server (AS) must be secured. Depending on the
 used CoAP security mode (see also Section 9 of [RFC7252], the Client-
 to-AS request, AS-to-Client response (see Section 5.6 of
 [I-D.ietf-ace-oauth-authz]) and DTLS session establishment carry
 slightly different information. Section 3.2 addresses the use of raw
 public keys while Section 3.3 defines how pre-shared keys are used in
 this profile.

3.1. Communication Between the Client and the Authorization Server

 To retrieve an access token for the resource that the client wants to
 access, the client requests an access token from the authorization
 server. Before the client can request the access token, the client
 and the authorization server MUST establish a secure communication
 channel. This profile assumes that the keying material to secure
 this communication channel has securely been obtained either by
 manual configuration or in an automated provisioning process. The
 following requirements in alignment with Section 6.5 of
 [I-D.ietf-ace-oauth-authz] therefore must be met:

 o The client MUST securely have obtained keying material to
 communicate with the authorization server.

 o Furthermore, the client MUST verify that the authorization server
 is authorized to provide access tokens (including authorization
 information) about the resource server to the client, and that
 this authorization information about the authorization server is
 still valid.

 o Also, the authorization server MUST securely have obtained keying
 material for the client, and obtained authorization rules approved
 by the resource owner (RO) concerning the client and the resource
 server that relate to this keying material.

 The client and the authorization server MUST use their respective
 keying material for all exchanged messages. How the security
 association between the client and the authorization server is
 bootstrapped is not part of this document. The client and the
 authorization server must ensure the confidentiality, integrity and
 authenticity of all exchanged messages within the ACE protocol.

 Section 6 specifies how communication with the authorization server
 is secured.

Gerdes, et al. Expires May 2, 2021 [Page 6]

Internet-Draft CoAP-DTLS October 2020

3.2. RawPublicKey Mode

 When the client uses RawPublicKey authentication, the procedure is as
 described in the following.

3.2.1. Access Token Retrieval from the Authorization Server

 After the client and the authorization server mutually authenticated
 each other and validated each other’s authorization, the client sends
 a token request to the authorization server’s token endpoint. The
 client MUST add a "req_cnf" object carrying either its raw public key
 or a unique identifier for a public key that it has previously made
 known to the authorization server. It is RECOMMENDED that the client
 uses DTLS with the same keying material to secure the communication
 with the authorization server, proving possession of the key as part
 of the token request. Other mechanisms for proving possession of the
 key may be defined in the future.

 An example access token request from the client to the authorization
 server is depicted in Figure 3.

 POST coaps://as.example.com/token
 Content-Format: application/ace+cbor
 Payload:
 {
 grant_type : client_credentials,
 req_aud : "tempSensor4711",
 req_cnf : {
 COSE_Key : {
 kty : EC2,
 crv : P-256,
 x : h’e866c35f4c3c81bb96a1...’,
 y : h’2e25556be097c8778a20...’
 }
 }
 }

 Figure 3: Access Token Request Example for RPK Mode

 The example shows an access token request for the resource identified
 by the string "tempSensor4711" on the authorization server using a
 raw public key.

 The authorization server MUST check if the client that it
 communicates with is associated with the RPK in the "req_cnf"
 parameter before issuing an access token to it. If the authorization
 server determines that the request is to be authorized according to
 the respective authorization rules, it generates an access token

Gerdes, et al. Expires May 2, 2021 [Page 7]

Internet-Draft CoAP-DTLS October 2020

 response for the client. The access token MUST be bound to the RPK
 of the client by means of the "cnf" claim.

 The response MAY contain a "profile" parameter with the value
 "coap_dtls" to indicate that this profile MUST be used for
 communication between the client and the resource server. The
 "profile" may be specified out-of-band, in which case it does not
 have to be sent. The response also contains an access token with
 information for the resource server about the client’s public key.
 The authorization server MUST return in its response the parameter
 "rs_cnf" unless it is certain that the client already knows the
 public key of the resource server. The authorization server MUST
 ascertain that the RPK specified in "rs_cnf" belongs to the resource
 server that the client wants to communicate with. The authorization
 server MUST protect the integrity of the access token such that the
 resource server can detect unauthorized changes. If the access token
 contains confidential data, the authorization server MUST also
 protect the confidentiality of the access token.

 The client MUST ascertain that the access token response belongs to a
 certain previously sent access token request, as the request may
 specify the resource server with which the client wants to
 communicate.

 An example access token response from the authorization server to the
 client is depicted in Figure 4. Here, the contents of the
 "access_token" claim have been truncated to improve readability.
 Caching proxies process the Max-Age option in the CoAP response which
 has a default value of 60 seconds (Section 5.6.1 of [RFC7252]). The
 authorization server SHOULD adjust the Max-Age option such that it
 does not exceed the "expires_in" parameter to avoid stale responses.

Gerdes, et al. Expires May 2, 2021 [Page 8]

Internet-Draft CoAP-DTLS October 2020

 2.01 Created
 Content-Format: application/ace+cbor
 Max-Age: 3560
 Payload:
 {
 access_token : b64’SlAV32hkKG...
 (remainder of CWT omitted for brevity;
 CWT contains the client’s RPK in the cnf claim)’,
 expires_in : 3600,
 rs_cnf : {
 COSE_Key : {
 kty : EC2,
 crv : P-256,
 x : h’d7cc072de2205bdc1537...’,
 y : h’f95e1d4b851a2cc80fff...’
 }
 }
 }

 Figure 4: Access Token Response Example for RPK Mode

3.2.2. DTLS Channel Setup Between Client and Resource Server

 Before the client initiates the DTLS handshake with the resource
 server, the client MUST send a "POST" request containing the obtained
 access token to the authz-info resource hosted by the resource
 server. After the client receives a confirmation that the resource
 server has accepted the access token, it SHOULD proceed to establish
 a new DTLS channel with the resource server. The client MUST use its
 correct public key in the DTLS handshake. If the authorization
 server has specified a "cnf" field in the access token response, the
 client MUST use this key. Otherwise, the client MUST use the public
 key that it specified in the "req_cnf" of the access token request.
 The client MUST specify this public key in the SubjectPublicKeyInfo
 structure of the DTLS handshake as described in [RFC7250].

 To be consistent with [RFC7252] which allows for shortened MAC tags
 in constrained environments, an implementation that supports the RPK
 mode of this profile MUST at least support the ciphersuite
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 [RFC7251]. As discussed in
 [RFC7748], new ECC curves have been defined recently that are
 considered superior to the so-called NIST curves. This specification
 therefore mandates implementation support for curve25519 (cf.
 [RFC8032], [RFC8422]) as this curve said to be efficient and less
 dangerous regarding implementation errors than the secp256r1 curve
 mandated in [RFC7252].

Gerdes, et al. Expires May 2, 2021 [Page 9]

Internet-Draft CoAP-DTLS October 2020

 The resource server MUST check if the access token is still valid, if
 the resource server is the intended destination (i.e., the audience)
 of the token, and if the token was issued by an authorized
 authorization server. The access token is constructed by the
 authorization server such that the resource server can associate the
 access token with the Client’s public key. The "cnf" claim MUST
 contain either the client’s RPK or, if the key is already known by
 the resource server (e.g., from previous communication), a reference
 to this key. If the authorization server has no certain knowledge
 that the Client’s key is already known to the resource server, the
 Client’s public key MUST be included in the access token’s "cnf"
 parameter. If CBOR web tokens [RFC8392] are used (as recommended in
 [I-D.ietf-ace-oauth-authz]), keys MUST be encoded as specified in
 [RFC8747]. A resource server MUST have the capacity to store one
 access token for every proof-of-possession key of every authorized
 client.

 The raw public key used in the DTLS handshake with the client MUST
 belong to the resource server. If the resource server has several
 raw public keys, it needs to determine which key to use. The
 authorization server can help with this decision by including a "cnf"
 parameter in the access token that is associated with this
 communication. In this case, the resource server MUST use the
 information from the "cnf" field to select the proper keying
 material.

 Thus, the handshake only finishes if the client and the resource
 server are able to use their respective keying material.

3.3. PreSharedKey Mode

 When the client uses pre-shared key authentication, the procedure is
 as described in the following.

3.3.1. Access Token Retrieval from the Authorization Server

 To retrieve an access token for the resource that the client wants to
 access, the client MAY include a "cnf" object carrying an identifier
 for a symmetric key in its access token request to the authorization
 server. This identifier can be used by the authorization server to
 determine the shared secret to construct the proof-of-possession
 token. The authorization server MUST check if the identifier refers
 to a symmetric key that was previously generated by the authorization
 server as a shared secret for the communication between this client
 and the resource server. If no such symmetric key was found, the
 authorization server MUST generate a new symmetric key that is
 returned in its response to the client.

Gerdes, et al. Expires May 2, 2021 [Page 10]

Internet-Draft CoAP-DTLS October 2020

 The authorization server MUST determine the authorization rules for
 the client it communicates with as defined by the resource owner and
 generate the access token accordingly. If the authorization server
 authorizes the client, it returns an AS-to-Client response. If the
 profile parameter is present, it is set to "coap_dtls". The
 authorization server MUST ascertain that the access token is
 generated for the resource server that the client wants to
 communicate with. Also, the authorization server MUST protect the
 integrity of the access token to ensure that the resource server can
 detect unauthorized changes. If the token contains confidential data
 such as the symmetric key, the confidentiality of the token MUST also
 be protected. Depending on the requested token type and algorithm in
 the access token request, the authorization server adds access
 Information to the response that provides the client with sufficient
 information to setup a DTLS channel with the resource server. The
 authorization server adds a "cnf" parameter to the access information
 carrying a "COSE_Key" object that informs the client about the shared
 secret that is to be used between the client and the resource server.
 To convey the same secret to the resource server, the authorization
 server can include it directly in the access token by means of the
 "cnf" claim or provide sufficient information to enable the resource
 server to derive the shared secret from the access token. As an
 alternative, the resource server MAY use token introspection to
 retrieve the keying material for this access token directly from the
 authorization server.

 An example access token request for an access token with a symmetric
 proof-of-possession key is illustrated in Figure 5.

 POST coaps://as.example.com/token
 Content-Format: application/ace+cbor
 Payload:
 {
 audience : "smokeSensor1807",
 }

 Figure 5: Example Access Token Request, (implicit) symmetric PoP-key

 A corresponding example access token response is illustrated in
 Figure 6. In this example, the authorization server returns a 2.01
 response containing a new access token (truncated to improve
 readability) and information for the client, including the symmetric
 key in the cnf claim. The information is transferred as a CBOR data
 structure as specified in [I-D.ietf-ace-oauth-authz].

Gerdes, et al. Expires May 2, 2021 [Page 11]

Internet-Draft CoAP-DTLS October 2020

 2.01 Created
 Content-Format: application/ace+cbor
 Max-Age: 85800
 Payload:
 {
 access_token : h’d08343a10...
 (remainder of CWT omitted for brevity)
 token_type : PoP,
 expires_in : 86400,
 profile : coap_dtls,
 cnf : {
 COSE_Key : {
 kty : symmetric,
 kid : h’3d027833fc6267ce’,
 k : h’73657373696f6e6b6579’
 }
 }
 }

 Figure 6: Example Access Token Response, symmetric PoP-key

 The access token also comprises a "cnf" claim. This claim usually
 contains a "COSE_Key" object that carries either the symmetric key
 itself or a key identifier that can be used by the resource server to
 determine the secret key it shares with the client. If the access
 token carries a symmetric key, the access token MUST be encrypted
 using a "COSE_Encrypt0" structure. The authorization server MUST use
 the keying material shared with the resource server to encrypt the
 token.

 The "cnf" structure in the access token is provided in Figure 7.

 cnf : {
 COSE_Key : {
 kty : symmetric,
 kid : h’3d027833fc6267ce’
 }
 }

 Figure 7: Access Token without Keying Material

 A response that declines any operation on the requested resource is
 constructed according to Section 5.2 of [RFC6749], (cf.
 Section 5.6.3. of [I-D.ietf-ace-oauth-authz]). Figure 8 shows an
 example for a request that has been rejected due to invalid request
 parameters.

Gerdes, et al. Expires May 2, 2021 [Page 12]

Internet-Draft CoAP-DTLS October 2020

 4.00 Bad Request
 Content-Format: application/ace+cbor
 Payload:
 {
 error : invalid_request
 }

 Figure 8: Example Access Token Response With Reject

 The method for how the resource server determines the symmetric key
 from an access token containing only a key identifier is application-
 specific; the remainder of this section provides one example.

 The authorization server and the resource server are assumed to share
 a key derivation key used to derive the symmetric key shared with the
 client from the key identifier in the access token. The key
 derivation key may be derived from some other secret key shared
 between the authorization server and the resource server. This key
 needs to be securely stored and processed in the same way as the key
 used to protect the communication between the authorization server
 and the resource server.

 Knowledge of the symmetric key shared with the client must not reveal
 any information about the key derivation key or other secret keys
 shared between the authorization server and resource server.

 In order to generate a new symmetric key to be used by client and
 resource server, the authorization server generates a new key
 identifier which MUST be unique among all key identifiers used by the
 authorization server for this resource server. The authorization
 server then uses the key derivation key shared with the resource
 server to derive the symmetric key as specified below. Instead of
 providing the keying material in the access token, the authorization
 server includes the key identifier in the "kid" parameter, see
 Figure 7. This key identifier enables the resource server to
 calculate the symmetric key used for the communication with the
 client using the key derivation key and a KDF to be defined by the
 application, for example HKDF-SHA-256. The key identifier picked by
 the authorization server MUST be unique for each access token where a
 unique symmetric key is required.

 In this example, HKDF consists of the composition of the HKDF-Extract
 and HKDF-Expand steps [RFC5869]. The symmetric key is derived from
 the key identifier, the key derivation key and other data:

 OKM = HKDF(salt, IKM, info, L),

 where:

Gerdes, et al. Expires May 2, 2021 [Page 13]

Internet-Draft CoAP-DTLS October 2020

 o OKM, the output keying material, is the derived symmetric key

 o salt is the empty byte string

 o IKM, the input keying material, is the key derivation key as
 defined above

 o info is the serialization of a CBOR array consisting of
 ([RFC8610]):

 info = [
 type : tstr,
 L : uint,
 access_token: bytes
]

 where:

 o type is set to the constant text string "ACE-CoAP-DTLS-key-
 derivation",

 o L is the size of the symmetric key in bytes,

 o access_token is the content of the "access_token" field as
 transferred from the authorization server to the resource server.

 All CBOR data types are encoded in CBOR using preferred serialization
 and deterministic encoding as specified in Section 4 of
 [I-D.ietf-cbor-7049bis]. This implies in particular that the "type"
 and "L" components use the minimum length encoding. The content of
 the "access_token" field is treated as opaque data for the purpose of
 key derivation.

 Use of a unique (per resource server) "kid" and the use of a key
 derivation IKM that MUST be unique per authorization server/resource
 server pair as specified above will ensure that the derived key is
 not shared across multiple clients. However, to additionally provide
 variation in the derived key across different tokens used by the same
 client, it is additionally RECOMMENDED to include the "iat" claim and
 either the "exp" or "exi" claims in the access token.

3.3.2. DTLS Channel Setup Between Client and Resource Server

 When a client receives an access token response from an authorization
 server, the client MUST check if the access token response is bound
 to a certain previously sent access token request, as the request may
 specify the resource server with which the client wants to
 communicate.

Gerdes, et al. Expires May 2, 2021 [Page 14]

Internet-Draft CoAP-DTLS October 2020

 The client checks if the payload of the access token response
 contains an "access_token" parameter and a "cnf" parameter. With
 this information the client can initiate the establishment of a new
 DTLS channel with a resource server. To use DTLS with pre-shared
 keys, the client follows the PSK key exchange algorithm specified in
 Section 2 of [RFC4279] using the key conveyed in the "cnf" parameter
 of the AS response as PSK when constructing the premaster secret. To
 be consistent with the recommendations in [RFC7252] a client is
 expected to offer at least the ciphersuite TLS_PSK_WITH_AES_128_CCM_8
 [RFC6655] to the resource server.

 In PreSharedKey mode, the knowledge of the shared secret by the
 client and the resource server is used for mutual authentication
 between both peers. Therefore, the resource server must be able to
 determine the shared secret from the access token. Following the
 general ACE authorization framework, the client can upload the access
 token to the resource server’s authz-info resource before starting
 the DTLS handshake. The client then needs to indicate during the
 DTLS handshake which previously uploaded access token it intends to
 use. To do so, it MUST create a "COSE_Key" structure with the "kid"
 that was conveyed in the "rs_cnf" claim in the token response from
 the authorization server and the key type "symmetric". This
 structure then is included as the only element in the "cnf" structure
 that is used as value for "psk_identity" as shown in Figure 9.

 { cnf : {
 COSE_Key : {
 kty: symmetric,
 kid : h’3d027833fc6267ce’
 }
 }
 }

 Figure 9: Access token containing a single kid parameter

 As an alternative to the access token upload, the client can provide
 the most recent access token in the "psk_identity" field of the
 ClientKeyExchange message. To do so, the client MUST treat the
 contents of the "access_token" field from the AS-to-Client response
 as opaque data as specified in Section 4.2 of [RFC7925] and not
 perform any re-coding. This allows the resource server to retrieve
 the shared secret directly from the "cnf" claim of the access token.

 If a resource server receives a ClientKeyExchange message that
 contains a "psk_identity" with a length greater than zero, it MUST
 parse the contents of the "psk_identity" field as CBOR data structure
 and process the contents as following:

Gerdes, et al. Expires May 2, 2021 [Page 15]

Internet-Draft CoAP-DTLS October 2020

 o If the data contains a "cnf" field with a "COSE_Key" structure
 with a "kid", the resource server continues the DTLS handshake
 with the associated key that corresponds to this kid.

 o If the data comprises additional CWT information, this information
 must be stored as an access token for this DTLS association before
 continuing with the DTLS handshake.

 If the contents of the "psk_identity" do not yield sufficient
 information to select a valid access token for the requesting client,
 the resource server aborts the DTLS handshake with an
 "illegal_parameter" alert.

 When the resource server receives an access token, it MUST check if
 the access token is still valid, if the resource server is the
 intended destination (i.e., the audience of the token), and if the
 token was issued by an authorized authorization server. This
 specification implements access tokens as proof-of-possession tokens.
 Therefore, the access token is bound to a symmetric PoP key that is
 used as shared secret between the client and the resource server. A
 resource server MUST have the capacity to store one access token for
 every proof-of-possession key of every authorized client. The
 resource server may use token introspection [RFC7662] on the access
 token to retrieve more information about the specific token. The use
 of introspection is out of scope for this specification.

 While the client can retrieve the shared secret from the contents of
 the "cnf" parameter in the AS-to-Client response, the resource server
 uses the information contained in the "cnf" claim of the access token
 to determine the actual secret when no explicit "kid" was provided in
 the "psk_identity" field. If key derivation is used, the resource
 server uses the "COSE_KDF_Context" information as described above.

3.4. Resource Access

 Once a DTLS channel has been established as described in Section 3.2
 or Section 3.3, respectively, the client is authorized to access
 resources covered by the access token it has uploaded to the authz-
 info resource hosted by the resource server.

 With the successful establishment of the DTLS channel, the client and
 the resource server have proven that they can use their respective
 keying material. An access token that is bound to the client’s
 keying material is associated with the channel. According to
 Section 5.8.1 of [I-D.ietf-ace-oauth-authz], there should be only one
 access token for each client. New access tokens issued by the
 authorization server SHOULD replace previously issued access tokens
 for the respective client. The resource server therefore needs a

Gerdes, et al. Expires May 2, 2021 [Page 16]

Internet-Draft CoAP-DTLS October 2020

 common understanding with the authorization server how access tokens
 are ordered. The authorization server may, e.g., specify a "cti"
 claim for the access token (see Section 5.8.3 of
 [I-D.ietf-ace-oauth-authz]) to employ a strict order.

 Any request that the resource server receives on a DTLS channel that
 is tied to an access token via its keying material MUST be checked
 against the authorization rules that can be determined with the
 access token. The resource server MUST check for every request if
 the access token is still valid. If the token has expired, the
 resource server MUST remove it. Incoming CoAP requests that are not
 authorized with respect to any access token that is associated with
 the client MUST be rejected by the resource server with 4.01
 response. The response SHOULD include AS Request Creation Hints as
 described in Section 5.1.1 of [I-D.ietf-ace-oauth-authz].

 The resource server MUST only accept an incoming CoAP request as
 authorized if the following holds:

 1. The message was received on a secure channel that has been
 established using the procedure defined in this document.

 2. The authorization information tied to the sending client is
 valid.

 3. The request is destined for the resource server.

 4. The resource URI specified in the request is covered by the
 authorization information.

 5. The request method is an authorized action on the resource with
 respect to the authorization information.

 Incoming CoAP requests received on a secure DTLS channel that are not
 thus authorized MUST be rejected according to Section 5.8.2 of
 [I-D.ietf-ace-oauth-authz]

 1. with response code 4.03 (Forbidden) when the resource URI
 specified in the request is not covered by the authorization
 information, and

 2. with response code 4.05 (Method Not Allowed) when the resource
 URI specified in the request covered by the authorization
 information but not the requested action.

 The client MUST ascertain that its keying material is still valid
 before sending a request or processing a response. If the client
 recently has updated the access token (see Section 4), it must be

Gerdes, et al. Expires May 2, 2021 [Page 17]

Internet-Draft CoAP-DTLS October 2020

 prepared that its request is still handled according to the previous
 authorization rules as there is no strict ordering between access
 token uploads and resource access messages. See also Section 7.2 for
 a discussion of access token processing.

 If the client gets an error response containing AS Request Creation
 Hints (cf. Section 5.1.2 of [I-D.ietf-ace-oauth-authz] as response
 to its requests, it SHOULD request a new access token from the
 authorization server in order to continue communication with the
 resource server.

 Unauthorized requests that have been received over a DTLS session
 SHOULD be treated as non-fatal by the resource server, i.e., the DTLS
 session SHOULD be kept alive until the associated access token has
 expired.

4. Dynamic Update of Authorization Information

 Resource servers must only use a new access token to update the
 authorization information for a DTLS session if the keying material
 that is bound to the token is the same that was used in the DTLS
 handshake. By associating the access tokens with the identifier of
 an existing DTLS session, the authorization information can be
 updated without changing the cryptographic keys for the DTLS
 communication between the client and the resource server, i.e. an
 existing session can be used with updated permissions.

 The client can therefore update the authorization information stored
 at the resource server at any time without changing an established
 DTLS session. To do so, the client requests a new access token from
 the authorization server for the intended action on the respective
 resource and uploads this access token to the authz-info resource on
 the resource server.

 Figure 10 depicts the message flow where the client requests a new
 access token after a security association between the client and the
 resource server has been established using this protocol. If the
 client wants to update the authorization information, the token
 request MUST specify the key identifier of the proof-of-possession
 key used for the existing DTLS channel between the client and the
 resource server in the "kid" parameter of the Client-to-AS request.
 The authorization server MUST verify that the specified "kid" denotes
 a valid verifier for a proof-of-possession token that has previously
 been issued to the requesting client. Otherwise, the Client-to-AS
 request MUST be declined with the error code "unsupported_pop_key" as
 defined in Section 5.6.3 of [I-D.ietf-ace-oauth-authz].

Gerdes, et al. Expires May 2, 2021 [Page 18]

Internet-Draft CoAP-DTLS October 2020

 When the authorization server issues a new access token to update
 existing authorization information, it MUST include the specified
 "kid" parameter in this access token. A resource server MUST replace
 the authorization information of any existing DTLS session that is
 identified by this key identifier with the updated authorization
 information.

 C RS AS
 | <===== DTLS channel =====> | |
 | + Access Token | |
 | | |
 | --- Token Request ----------------------------> |
 | | |
 | <---------------------------- New Access Token - |
 | + Access Information |
 | | |
 | --- Update /authz-info --> | |
 | New Access Token | |
 | | |
 | == Authorized Request ===> | |
 | | |
 | <=== Protected Resource == | |

 Figure 10: Overview of Dynamic Update Operation

5. Token Expiration

 The resource server MUST delete access tokens that are no longer
 valid. DTLS associations that have been setup in accordance with
 this profile are always tied to specific tokens (which may be
 exchanged with a dynamic update as described in Section 4). As
 tokens may become invalid at any time (e.g., because they have
 expired), the association may become useless at some point. A
 resource server therefore MUST terminate existing DTLS association
 after the last access token associated with this association has
 expired.

 As specified in Section 5.8.3 of [I-D.ietf-ace-oauth-authz], the
 resource server MUST notify the client with an error response with
 code 4.01 (Unauthorized) for any long running request before
 terminating the association.

6. Secure Communication with an Authorization Server

 As specified in the ACE framework (Sections 5.6 and 5.7 of
 [I-D.ietf-ace-oauth-authz]), the requesting entity (the resource
 server and/or the client) and the authorization server communicate

Gerdes, et al. Expires May 2, 2021 [Page 19]

Internet-Draft CoAP-DTLS October 2020

 via the token endpoint or introspection endpoint. The use of CoAP
 and DTLS for this communication is RECOMMENDED in this profile, other
 protocols (such as HTTP and TLS, or CoAP and OSCORE [RFC8613]) MAY be
 used instead.

 How credentials (e.g., PSK, RPK, X.509 cert) for using DTLS with the
 authorization server are established is out of scope for this
 profile.

 If other means of securing the communication with the authorization
 server are used, the communication security requirements from
 Section 6.2 of [I-D.ietf-ace-oauth-authz] remain applicable.

7. Security Considerations

 This document specifies a profile for the Authentication and
 Authorization for Constrained Environments (ACE) framework
 [I-D.ietf-ace-oauth-authz]. As it follows this framework’s general
 approach, the general security considerations from Section 6 of
 [I-D.ietf-ace-oauth-authz] also apply to this profile.

 The authorization server must ascertain that the keying material for
 the client that it provides to the resource server actually is
 associated with this client. Malicious clients may hand over access
 tokens containing their own access permissions to other entities.
 This problem cannot be completely eliminated. Nevertheless, in RPK
 mode it should not be possible for clients to request access tokens
 for arbitrary public keys: if the client can cause the authorization
 server to issue a token for a public key without proving possession
 of the corresponding private key, this allows for identity misbinding
 attacks where the issued token is usable by an entity other than the
 intended one. The authorization server therefore at some point needs
 to validate that the client can actually use the private key
 corresponding to the client’s public key.

 When using pre-shared keys provisioned by the authorization server,
 the security level depends on the randomness of PSK, and the security
 of the TLS cipher suite and key exchange algorithm. As this
 specification targets at constrained environments, message payloads
 exchanged between the client and the resource server are expected to
 be small and rare. CoAP [RFC7252] mandates the implementation of
 cipher suites with abbreviated, 8-byte tags for message integrity
 protection. For consistency, this profile requires implementation of
 the same cipher suites. For application scenarios where the cost of
 full-width authentication tags is low compared to the overall amount
 of data being transmitted, the use of cipher suites with 16-byte
 integrity protection tags is preferred.

Gerdes, et al. Expires May 2, 2021 [Page 20]

Internet-Draft CoAP-DTLS October 2020

 The PSK mode of this profile offers a distribution mechanism to
 convey authorization tokens together with a shared secret to a client
 and a server. As this specification aims at constrained devices and
 uses CoAP [RFC7252] as transfer protocol, at least the ciphersuite
 TLS_PSK_WITH_AES_128_CCM_8 [RFC6655] should be supported. The access
 tokens and the corresponding shared secrets generated by the
 authorization server are expected to be sufficiently short-lived to
 provide similar forward-secrecy properties to using ephemeral Diffie-
 Hellman (DHE) key exchange mechanisms. For longer-lived access
 tokens, DHE ciphersuites should be used.

 Constrained devices that use DTLS [RFC6347] are inherently vulnerable
 to Denial of Service (DoS) attacks as the handshake protocol requires
 creation of internal state within the device. This is specifically
 of concern where an adversary is able to intercept the initial cookie
 exchange and interject forged messages with a valid cookie to
 continue with the handshake. A similar issue exists with the
 unprotected authorization information endpoint when the resource
 server needs to keep valid access tokens for a long time.
 Adversaries could fill up the constrained resource server’s internal
 storage for a very long time with interjected or otherwise retrieved
 valid access tokens. To mitigate against this, the resource server
 should set a time boundary until an access token that has not been
 used until then will be deleted.

 The protection of access tokens that are stored in the authorization
 information endpoint depends on the keying material that is used
 between the authorization server and the resource server: The
 resource server must ensure that it processes only access tokens that
 are (encrypted and) integrity-protected by an authorization server
 that is authorized to provide access tokens for the resource server.

7.1. Reuse of Existing Sessions

 To avoid the overhead of a repeated DTLS handshake, [RFC7925]
 recommends session resumption [RFC5077] to reuse session state from
 an earlier DTLS association and thus requires client side
 implementation. In this specification, the DTLS session is subject
 to the authorization rules denoted by the access token that was used
 for the initial setup of the DTLS association. Enabling session
 resumption would require the server to transfer the authorization
 information with the session state in an encrypted SessionTicket to
 the client. Assuming that the server uses long-lived keying
 material, this could open up attacks due to the lack of forward
 secrecy. Moreover, using this mechanism, a client can resume a DTLS
 session without proving the possession of the PoP key again.
 Therefore, the use of session resumption is NOT RECOMMENDED for
 resource servers.

Gerdes, et al. Expires May 2, 2021 [Page 21]

Internet-Draft CoAP-DTLS October 2020

 Since renegotiation of DTLS associations is prone to attacks as well,
 [RFC7925] requires clients to decline any renogiation attempt. A
 server that wants to initiate re-keying therefore SHOULD periodically
 force a full handshake.

7.2. Multiple Access Tokens

 The use of multiple access tokens for a single client increases the
 strain on the resource server as it must consider every access token
 and calculate the actual permissions of the client. Also, tokens may
 contradict each other which may lead the server to enforce wrong
 permissions. If one of the access tokens expires earlier than
 others, the resulting permissions may offer insufficient protection.
 Developers SHOULD avoid using multiple access tokens for a client.

 Even when a single access token per client is used, an attacker could
 compromise the dynamic update mechanism for existing DTLS connections
 by delaying or reordering packets destined for the authz-info
 endpoint. Thus, the order in which operations occur at the resource
 server (and thus which authorization info is used to process a given
 client request) cannot be guaranteed. Especially in the presence of
 later-issued access tokens that reduce the client’s permissions from
 the initial access token, it is impossible to guarantee that the
 reduction in authorization will take effect prior to the expiration
 of the original token.

7.3. Out-of-Band Configuration

 To communicate securely, the authorization server, the client and the
 resource server require certain information that must be exchanged
 outside the protocol flow described in this document. The
 authorization server must have obtained authorization information
 concerning the client and the resource server that is approved by the
 resource owner as well as corresponding keying material. The
 resource server must have received authorization information approved
 by the resource owner concerning its authorization managers and the
 respective keying material. The client must have obtained
 authorization information concerning the authorization server
 approved by its owner as well as the corresponding keying material.
 Also, the client’s owner must have approved of the client’s
 communication with the resource server. The client and the
 authorization server must have obtained a common understanding how
 this resource server is identified to ensure that the client obtains
 access token and keying material for the correct resource server. If
 the client is provided with a raw public key for the resource server,
 it must be ascertained to which resource server (which identifier and
 authorization information) the key is associated. All authorization
 information and keying material must be kept up to date.

Gerdes, et al. Expires May 2, 2021 [Page 22]

Internet-Draft CoAP-DTLS October 2020

8. Privacy Considerations

 This privacy considerations from Section 7 of the
 [I-D.ietf-ace-oauth-authz] apply also to this profile.

 An unprotected response to an unauthorized request may disclose
 information about the resource server and/or its existing
 relationship with the client. It is advisable to include as little
 information as possible in an unencrypted response. When a DTLS
 session between an authenticated client and the resource server
 already exists, more detailed information MAY be included with an
 error response to provide the client with sufficient information to
 react on that particular error.

 Also, unprotected requests to the resource server may reveal
 information about the client, e.g., which resources the client
 attempts to request or the data that the client wants to provide to
 the resource server. The client SHOULD NOT send confidential data in
 an unprotected request.

 Note that some information might still leak after DTLS session is
 established, due to observable message sizes, the source, and the
 destination addresses.

9. IANA Considerations

 The following registrations are done for the ACE OAuth Profile
 Registry following the procedure specified in
 [I-D.ietf-ace-oauth-authz].

 Note to RFC Editor: Please replace all occurrences of "[RFC-XXXX]"
 with the RFC number of this specification and delete this paragraph.

 Profile name: coap_dtls

 Profile Description: Profile for delegating client authentication and
 authorization in a constrained environment by establishing a Datagram
 Transport Layer Security (DTLS) channel between resource-constrained
 nodes.

 Profile ID: TBD (suggested: 1)

 Change Controller: IESG

 Reference: [RFC-XXXX]

Gerdes, et al. Expires May 2, 2021 [Page 23]

Internet-Draft CoAP-DTLS October 2020

10. Acknowledgments

 Special thanks to Jim Schaad for his contributions and reviews of
 this document and to Ben Kaduk for his thorough reviews of this
 document. Thanks also to Paul Kyzivat for his review.

 Ludwig Seitz worked on this document as part of the CelticNext
 projects CyberWI, and CRITISEC with funding from Vinnova.

11. References

11.1. Normative References

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-35
 (work in progress), June 2020.

 [I-D.ietf-ace-oauth-params]
 Seitz, L., "Additional OAuth Parameters for Authorization
 in Constrained Environments (ACE)", draft-ietf-ace-oauth-
 params-13 (work in progress), April 2020.

 [I-D.ietf-cbor-7049bis]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", draft-ietf-cbor-7049bis-16 (work
 in progress), September 2020.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",
 RFC 4279, DOI 10.17487/RFC4279, December 2005,
 <https://www.rfc-editor.org/info/rfc4279>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

Gerdes, et al. Expires May 2, 2021 [Page 24]

Internet-Draft CoAP-DTLS October 2020

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

 [RFC7251] McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
 CCM Elliptic Curve Cryptography (ECC) Cipher Suites for
 TLS", RFC 7251, DOI 10.17487/RFC7251, June 2014,
 <https://www.rfc-editor.org/info/rfc7251>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016,
 <https://www.rfc-editor.org/info/rfc7925>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8422] Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
 Curve Cryptography (ECC) Cipher Suites for Transport Layer
 Security (TLS) Versions 1.2 and Earlier", RFC 8422,
 DOI 10.17487/RFC8422, August 2018,
 <https://www.rfc-editor.org/info/rfc8422>.

 [RFC8747] Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March
 2020, <https://www.rfc-editor.org/info/rfc8747>.

11.2. Informative References

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <https://www.rfc-editor.org/info/rfc5077>.

Gerdes, et al. Expires May 2, 2021 [Page 25]

Internet-Draft CoAP-DTLS October 2020

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC6655] McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for
 Transport Layer Security (TLS)", RFC 6655,
 DOI 10.17487/RFC6655, July 2012,
 <https://www.rfc-editor.org/info/rfc6655>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

Authors’ Addresses

 Stefanie Gerdes
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63906
 Email: gerdes@tzi.org

Gerdes, et al. Expires May 2, 2021 [Page 26]

Internet-Draft CoAP-DTLS October 2020

 Olaf Bergmann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63904
 Email: bergmann@tzi.org

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

 Goeran Selander
 Ericsson AB

 Email: goran.selander@ericsson.com

 Ludwig Seitz
 Combitech
 Djaeknegatan 31
 Malmoe 211 35
 Sweden

 Email: ludwig.seitz@combitech.se

Gerdes, et al. Expires May 2, 2021 [Page 27]

ACE Working Group L. Seitz
Internet-Draft Combitech
Intended status: Standards Track G. Selander
Expires: May 21, 2021 Ericsson
 E. Wahlstroem

 S. Erdtman
 Spotify AB
 H. Tschofenig
 Arm Ltd.
 November 17, 2020

 Authentication and Authorization for Constrained Environments (ACE)
 using the OAuth 2.0 Framework (ACE-OAuth)
 draft-ietf-ace-oauth-authz-36

Abstract

 This specification defines a framework for authentication and
 authorization in Internet of Things (IoT) environments called ACE-
 OAuth. The framework is based on a set of building blocks including
 OAuth 2.0 and the Constrained Application Protocol (CoAP), thus
 transforming a well-known and widely used authorization solution into
 a form suitable for IoT devices. Existing specifications are used
 where possible, but extensions are added and profiles are defined to
 better serve the IoT use cases.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 21, 2021.

Seitz, et al. Expires May 21, 2021 [Page 1]

Internet-Draft ACE-OAuth November 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Terminology . 5
 3. Overview . 6
 3.1. OAuth 2.0 . 7
 3.2. CoAP . 10
 4. Protocol Interactions . 11
 5. Framework . 15
 5.1. Discovering Authorization Servers 16
 5.2. Unauthorized Resource Request Message 17
 5.3. AS Request Creation Hints 17
 5.3.1. The Client-Nonce Parameter 19
 5.4. Authorization Grants 20
 5.5. Client Credentials 21
 5.6. AS Authentication . 21
 5.7. The Authorization Endpoint 21
 5.8. The Token Endpoint 21
 5.8.1. Client-to-AS Request 22
 5.8.2. AS-to-Client Response 25
 5.8.3. Error Response 27
 5.8.4. Request and Response Parameters 28
 5.8.4.1. Grant Type 28
 5.8.4.2. Token Type 29
 5.8.4.3. Profile . 29
 5.8.4.4. Client-Nonce 30
 5.8.5. Mapping Parameters to CBOR 30
 5.9. The Introspection Endpoint 31
 5.9.1. Introspection Request 32
 5.9.2. Introspection Response 33
 5.9.3. Error Response 34
 5.9.4. Mapping Introspection parameters to CBOR 35
 5.10. The Access Token . 35

Seitz, et al. Expires May 21, 2021 [Page 2]

Internet-Draft ACE-OAuth November 2020

 5.10.1. The Authorization Information Endpoint 36
 5.10.1.1. Verifying an Access Token 37
 5.10.1.2. Protecting the Authorization Information
 Endpoint . 39
 5.10.2. Client Requests to the RS 39
 5.10.3. Token Expiration 40
 5.10.4. Key Expiration 41
 6. Security Considerations 42
 6.1. Protecting Tokens . 42
 6.2. Communication Security 43
 6.3. Long-Term Credentials 44
 6.4. Unprotected AS Request Creation Hints 44
 6.5. Minimal security requirements for communication . 45
 6.6. Token Freshness and Expiration 46
 6.7. Combining profiles 46
 6.8. Unprotected Information 47
 6.9. Identifying audiences 47
 6.10. Denial of service against or with Introspection . . 48
 7. Privacy Considerations 49
 8. IANA Considerations . 50
 8.1. ACE Authorization Server Request Creation Hints 50
 8.2. CoRE Resource Type registry 50
 8.3. OAuth Extensions Error Registration 51
 8.4. OAuth Error Code CBOR Mappings Registry 51
 8.5. OAuth Grant Type CBOR Mappings 51
 8.6. OAuth Access Token Types 52
 8.7. OAuth Access Token Type CBOR Mappings 52
 8.7.1. Initial Registry Contents 53
 8.8. ACE Profile Registry 53
 8.9. OAuth Parameter Registration 53
 8.10. OAuth Parameters CBOR Mappings Registry 54
 8.11. OAuth Introspection Response Parameter Registration . . . 54
 8.12. OAuth Token Introspection Response CBOR Mappings Registry 55
 8.13. JSON Web Token Claims 55
 8.14. CBOR Web Token Claims 56
 8.15. Media Type Registrations 57
 8.16. CoAP Content-Format Registry 57
 8.17. Expert Review Instructions 58
 9. Acknowledgments . 59
 10. References . 59
 10.1. Normative References 59
 10.2. Informative References 62
 Appendix A. Design Justification 64
 Appendix B. Roles and Responsibilities 68
 Appendix C. Requirements on Profiles 70
 Appendix D. Assumptions on AS knowledge about C and RS 71
 Appendix E. Deployment Examples 72
 E.1. Local Token Validation 72

Seitz, et al. Expires May 21, 2021 [Page 3]

Internet-Draft ACE-OAuth November 2020

 E.2. Introspection Aided Token Validation 76
 Appendix F. Document Updates 80
 F.1. Version -21 to 22 . 81
 F.2. Version -20 to 21 . 81
 F.3. Version -19 to 20 . 81
 F.4. Version -18 to -19 81
 F.5. Version -17 to -18 81
 F.6. Version -16 to -17 81
 F.7. Version -15 to -16 82
 F.8. Version -14 to -15 82
 F.9. Version -13 to -14 82
 F.10. Version -12 to -13 82
 F.11. Version -11 to -12 83
 F.12. Version -10 to -11 83
 F.13. Version -09 to -10 83
 F.14. Version -08 to -09 83
 F.15. Version -07 to -08 83
 F.16. Version -06 to -07 84
 F.17. Version -05 to -06 84
 F.18. Version -04 to -05 84
 F.19. Version -03 to -04 85
 F.20. Version -02 to -03 85
 F.21. Version -01 to -02 85
 F.22. Version -00 to -01 86
 Authors’ Addresses . 86

1. Introduction

 Authorization is the process for granting approval to an entity to
 access a generic resource [RFC4949]. The authorization task itself
 can best be described as granting access to a requesting client, for
 a resource hosted on a device, the resource server (RS). This
 exchange is mediated by one or multiple authorization servers (AS).
 Managing authorization for a large number of devices and users can be
 a complex task.

 While prior work on authorization solutions for the Web and for the
 mobile environment also applies to the Internet of Things (IoT)
 environment, many IoT devices are constrained, for example, in terms
 of processing capabilities, available memory, etc. For web
 applications on constrained nodes, this specification RECOMMENDS the
 use of the Constrained Application Protocol (CoAP) [RFC7252] as
 replacement for HTTP.

 Appendix A gives an overview of the constraints considered in this
 design, and a more detailed treatment of constraints can be found in
 [RFC7228]. This design aims to accommodate different IoT deployments
 and thus a continuous range of device and network capabilities.

Seitz, et al. Expires May 21, 2021 [Page 4]

Internet-Draft ACE-OAuth November 2020

 Taking energy consumption as an example: At one end there are energy-
 harvesting or battery powered devices which have a tight power
 budget, on the other end there are mains-powered devices, and all
 levels in between.

 Hence, IoT devices may be very different in terms of available
 processing and message exchange capabilities and there is a need to
 support many different authorization use cases [RFC7744].

 This specification describes a framework for authentication and
 authorization in constrained environments (ACE) built on re-use of
 OAuth 2.0 [RFC6749], thereby extending authorization to Internet of
 Things devices. This specification contains the necessary building
 blocks for adjusting OAuth 2.0 to IoT environments.

 More detailed, interoperable specifications can be found in separate
 profile specifications. Implementations may claim conformance with a
 specific profile, whereby implementations utilizing the same profile
 interoperate while implementations of different profiles are not
 expected to be interoperable. Some devices, such as mobile phones
 and tablets, may implement multiple profiles and will therefore be
 able to interact with a wider range of low end devices. Requirements
 on profiles are described at contextually appropriate places
 throughout this specification, and also summarized in Appendix C.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Certain security-related terms such as "authentication",
 "authorization", "confidentiality", "(data) integrity", "message
 authentication code", and "verify" are taken from [RFC4949].

 Since exchanges in this specification are described as RESTful
 protocol interactions, HTTP [RFC7231] offers useful terminology.

 Terminology for entities in the architecture is defined in OAuth 2.0
 [RFC6749] such as client (C), resource server (RS), and authorization
 server (AS).

 Note that the term "endpoint" is used here following its OAuth
 definition, which is to denote resources such as token and
 introspection at the AS and authz-info at the RS (see Section 5.10.1
 for a definition of the authz-info endpoint). The CoAP [RFC7252]

Seitz, et al. Expires May 21, 2021 [Page 5]

Internet-Draft ACE-OAuth November 2020

 definition, which is "An entity participating in the CoAP protocol"
 is not used in this specification.

 The specifications in this document is called the "framework" or "ACE
 framework". When referring to "profiles of this framework" it refers
 to additional specifications that define the use of this
 specification with concrete transport and communication security
 protocols (e.g., CoAP over DTLS).

 We use the term "Access Information" for parameters other than the
 access token provided to the client by the AS to enable it to access
 the RS (e.g. public key of the RS, profile supported by RS).

 We use the term "Authorization Information" to denote all
 information, including the claims of relevant access tokens, that an
 RS uses to determine whether an access request should be granted.

3. Overview

 This specification defines the ACE framework for authorization in the
 Internet of Things environment. It consists of a set of building
 blocks.

 The basic block is the OAuth 2.0 [RFC6749] framework, which enjoys
 widespread deployment. Many IoT devices can support OAuth 2.0
 without any additional extensions, but for certain constrained
 settings additional profiling is needed.

 Another building block is the lightweight web transfer protocol CoAP
 [RFC7252], for those communication environments where HTTP is not
 appropriate. CoAP typically runs on top of UDP, which further
 reduces overhead and message exchanges. While this specification
 defines extensions for the use of OAuth over CoAP, other underlying
 protocols are not prohibited from being supported in the future, such
 as HTTP/2 [RFC7540], Message Queuing Telemetry Transport (MQTT)
 [MQTT5.0], Bluetooth Low Energy (BLE) [BLE] and QUIC
 [I-D.ietf-quic-transport]. Note that this document specifies
 protocol exchanges in terms of RESTful verbs such as GET and POST.
 Future profiles using protocols that do not support these verbs MUST
 specify how the corresponding protocol messages are transmitted
 instead.

 A third building block is the Concise Binary Object Representation
 (CBOR) [RFC7049], for encodings where JSON [RFC8259] is not
 sufficiently compact. CBOR is a binary encoding designed for small
 code and message size, which may be used for encoding of self
 contained tokens, and also for encoding payloads transferred in
 protocol messages.

Seitz, et al. Expires May 21, 2021 [Page 6]

Internet-Draft ACE-OAuth November 2020

 A fourth building block is CBOR Object Signing and Encryption (COSE)
 [RFC8152], which enables object-level layer security as an
 alternative or complement to transport layer security (DTLS [RFC6347]
 or TLS [RFC8446]). COSE is used to secure self-contained tokens such
 as proof-of-possession (PoP) tokens, which are an extension to the
 OAuth bearer tokens. The default token format is defined in CBOR web
 token (CWT) [RFC8392]. Application layer security for CoAP using
 COSE can be provided with OSCORE [RFC8613].

 With the building blocks listed above, solutions satisfying various
 IoT device and network constraints are possible. A list of
 constraints is described in detail in [RFC7228] and a description of
 how the building blocks mentioned above relate to the various
 constraints can be found in Appendix A.

 Luckily, not every IoT device suffers from all constraints. The ACE
 framework nevertheless takes all these aspects into account and
 allows several different deployment variants to co-exist, rather than
 mandating a one-size-fits-all solution. It is important to cover the
 wide range of possible interworking use cases and the different
 requirements from a security point of view. Once IoT deployments
 mature, popular deployment variants will be documented in the form of
 ACE profiles.

3.1. OAuth 2.0

 The OAuth 2.0 authorization framework enables a client to obtain
 scoped access to a resource with the permission of a resource owner.
 Authorization information, or references to it, is passed between the
 nodes using access tokens. These access tokens are issued to clients
 by an authorization server with the approval of the resource owner.
 The client uses the access token to access the protected resources
 hosted by the resource server.

 A number of OAuth 2.0 terms are used within this specification:

 The token and introspection Endpoints:
 The AS hosts the token endpoint that allows a client to request
 access tokens. The client makes a POST request to the token
 endpoint on the AS and receives the access token in the response
 (if the request was successful).
 In some deployments, a token introspection endpoint is provided by
 the AS, which can be used by the RS if it needs to request
 additional information regarding a received access token. The RS
 makes a POST request to the introspection endpoint on the AS and
 receives information about the access token in the response. (See
 "Introspection" below.)

Seitz, et al. Expires May 21, 2021 [Page 7]

Internet-Draft ACE-OAuth November 2020

 Access Tokens:
 Access tokens are credentials needed to access protected
 resources. An access token is a data structure representing
 authorization permissions issued by the AS to the client. Access
 tokens are generated by the AS and consumed by the RS. The access
 token content is opaque to the client.

 Access tokens can have different formats, and various methods of
 utilization e.g., cryptographic properties) based on the security
 requirements of the given deployment.

 Refresh Tokens:
 Refresh tokens are credentials used to obtain access tokens.
 Refresh tokens are issued to the client by the authorization
 server and are used to obtain a new access token when the current
 access token becomes invalid or expires, or to obtain additional
 access tokens with identical or narrower scope (such access tokens
 may have a shorter lifetime and fewer permissions than authorized
 by the resource owner). Issuing a refresh token is optional at
 the discretion of the authorization server. If the authorization
 server issues a refresh token, it is included when issuing an
 access token (i.e., step (B) in Figure 1).

 A refresh token in OAuth 2.0 is a string representing the
 authorization granted to the client by the resource owner. The
 string is usually opaque to the client. The token denotes an
 identifier used to retrieve the authorization information. Unlike
 access tokens, refresh tokens are intended for use only with
 authorization servers and are never sent to resource servers. In
 this framework, refresh tokens are encoded in binary instead of
 strings, if used.

 Proof of Possession Tokens:
 A token may be bound to a cryptographic key, which is then used to
 bind the token to a request authorized by the token. Such tokens
 are called proof-of-possession tokens (or PoP tokens).

 The proof-of-possession (PoP) security concept used here assumes
 that the AS acts as a trusted third party that binds keys to
 tokens. In the case of access tokens, these so called PoP keys
 are then used by the client to demonstrate the possession of the
 secret to the RS when accessing the resource. The RS, when
 receiving an access token, needs to verify that the key used by
 the client matches the one bound to the access token. When this

Seitz, et al. Expires May 21, 2021 [Page 8]

Internet-Draft ACE-OAuth November 2020

 specification uses the term "access token" it is assumed to be a
 PoP access token token unless specifically stated otherwise.

 The key bound to the token (the PoP key) may use either symmetric
 or asymmetric cryptography. The appropriate choice of the kind of
 cryptography depends on the constraints of the IoT devices as well
 as on the security requirements of the use case.

 Symmetric PoP key:
 The AS generates a random symmetric PoP key. The key is either
 stored to be returned on introspection calls or encrypted and
 included in the token. The PoP key is also encrypted for the
 token recipient and sent to the recipient together with the
 token.

 Asymmetric PoP key:
 An asymmetric key pair is generated on the token’s recipient
 and the public key is sent to the AS (if it does not already
 have knowledge of the recipient’s public key). Information
 about the public key, which is the PoP key in this case, is
 either stored to be returned on introspection calls or included
 inside the token and sent back to the requesting party. The
 consumer of the token can identify the public key from the
 information in the token, which allows the recipient of the
 token to use the corresponding private key for the proof of
 possession.

 The token is either a simple reference, or a structured
 information object (e.g., CWT [RFC8392]) protected by a
 cryptographic wrapper (e.g., COSE [RFC8152]). The choice of PoP
 key does not necessarily imply a specific credential type for the
 integrity protection of the token.

 Scopes and Permissions:
 In OAuth 2.0, the client specifies the type of permissions it is
 seeking to obtain (via the scope parameter) in the access token
 request. In turn, the AS may use the scope response parameter to
 inform the client of the scope of the access token issued. As the
 client could be a constrained device as well, this specification
 defines the use of CBOR encoding, see Section 5, for such requests
 and responses.

Seitz, et al. Expires May 21, 2021 [Page 9]

Internet-Draft ACE-OAuth November 2020

 The values of the scope parameter in OAuth 2.0 are expressed as a
 list of space-delimited, case-sensitive strings, with a semantic
 that is well-known to the AS and the RS. More details about the
 concept of scopes is found under Section 3.3 in [RFC6749].

 Claims:
 Information carried in the access token or returned from
 introspection, called claims, is in the form of name-value pairs.
 An access token may, for example, include a claim identifying the
 AS that issued the token (via the "iss" claim) and what audience
 the access token is intended for (via the "aud" claim). The
 audience of an access token can be a specific resource or one or
 many resource servers. The resource owner policies influence what
 claims are put into the access token by the authorization server.

 While the structure and encoding of the access token varies
 throughout deployments, a standardized format has been defined
 with the JSON Web Token (JWT) [RFC7519] where claims are encoded
 as a JSON object. In [RFC8392], an equivalent format using CBOR
 encoding (CWT) has been defined.

 Introspection:
 Introspection is a method for a resource server to query the
 authorization server for the active state and content of a
 received access token. This is particularly useful in those cases
 where the authorization decisions are very dynamic and/or where
 the received access token itself is an opaque reference rather
 than a self-contained token. More information about introspection
 in OAuth 2.0 can be found in [RFC7662].

3.2. CoAP

 CoAP is an application layer protocol similar to HTTP, but
 specifically designed for constrained environments. CoAP typically
 uses datagram-oriented transport, such as UDP, where reordering and
 loss of packets can occur. A security solution needs to take the
 latter aspects into account.

 While HTTP uses headers and query strings to convey additional
 information about a request, CoAP encodes such information into
 header parameters called ’options’.

 CoAP supports application-layer fragmentation of the CoAP payloads
 through blockwise transfers [RFC7959]. However, blockwise transfer

Seitz, et al. Expires May 21, 2021 [Page 10]

Internet-Draft ACE-OAuth November 2020

 does not increase the size limits of CoAP options, therefore data
 encoded in options has to be kept small.

 Transport layer security for CoAP can be provided by DTLS or TLS
 [RFC6347][RFC8446] [I-D.ietf-tls-dtls13]. CoAP defines a number of
 proxy operations that require transport layer security to be
 terminated at the proxy. One approach for protecting CoAP
 communication end-to-end through proxies, and also to support
 security for CoAP over a different transport in a uniform way, is to
 provide security at the application layer using an object-based
 security mechanism such as COSE [RFC8152].

 One application of COSE is OSCORE [RFC8613], which provides end-to-
 end confidentiality, integrity and replay protection, and a secure
 binding between CoAP request and response messages. In OSCORE, the
 CoAP messages are wrapped in COSE objects and sent using CoAP.

 This framework RECOMMENDS the use of CoAP as replacement for HTTP for
 use in constrained environments. For communication security this
 framework does not make an explicit protocol recommendation, since
 the choice depends on the requirements of the specific application.
 DTLS [RFC6347], [I-D.ietf-tls-dtls13] and OSCORE [RFC8613] are
 mentioned as examples, other protocols fulfilling the requirements
 from Section 6.5 are also applicable.

4. Protocol Interactions

 The ACE framework is based on the OAuth 2.0 protocol interactions
 using the token endpoint and optionally the introspection endpoint.
 A client obtains an access token, and optionally a refresh token,
 from an AS using the token endpoint and subsequently presents the
 access token to an RS to gain access to a protected resource. In
 most deployments the RS can process the access token locally, however
 in some cases the RS may present it to the AS via the introspection
 endpoint to get fresh information. These interactions are shown in
 Figure 1. An overview of various OAuth concepts is provided in
 Section 3.1.

 The OAuth 2.0 framework defines a number of "protocol flows" via
 grant types, which have been extended further with extensions to
 OAuth 2.0 (such as [RFC7521] and [RFC8628]). What grant types works
 best depends on the usage scenario and [RFC7744] describes many
 different IoT use cases but there are two preferred grant types,
 namely the Authorization Code Grant (described in Section 4.1 of
 [RFC7521]) and the Client Credentials Grant (described in Section 4.4
 of [RFC7521]). The Authorization Code Grant is a good fit for use
 with apps running on smart phones and tablets that request access to
 IoT devices, a common scenario in the smart home environment, where

Seitz, et al. Expires May 21, 2021 [Page 11]

Internet-Draft ACE-OAuth November 2020

 users need to go through an authentication and authorization phase
 (at least during the initial setup phase). The native apps
 guidelines described in [RFC8252] are applicable to this use case.
 The Client Credential Grant is a good fit for use with IoT devices
 where the OAuth client itself is constrained. In such a case, the
 resource owner has pre-arranged access rights for the client with the
 authorization server, which is often accomplished using a
 commissioning tool.

 The consent of the resource owner, for giving a client access to a
 protected resource, can be provided dynamically as in the traditional
 OAuth flows, or it could be pre-configured by the resource owner as
 authorization policies at the AS, which the AS evaluates when a token
 request arrives. The resource owner and the requesting party (i.e.,
 client owner) are not shown in Figure 1.

 This framework supports a wide variety of communication security
 mechanisms between the ACE entities, such as client, AS, and RS. It
 is assumed that the client has been registered (also called enrolled
 or onboarded) to an AS using a mechanism defined outside the scope of
 this document. In practice, various techniques for onboarding have
 been used, such as factory-based provisioning or the use of
 commissioning tools. Regardless of the onboarding technique, this
 provisioning procedure implies that the client and the AS exchange
 credentials and configuration parameters. These credentials are used
 to mutually authenticate each other and to protect messages exchanged
 between the client and the AS.

 It is also assumed that the RS has been registered with the AS,
 potentially in a similar way as the client has been registered with
 the AS. Established keying material between the AS and the RS allows
 the AS to apply cryptographic protection to the access token to
 ensure that its content cannot be modified, and if needed, that the
 content is confidentiality protected.

 The keying material necessary for establishing communication security
 between C and RS is dynamically established as part of the protocol
 described in this document.

 At the start of the protocol, there is an optional discovery step
 where the client discovers the resource server and the resources this
 server hosts. In this step, the client might also determine what
 permissions are needed to access the protected resource. A generic
 procedure is described in Section 5.1; profiles MAY define other
 procedures for discovery.

 In Bluetooth Low Energy, for example, advertisements are broadcasted
 by a peripheral, including information about the primary services.

Seitz, et al. Expires May 21, 2021 [Page 12]

Internet-Draft ACE-OAuth November 2020

 In CoAP, as a second example, a client can make a request to "/.well-
 known/core" to obtain information about available resources, which
 are returned in a standardized format as described in [RFC6690].

 +--------+ +---------------+
	---(A)-- Token Request ------->	
		Authorization
	<--(B)-- Access Token ---------	Server
	+ Access Information	
	+ Refresh Token (optional) +---------------+	
	^	
	Introspection Request (D)	
Client	(optional)	
	Response	
	(optional)	v
	+--------------+	
	---(C)-- Token + Request ----->	
		Resource
	<--(F)-- Protected Resource ---	Server
 +--------+ +--------------+

 Figure 1: Basic Protocol Flow.

 Requesting an Access Token (A):
 The client makes an access token request to the token endpoint at
 the AS. This framework assumes the use of PoP access tokens (see
 Section 3.1 for a short description) wherein the AS binds a key to
 an access token. The client may include permissions it seeks to
 obtain, and information about the credentials it wants to use
 (e.g., symmetric/asymmetric cryptography or a reference to a
 specific credential).

 Access Token Response (B):
 If the AS successfully processes the request from the client, it
 returns an access token and optionally a refresh token (note that
 only certain grant types support refresh tokens). It can also
 return additional parameters, referred to as "Access Information".
 In addition to the response parameters defined by OAuth 2.0 and
 the PoP access token extension, this framework defines parameters
 that can be used to inform the client about capabilities of the
 RS, e.g. the profiles the RS supports. More information about
 these parameters can be found in Section 5.8.4.

Seitz, et al. Expires May 21, 2021 [Page 13]

Internet-Draft ACE-OAuth November 2020

 Resource Request (C):
 The client interacts with the RS to request access to the
 protected resource and provides the access token. The protocol to
 use between the client and the RS is not restricted to CoAP.
 HTTP, HTTP/2, QUIC, MQTT, Bluetooth Low Energy, etc., are also
 viable candidates.

 Depending on the device limitations and the selected protocol,
 this exchange may be split up into two parts:

 (1) the client sends the access token containing, or
 referencing, the authorization information to the RS, that may
 be used for subsequent resource requests by the client, and

 (2) the client makes the resource access request, using the
 communication security protocol and other Access Information
 obtained from the AS.

 The Client and the RS mutually authenticate using the security
 protocol specified in the profile (see step B) and the keys
 obtained in the access token or the Access Information. The RS
 verifies that the token is integrity protected and originated by
 the AS. It then compares the claims contained in the access token
 with the resource request. If the RS is online, validation can be
 handed over to the AS using token introspection (see messages D
 and E) over HTTP or CoAP.

 Token Introspection Request (D):
 A resource server may be configured to introspect the access token
 by including it in a request to the introspection endpoint at that
 AS. Token introspection over CoAP is defined in Section 5.9 and
 for HTTP in [RFC7662].

 Note that token introspection is an optional step and can be
 omitted if the token is self-contained and the resource server is
 prepared to perform the token validation on its own.

 Token Introspection Response (E):
 The AS validates the token and returns the most recent parameters,
 such as scope, audience, validity etc. associated with it back to
 the RS. The RS then uses the received parameters to process the
 request to either accept or to deny it.

Seitz, et al. Expires May 21, 2021 [Page 14]

Internet-Draft ACE-OAuth November 2020

 Protected Resource (F):
 If the request from the client is authorized, the RS fulfills the
 request and returns a response with the appropriate response code.
 The RS uses the dynamically established keys to protect the
 response, according to the communication security protocol used.

5. Framework

 The following sections detail the profiling and extensions of OAuth
 2.0 for constrained environments, which constitutes the ACE
 framework.

 Credential Provisioning
 For IoT, it cannot be assumed that the client and RS are part of a
 common key infrastructure, so the AS provisions credentials or
 associated information to allow mutual authentication between
 client and RS. The resulting security association between client
 and RS may then also be used to bind these credentials to the
 access tokens the client uses.

 Proof-of-Possession
 The ACE framework, by default, implements proof-of-possession for
 access tokens, i.e., that the token holder can prove being a
 holder of the key bound to the token. The binding is provided by
 the "cnf" claim [RFC8747] indicating what key is used for proof-
 of-possession. If a client needs to submit a new access token,
 e.g., to obtain additional access rights, they can request that
 the AS binds this token to the same key as the previous one.

 ACE Profiles
 The client or RS may be limited in the encodings or protocols it
 supports. To support a variety of different deployment settings,
 specific interactions between client and RS are defined in an ACE
 profile. In ACE framework the AS is expected to manage the
 matching of compatible profile choices between a client and an RS.
 The AS informs the client of the selected profile using the
 "ace_profile" parameter in the token response.

 OAuth 2.0 requires the use of TLS both to protect the communication
 between AS and client when requesting an access token; between client
 and RS when accessing a resource and between AS and RS if
 introspection is used. In constrained settings TLS is not always
 feasible, or desirable. Nevertheless it is REQUIRED that the
 communications named above are encrypted, integrity protected and

Seitz, et al. Expires May 21, 2021 [Page 15]

Internet-Draft ACE-OAuth November 2020

 protected against message replay. It is also REQUIRED that the
 communicating endpoints perform mutual authentication. Furthermore
 it MUST be assured that responses are bound to the requests in the
 sense that the receiver of a response can be certain that the
 response actually belongs to a certain request. Note that setting up
 such a secure communication may require some unprotected messages to
 be exchanged first (e.g. sending the token from the client to the
 RS).

 Profiles MUST specify a communication security protocol that provides
 the features required above.

 In OAuth 2.0 the communication with the Token and the Introspection
 endpoints at the AS is assumed to be via HTTP and may use Uri-query
 parameters. When profiles of this framework use CoAP instead, it is
 REQUIRED to use of the following alternative instead of Uri-query
 parameters: The sender (client or RS) encodes the parameters of its
 request as a CBOR map and submits that map as the payload of the POST
 request.

 Profiles that use CBOR encoding of protocol message parameters at the
 outermost encoding layer MUST use the media format ’application/
 ace+cbor’. If CoAP is used for communication, the Content-Format
 MUST be abbreviated with the ID: 19 (see Section 8.16).

 The OAuth 2.0 AS uses a JSON structure in the payload of its
 responses both to client and RS. If CoAP is used, it is REQUIRED to
 use CBOR [RFC7049] instead of JSON. Depending on the profile, the
 CBOR payload MAY be enclosed in a non-CBOR cryptographic wrapper.

5.1. Discovering Authorization Servers

 C must discover the AS in charge of RS to determine where to request
 the access token. To do so, C must 1. find out the AS URI to which
 the token request message must be sent and 2. MUST validate that the
 AS with this URI is authorized to provide access tokens for this RS.

 In order to determine the AS URI, C MAY send an initial Unauthorized
 Resource Request message to RS. RS then denies the request and sends
 the address of its AS back to C (see Section 5.2). How C validates
 the AS authorization is not in scope for this document. C may, e.g.,
 ask it’s owner if this AS is authorized for this RS. C may also use
 a mechanism that addresses both problems at once.

Seitz, et al. Expires May 21, 2021 [Page 16]

Internet-Draft ACE-OAuth November 2020

5.2. Unauthorized Resource Request Message

 An Unauthorized Resource Request message is a request for any
 resource hosted by RS for which the client does not have
 authorization granted. RSes MUST treat any request for a protected
 resource as an Unauthorized Resource Request message when any of the
 following hold:

 o The request has been received on an unprotected channel.

 o The RS has no valid access token for the sender of the request
 regarding the requested action on that resource.

 o The RS has a valid access token for the sender of the request, but
 that token does not authorize the requested action on the
 requested resource.

 Note: These conditions ensure that the RS can handle requests
 autonomously once access was granted and a secure channel has been
 established between C and RS. The authz-info endpoint, as part of
 the process for authorizing to protected resources, is not itself a
 protected resource and MUST NOT be protected as specified above (cf.
 Section 5.10.1).

 Unauthorized Resource Request messages MUST be denied with an
 "unauthorized_client" error response. In this response, the Resource
 Server SHOULD provide proper AS Request Creation Hints to enable the
 Client to request an access token from RS’s AS as described in
 Section 5.3.

 The handling of all client requests (including unauthorized ones) by
 the RS is described in Section 5.10.2.

5.3. AS Request Creation Hints

 The AS Request Creation Hints message is sent by an RS as a response
 to an Unauthorized Resource Request message (see Section 5.2) to help
 the sender of the Unauthorized Resource Request message acquire a
 valid access token. The AS Request Creation Hints message is a CBOR
 map, with an OPTIONAL element "AS" specifying an absolute URI (see
 Section 4.3 of [RFC3986]) that identifies the appropriate AS for the
 RS.

 The message can also contain the following OPTIONAL parameters:

 o A "audience" element containing a suggested audience that the
 client should request at the AS.

Seitz, et al. Expires May 21, 2021 [Page 17]

Internet-Draft ACE-OAuth November 2020

 o A "kid" element containing the key identifier of a key used in an
 existing security association between the client and the RS. The
 RS expects the client to request an access token bound to this
 key, in order to avoid having to re-establish the security
 association.

 o A "cnonce" element containing a client-nonce. See Section 5.3.1.

 o A "scope" element containing the suggested scope that the client
 should request towards the AS.

 Figure 2 summarizes the parameters that may be part of the AS Request
 Creation Hints.

 /-----------+----------+---------------------\
 | Name | CBOR Key | Value Type |
 |-----------+----------+---------------------|
 | AS | 1 | text string |
 | kid | 2 | byte string |
 | audience | 5 | text string |
 | scope | 9 | text or byte string |
 | cnonce | 39 | byte string |
 \-----------+----------+---------------------/

 Figure 2: AS Request Creation Hints

 Note that the schema part of the AS parameter may need to be adapted
 to the security protocol that is used between the client and the AS.
 Thus the example AS value "coap://as.example.com/token" might need to
 be transformed to "coaps://as.example.com/token". It is assumed that
 the client can determine the correct schema part on its own depending
 on the way it communicates with the AS.

 Figure 3 shows an example for an AS Request Creation Hints message
 payload using CBOR [RFC7049] diagnostic notation, using the parameter
 names instead of the CBOR keys for better human readability.

 4.01 Unauthorized
 Content-Format: application/ace+cbor
 Payload :
 {
 "AS" : "coaps://as.example.com/token",
 "audience" : "coaps://rs.example.com"
 "scope" : "rTempC",
 "cnonce" : h’e0a156bb3f’
 }

 Figure 3: AS Request Creation Hints payload example

Seitz, et al. Expires May 21, 2021 [Page 18]

Internet-Draft ACE-OAuth November 2020

 In the example above, the response parameter "AS" points the receiver
 of this message to the URI "coaps://as.example.com/token" to request
 access tokens. The RS sending this response (i.e., RS) uses an
 internal clock that is only loosely synchronized with the clock of
 the AS. Therefore it can not reliably verify the expiration time of
 access tokens it receives. To ensure a certain level of access token
 freshness nevetheless, the RS has included a "cnonce" parameter (see
 Section 5.3.1) in the response.

 Figure 4 illustrates the mandatory to use binary encoding of the
 message payload shown in Figure 3.

 a4 # map(4)
 01 # unsigned(1) (=AS)
 78 1c # text(28)
 636f6170733a2f2f61732e657861
 6d706c652e636f6d2f746f6b656e # "coaps://as.example.com/token"
 05 # unsigned(5) (=audience)
 76 # text(22)
 636f6170733a2f2f72732e657861
 6d706c652e636f6d # "coaps://rs.example.com"
 09 # unsigned(9) (=scope)
 66 # text(6)
 7254656d7043 # "rTempC"
 18 27 # unsigned(39) (=cnonce)
 45 # bytes(5)
 e0a156bb3f #

 Figure 4: AS Request Creation Hints example encoded in CBOR

5.3.1. The Client-Nonce Parameter

 If the RS does not synchronize its clock with the AS, it could be
 tricked into accepting old access tokens, that are either expired or
 have been compromised. In order to ensure some level of token
 freshness in that case, the RS can use the "cnonce" (client-nonce)
 parameter. The processing requirements for this parameter are as
 follows:

 o An RS sending a "cnonce" parameter in an AS Request Creation Hints
 message MUST store information to validate that a given cnonce is
 fresh. How this is implemented internally is out of scope for
 this specification. Expiration of client-nonces should be based
 roughly on the time it would take a client to obtain an access
 token after receiving the AS Request Creation Hints message, with
 some allowance for unexpected delays.

Seitz, et al. Expires May 21, 2021 [Page 19]

Internet-Draft ACE-OAuth November 2020

 o A client receiving a "cnonce" parameter in an AS Request Creation
 Hints message MUST include this in the parameters when requesting
 an access token at the AS, using the "cnonce" parameter from
 Section 5.8.4.4.

 o If an AS grants an access token request containing a "cnonce"
 parameter, it MUST include this value in the access token, using
 the "cnonce" claim specified in Section 5.10.

 o An RS that is using the client-nonce mechanism and that receives
 an access token MUST verify that this token contains a cnonce
 claim, with a client-nonce value that is fresh according to the
 information stored at the first step above. If the cnonce claim
 is not present or if the cnonce claim value is not fresh, the RS
 MUST discard the access token. If this was an interaction with
 the authz-info endpoint the RS MUST also respond with an error
 message using a response code equivalent to the CoAP code 4.01
 (Unauthorized).

5.4. Authorization Grants

 To request an access token, the client obtains authorization from the
 resource owner or uses its client credentials as a grant. The
 authorization is expressed in the form of an authorization grant.

 The OAuth framework [RFC6749] defines four grant types. The grant
 types can be split up into two groups, those granted on behalf of the
 resource owner (password, authorization code, implicit) and those for
 the client (client credentials). Further grant types have been added
 later, such as [RFC7521] defining an assertion-based authorization
 grant.

 The grant type is selected depending on the use case. In cases where
 the client acts on behalf of the resource owner, the authorization
 code grant is recommended. If the client acts on behalf of the
 resource owner, but does not have any display or has very limited
 interaction possibilities, it is recommended to use the device code
 grant defined in [RFC8628]. In cases where the client acts
 autonomously the client credentials grant is recommended.

 For details on the different grant types, see section 1.3 of
 [RFC6749]. The OAuth 2.0 framework provides an extension mechanism
 for defining additional grant types, so profiles of this framework
 MAY define additional grant types, if needed.

Seitz, et al. Expires May 21, 2021 [Page 20]

Internet-Draft ACE-OAuth November 2020

5.5. Client Credentials

 Authentication of the client is mandatory independent of the grant
 type when requesting an access token from the token endpoint. In the
 case of the client credentials grant type, the authentication and
 grant coincide.

 Client registration and provisioning of client credentials to the
 client is out of scope for this specification.

 The OAuth framework defines one client credential type in section
 2.3.1 of [RFC6749]: client id and client secret.
 [I-D.erdtman-ace-rpcc] adds raw-public-key and pre-shared-key to the
 client credentials types. Profiles of this framework MAY extend with
 an additional client credentials type using client certificates.

5.6. AS Authentication

 The client credential grant does not, by default, authenticate the AS
 that the client connects to. In classic OAuth, the AS is
 authenticated with a TLS server certificate.

 Profiles of this framework MUST specify how clients authenticate the
 AS and how communication security is implemented. By default, server
 side TLS certificates, as defined by OAuth 2.0, are required.

5.7. The Authorization Endpoint

 The OAuth 2.0 authorization endpoint is used to interact with the
 resource owner and obtain an authorization grant, in certain grant
 flows. The primary use case for the ACE-OAuth framework is for
 machine-to-machine interactions that do not involve the resource
 owner in the authorization flow; therefore, this endpoint is out of
 scope here. Future profiles may define constrained adaptation
 mechanisms for this endpoint as well. Non-constrained clients
 interacting with constrained resource servers can use the
 specification in section 3.1 of [RFC6749] and the attack
 countermeasures suggested in section 4.2 of [RFC6819].

5.8. The Token Endpoint

 In standard OAuth 2.0, the AS provides the token endpoint for
 submitting access token requests. This framework extends the
 functionality of the token endpoint, giving the AS the possibility to
 help the client and RS to establish shared keys or to exchange their
 public keys. Furthermore, this framework defines encodings using
 CBOR, as a substitute for JSON.

Seitz, et al. Expires May 21, 2021 [Page 21]

Internet-Draft ACE-OAuth November 2020

 The endpoint may, however, be exposed over HTTPS as in classical
 OAuth or even other transports. A profile MUST define the details of
 the mapping between the fields described below, and these transports.
 If HTTPS is used, JSON or CBOR payloads may be supported. If JSON
 payloads are used, the semantics of Section 4 of the OAuth 2.0
 specification MUST be followed (with additions as described below).
 If CBOR payload is supported, the semantics described below MUST be
 followed.

 For the AS to be able to issue a token, the client MUST be
 authenticated and present a valid grant for the scopes requested.
 Profiles of this framework MUST specify how the AS authenticates the
 client and how the communication between client and AS is protected,
 fulfilling the requirements specified in Section 5.

 The default name of this endpoint in an url-path is ’/token’, however
 implementations are not required to use this name and can define
 their own instead.

 The figures of this section use CBOR diagnostic notation without the
 integer abbreviations for the parameters or their values for
 illustrative purposes. Note that implementations MUST use the
 integer abbreviations and the binary CBOR encoding, if the CBOR
 encoding is used.

5.8.1. Client-to-AS Request

 The client sends a POST request to the token endpoint at the AS. The
 profile MUST specify how the communication is protected. The content
 of the request consists of the parameters specified in the relevant
 subsection of section 4 of the OAuth 2.0 specification [RFC6749],
 depending on the grant type, with the following exceptions and
 additions:

 o The parameter "grant_type" is OPTIONAL in the context of this
 framework (as opposed to REQUIRED in RFC6749). If that parameter
 is missing, the default value "client_credentials" is implied.

 o The "audience" parameter from [RFC8693] is OPTIONAL to request an
 access token bound to a specific audience.

 o The "cnonce" parameter defined in Section 5.8.4.4 is REQUIRED if
 the RS provided a client-nonce in the "AS Request Creation Hints"
 message Section 5.3

 o The "scope" parameter MAY be encoded as a byte string instead of
 the string encoding specified in section 3.3 of [RFC6749], in
 order allow compact encoding of complex scopes. The syntax of

Seitz, et al. Expires May 21, 2021 [Page 22]

Internet-Draft ACE-OAuth November 2020

 such a binary encoding is explicitly not specified here and left
 to profiles or applications, specifically note that a binary
 encoded scope does not necessarily use the space character ’0x20’
 to delimit scope-tokens.

 o The client can send an empty (null value) "ace_profile" parameter
 to indicate that it wants the AS to include the "ace_profile"
 parameter in the response. See Section 5.8.4.3.

 o A client MUST be able to use the parameters from
 [I-D.ietf-ace-oauth-params] in an access token request to the
 token endpoint and the AS MUST be able to process these additional
 parameters.

 The default behavior, is that the AS generates a symmetric proof-of-
 possession key for the client. In order to use an asymmetric key
 pair or to re-use a key previously established with the RS, the
 client is supposed to use the "req_cnf" parameter from
 [I-D.ietf-ace-oauth-params].

 If CBOR is used then these parameters MUST be provided as a CBOR map.

 When HTTP is used as a transport then the client makes a request to
 the token endpoint by sending the parameters using the "application/
 x-www-form-urlencoded" format with a character encoding of UTF-8 in
 the HTTP request entity-body, as defined in section 3.2 of [RFC6749].

 The following examples illustrate different types of requests for
 proof-of-possession tokens.

 Figure 5 shows a request for a token with a symmetric proof-of-
 possession key. The content is displayed in CBOR diagnostic
 notation, without abbreviations for better readability.

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "token"
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "client_id" : "myclient",
 "audience" : "tempSensor4711"
 }

 Figure 5: Example request for an access token bound to a symmetric
 key.

Seitz, et al. Expires May 21, 2021 [Page 23]

Internet-Draft ACE-OAuth November 2020

 Figure 6 shows a request for a token with an asymmetric proof-of-
 possession key. Note that in this example OSCORE [RFC8613] is used
 to provide object-security, therefore the Content-Format is
 "application/oscore" wrapping the "application/ace+cbor" type
 content. The OSCORE option has a decoded interpretation appended in
 parentheses for the reader’s convenience. Also note that in this
 example the audience is implicitly known by both client and AS.
 Furthermore note that this example uses the "req_cnf" parameter from
 [I-D.ietf-ace-oauth-params].

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "token"
 OSCORE: 0x09, 0x05, 0x44, 0x6C
 (h=0, k=1, n=001, partialIV= 0x05, kid=[0x44, 0x6C])
 Content-Format: "application/oscore"
 Payload:
 0x44025d1 ... (full payload omitted for brevity) ... 68b3825e

 Decrypted payload:
 {
 "client_id" : "myclient",
 "req_cnf" : {
 "COSE_Key" : {
 "kty" : "EC",
 "kid" : h’11’,
 "crv" : "P-256",
 "x" : b64’usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8’,
 "y" : b64’IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4’
 }
 }
 }

 Figure 6: Example token request bound to an asymmetric key.

 Figure 7 shows a request for a token where a previously communicated
 proof-of-possession key is only referenced using the "req_cnf"
 parameter from [I-D.ietf-ace-oauth-params].

Seitz, et al. Expires May 21, 2021 [Page 24]

Internet-Draft ACE-OAuth November 2020

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "token"
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "client_id" : "myclient",
 "audience" : "valve424",
 "scope" : "read",
 "req_cnf" : {
 "kid" : b64’6kg0dXJM13U’
 }
 }W

 Figure 7: Example request for an access token bound to a key
 reference.

 Refresh tokens are typically not stored as securely as proof-of-
 possession keys in requesting clients. Proof-of-possession based
 refresh token requests MUST NOT request different proof-of-possession
 keys or different audiences in token requests. Refresh token
 requests can only use to request access tokens bound to the same
 proof-of-possession key and the same audience as access tokens issued
 in the initial token request.

5.8.2. AS-to-Client Response

 If the access token request has been successfully verified by the AS
 and the client is authorized to obtain an access token corresponding
 to its access token request, the AS sends a response with the
 response code equivalent to the CoAP response code 2.01 (Created).
 If client request was invalid, or not authorized, the AS returns an
 error response as described in Section 5.8.3.

 Note that the AS decides which token type and profile to use when
 issuing a successful response. It is assumed that the AS has prior
 knowledge of the capabilities of the client and the RS (see
 Appendix D). This prior knowledge may, for example, be set by the
 use of a dynamic client registration protocol exchange [RFC7591]. If
 the client has requested a specific proof-of-possession key using the
 "req_cnf" parameter from [I-D.ietf-ace-oauth-params], this may also
 influence which profile the AS selects, as it needs to support the
 use of the key type requested the client.

 The content of the successful reply is the Access Information. When
 using CBOR payloads, the content MUST be encoded as a CBOR map,
 containing parameters as specified in Section 5.1 of [RFC6749], with
 the following additions and changes:

Seitz, et al. Expires May 21, 2021 [Page 25]

Internet-Draft ACE-OAuth November 2020

 ace_profile:
 OPTIONAL unless the request included an empty ace_profile
 parameter in which case it is MANDATORY. This indicates the
 profile that the client MUST use towards the RS. See
 Section 5.8.4.3 for the formatting of this parameter. If this
 parameter is absent, the AS assumes that the client implicitly
 knows which profile to use towards the RS.

 token_type:
 This parameter is OPTIONAL, as opposed to ’required’ in [RFC6749].
 By default implementations of this framework SHOULD assume that
 the token_type is "PoP". If a specific use case requires another
 token_type (e.g., "Bearer") to be used then this parameter is
 REQUIRED.

 Furthermore [I-D.ietf-ace-oauth-params] defines additional parameters
 that the AS MUST be able to use when responding to a request to the
 token endpoint.

 Figure 8 summarizes the parameters that can currently be part of the
 Access Information. Future extensions may define additional
 parameters.

 /-------------------+-------------------------------\
 | Parameter name | Specified in |
 |-------------------+-------------------------------|
 | access_token | RFC 6749 |
 | token_type | RFC 6749 |
 | expires_in | RFC 6749 |
 | refresh_token | RFC 6749 |
 | scope | RFC 6749 |
 | state | RFC 6749 |
 | error | RFC 6749 |
 | error_description | RFC 6749 |
 | error_uri | RFC 6749 |
 | ace_profile | [this document] |
 | cnf | [I-D.ietf-ace-oauth-params] |
 | rs_cnf | [I-D.ietf-ace-oauth-params] |
 \-------------------+-------------------------------/

 Figure 8: Access Information parameters

 Figure 9 shows a response containing a token and a "cnf" parameter
 with a symmetric proof-of-possession key, which is defined in
 [I-D.ietf-ace-oauth-params]. Note that the key identifier ’kid’ is
 only used to simplify indexing and retrieving the key, and no
 assumptions should be made that it is unique in the domains of either
 the client or the RS.

Seitz, et al. Expires May 21, 2021 [Page 26]

Internet-Draft ACE-OAuth November 2020

 Header: Created (Code=2.01)
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "access_token" : b64’SlAV32hkKG ...
 (remainder of CWT omitted for brevity;
 CWT contains COSE_Key in the "cnf" claim)’,
 "ace_profile" : "coap_dtls",
 "expires_in" : "3600",
 "cnf" : {
 "COSE_Key" : {
 "kty" : "Symmetric",
 "kid" : b64’39Gqlw’,
 "k" : b64’hJtXhkV8FJG+Onbc6mxCcQh’
 }
 }
 }

 Figure 9: Example AS response with an access token bound to a
 symmetric key.

5.8.3. Error Response

 The error responses for CoAP-based interactions with the AS are
 generally equivalent to the ones for HTTP-based interactions as
 defined in Section 5.2 of [RFC6749], with the following exceptions:

 o When using CBOR the raw payload before being processed by the
 communication security protocol MUST be encoded as a CBOR map.

 o A response code equivalent to the CoAP code 4.00 (Bad Request)
 MUST be used for all error responses, except for invalid_client
 where a response code equivalent to the CoAP code 4.01
 (Unauthorized) MAY be used under the same conditions as specified
 in Section 5.2 of [RFC6749].

 o The Content-Format (for CoAP-based interactions) or media type
 (for HTTP-based interactions) "application/ace+cbor" MUST be used
 for the error response.

 o The parameters "error", "error_description" and "error_uri" MUST
 be abbreviated using the codes specified in Figure 12, when a CBOR
 encoding is used.

 o The error code (i.e., value of the "error" parameter) MUST be
 abbreviated as specified in Figure 10, when a CBOR encoding is
 used.

Seitz, et al. Expires May 21, 2021 [Page 27]

Internet-Draft ACE-OAuth November 2020

 /---------------------------+-------------\
 | Name | CBOR Values |
 |---------------------------+-------------|
 | invalid_request | 1 |
 | invalid_client | 2 |
 | invalid_grant | 3 |
 | unauthorized_client | 4 |
 | unsupported_grant_type | 5 |
 | invalid_scope | 6 |
 | unsupported_pop_key | 7 |
 | incompatible_ace_profiles | 8 |
 \---------------------------+-------------/

 Figure 10: CBOR abbreviations for common error codes

 In addition to the error responses defined in OAuth 2.0, the
 following behavior MUST be implemented by the AS:

 o If the client submits an asymmetric key in the token request that
 the RS cannot process, the AS MUST reject that request with a
 response code equivalent to the CoAP code 4.00 (Bad Request)
 including the error code "unsupported_pop_key" defined in
 Figure 10.

 o If the client and the RS it has requested an access token for do
 not share a common profile, the AS MUST reject that request with a
 response code equivalent to the CoAP code 4.00 (Bad Request)
 including the error code "incompatible_ace_profiles" defined in
 Figure 10.

5.8.4. Request and Response Parameters

 This section provides more detail about the new parameters that can
 be used in access token requests and responses, as well as
 abbreviations for more compact encoding of existing parameters and
 common parameter values.

5.8.4.1. Grant Type

 The abbreviations specified in the registry defined in Section 8.5
 MUST be used in CBOR encodings instead of the string values defined
 in [RFC6749], if CBOR payloads are used.

Seitz, et al. Expires May 21, 2021 [Page 28]

Internet-Draft ACE-OAuth November 2020

 /--------------------+------------+------------------------\
 | Name | CBOR Value | Original Specification |
 |--------------------+------------+------------------------|
 | password | 0 | [RFC6749] |
 | authorization_code | 1 | [RFC6749] |
 | client_credentials | 2 | [RFC6749] |
 | refresh_token | 3 | [RFC6749] |
 \--------------------+------------+------------------------/

 Figure 11: CBOR abbreviations for common grant types

5.8.4.2. Token Type

 The "token_type" parameter, defined in section 5.1 of [RFC6749],
 allows the AS to indicate to the client which type of access token it
 is receiving (e.g., a bearer token).

 This document registers the new value "PoP" for the OAuth Access
 Token Types registry, specifying a proof-of-possession token. How
 the proof-of-possession by the client to the RS is performed MUST be
 specified by the profiles.

 The values in the "token_type" parameter MUST use the CBOR
 abbreviations defined in the registry specified by Section 8.7, if a
 CBOR encoding is used.

 In this framework the "pop" value for the "token_type" parameter is
 the default. The AS may, however, provide a different value.

5.8.4.3. Profile

 Profiles of this framework MUST define the communication protocol and
 the communication security protocol between the client and the RS.
 The security protocol MUST provide encryption, integrity and replay
 protection. It MUST also provide a binding between requests and
 responses. Furthermore profiles MUST define a list of allowed proof-
 of-possession methods, if they support proof-of-possession tokens.

 A profile MUST specify an identifier that MUST be used to uniquely
 identify itself in the "ace_profile" parameter. The textual
 representation of the profile identifier is intended for human
 readability and for JSON-based interactions, it MUST NOT be used for
 CBOR-based interactions. Profiles MUST register their identifier in
 the registry defined in Section 8.8.

 Profiles MAY define additional parameters for both the token request
 and the Access Information in the access token response in order to
 support negotiation or signaling of profile specific parameters.

Seitz, et al. Expires May 21, 2021 [Page 29]

Internet-Draft ACE-OAuth November 2020

 Clients that want the AS to provide them with the "ace_profile"
 parameter in the access token response can indicate that by sending a
 ace_profile parameter with a null value (for CBOR-based interactions)
 or an empty string (for JSON based interactions) in the access token
 request.

5.8.4.4. Client-Nonce

 This parameter MUST be sent from the client to the AS, if it
 previously received a "cnonce" parameter in the AS Request Creation
 Hints Section 5.3. The parameter is encoded as a byte string for
 CBOR-based interactions, and as a string (Base64 encoded binary) for
 JSON-based interactions. It MUST copy the value from the cnonce
 parameter in the AS Request Creation Hints.

5.8.5. Mapping Parameters to CBOR

 If CBOR encoding is used, all OAuth parameters in access token
 requests and responses MUST be mapped to CBOR types as specified in
 the registry defined by Section 8.10, using the given integer
 abbreviation for the map keys.

 Note that we have aligned the abbreviations corresponding to claims
 with the abbreviations defined in [RFC8392].

 Note also that abbreviations from -24 to 23 have a 1 byte encoding
 size in CBOR. We have thus chosen to assign abbreviations in that
 range to parameters we expect to be used most frequently in
 constrained scenarios.

Seitz, et al. Expires May 21, 2021 [Page 30]

Internet-Draft ACE-OAuth November 2020

 /-------------------+----------+---------------------\
 | Name | CBOR Key | Value Type |
 |-------------------+----------+---------------------|
 | access_token | 1 | byte string |
 | expires_in | 2 | unsigned integer |
 | audience | 5 | text string |
 | scope | 9 | text or byte string |
 | client_id | 24 | text string |
 | client_secret | 25 | byte string |
 | response_type | 26 | text string |
 | redirect_uri | 27 | text string |
 | state | 28 | text string |
 | code | 29 | byte string |
 | error | 30 | integer |
 | error_description | 31 | text string |
 | error_uri | 32 | text string |
 | grant_type | 33 | unsigned integer |
 | token_type | 34 | integer |
 | username | 35 | text string |
 | password | 36 | text string |
 | refresh_token | 37 | byte string |
 | ace_profile | 38 | integer |
 | cnonce | 39 | byte string |
 \-------------------+----------+---------------------/

 Figure 12: CBOR mappings used in token requests and responses

5.9. The Introspection Endpoint

 Token introspection [RFC7662] can be OPTIONALLY provided by the AS,
 and is then used by the RS and potentially the client to query the AS
 for metadata about a given token, e.g., validity or scope. Analogous
 to the protocol defined in [RFC7662] for HTTP and JSON, this section
 defines adaptations to more constrained environments using CBOR and
 leaving the choice of the application protocol to the profile.

 Communication between the requesting entity and the introspection
 endpoint at the AS MUST be integrity protected and encrypted. The
 communication security protocol MUST also provide a binding between
 requests and responses. Furthermore the two interacting parties MUST
 perform mutual authentication. Finally the AS SHOULD verify that the
 requesting entity has the right to access introspection information
 about the provided token. Profiles of this framework that support
 introspection MUST specify how authentication and communication
 security between the requesting entity and the AS is implemented.

Seitz, et al. Expires May 21, 2021 [Page 31]

Internet-Draft ACE-OAuth November 2020

 The default name of this endpoint in an url-path is ’/introspect’,
 however implementations are not required to use this name and can
 define their own instead.

 The figures of this section uses CBOR diagnostic notation without the
 integer abbreviations for the parameters or their values for better
 readability.

 Note that supporting introspection is OPTIONAL for implementations of
 this framework.

5.9.1. Introspection Request

 The requesting entity sends a POST request to the introspection
 endpoint at the AS. The profile MUST specify how the communication
 is protected. If CBOR is used, the payload MUST be encoded as a CBOR
 map with a "token" entry containing the access token. Further
 optional parameters representing additional context that is known by
 the requesting entity to aid the AS in its response MAY be included.

 For CoAP-based interaction, all messages MUST use the content type
 "application/ace+cbor", while for HTTP-based interactions the
 equivalent media type "application/ace+cbor" MUST be used.

 The same parameters are required and optional as in Section 2.1 of
 [RFC7662].

 For example, Figure 13 shows an RS calling the token introspection
 endpoint at the AS to query about an OAuth 2.0 proof-of-possession
 token. Note that object security based on OSCORE [RFC8613] is
 assumed in this example, therefore the Content-Format is
 "application/oscore". Figure 14 shows the decoded payload.

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "introspect"
 OSCORE: 0x09, 0x05, 0x25
 Content-Format: "application/oscore"
 Payload:
 ... COSE content ...

 Figure 13: Example introspection request.

Seitz, et al. Expires May 21, 2021 [Page 32]

Internet-Draft ACE-OAuth November 2020

 {
 "token" : b64’7gj0dXJQ43U’,
 "token_type_hint" : "PoP"
 }

 Figure 14: Decoded payload.

5.9.2. Introspection Response

 If the introspection request is authorized and successfully
 processed, the AS sends a response with the response code equivalent
 to the CoAP code 2.01 (Created). If the introspection request was
 invalid, not authorized or couldn’t be processed the AS returns an
 error response as described in Section 5.9.3.

 In a successful response, the AS encodes the response parameters in a
 map including with the same required and optional parameters as in
 Section 2.2 of [RFC7662] with the following addition:

 ace_profile OPTIONAL. This indicates the profile that the RS MUST
 use with the client. See Section 5.8.4.3 for more details on the
 formatting of this parameter.

 cnonce OPTIONAL. A client-nonce provided to the AS by the client.
 The RS MUST verify that this corresponds to the client-nonce
 previously provided to the client in the AS Request Creation
 Hints. See Section 5.3 and Section 5.8.4.4.

 exi OPTIONAL. The "expires-in" claim associated to this access
 token. See Section 5.10.3.

 Furthermore [I-D.ietf-ace-oauth-params] defines more parameters that
 the AS MUST be able to use when responding to a request to the
 introspection endpoint.

 For example, Figure 15 shows an AS response to the introspection
 request in Figure 13. Note that this example contains the "cnf"
 parameter defined in [I-D.ietf-ace-oauth-params].

Seitz, et al. Expires May 21, 2021 [Page 33]

Internet-Draft ACE-OAuth November 2020

 Header: Created (Code=2.01)
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "active" : true,
 "scope" : "read",
 "ace_profile" : "coap_dtls",
 "cnf" : {
 "COSE_Key" : {
 "kty" : "Symmetric",
 "kid" : b64’39Gqlw’,
 "k" : b64’hJtXhkV8FJG+Onbc6mxCcQh’
 }
 }
 }

 Figure 15: Example introspection response.

5.9.3. Error Response

 The error responses for CoAP-based interactions with the AS are
 equivalent to the ones for HTTP-based interactions as defined in
 Section 2.3 of [RFC7662], with the following differences:

 o If content is sent and CBOR is used the payload MUST be encoded as
 a CBOR map and the Content-Format "application/ace+cbor" MUST be
 used.

 o If the credentials used by the requesting entity (usually the RS)
 are invalid the AS MUST respond with the response code equivalent
 to the CoAP code 4.01 (Unauthorized) and use the required and
 optional parameters from Section 5.2 in [RFC6749].

 o If the requesting entity does not have the right to perform this
 introspection request, the AS MUST respond with a response code
 equivalent to the CoAP code 4.03 (Forbidden). In this case no
 payload is returned.

 o The parameters "error", "error_description" and "error_uri" MUST
 be abbreviated using the codes specified in Figure 12.

 o The error codes MUST be abbreviated using the codes specified in
 the registry defined by Section 8.4.

 Note that a properly formed and authorized query for an inactive or
 otherwise invalid token does not warrant an error response by this
 specification. In these cases, the authorization server MUST instead

Seitz, et al. Expires May 21, 2021 [Page 34]

Internet-Draft ACE-OAuth November 2020

 respond with an introspection response with the "active" field set to
 "false".

5.9.4. Mapping Introspection parameters to CBOR

 If CBOR is used, the introspection request and response parameters
 MUST be mapped to CBOR types as specified in the registry defined by
 Section 8.12, using the given integer abbreviation for the map key.

 Note that we have aligned abbreviations that correspond to a claim
 with the abbreviations defined in [RFC8392] and the abbreviations of
 parameters with the same name from Section 5.8.5.

 /-------------------+----------+-------------------------\
 | Parameter name | CBOR Key | Value Type |
 |-------------------+----------+-------------------------|
 | iss | 1 | text string |
 | sub | 2 | text string |
 | aud | 3 | text string |
 | exp | 4 | integer or |
 | | | floating-point number |
 | nbf | 5 | integer or |
 | | | floating-point number |
 | iat | 6 | integer or |
 | | | floating-point number |
 | cti | 7 | byte string |
 | scope | 9 | text or byte string |
 | active | 10 | True or False |
 | token | 11 | byte string |
 | client_id | 24 | text string |
 | error | 30 | integer |
 | error_description | 31 | text string |
 | error_uri | 32 | text string |
 | token_type_hint | 33 | text string |
 | token_type | 34 | integer |
 | username | 35 | text string |
 | ace_profile | 38 | integer |
 | cnonce | 39 | byte string |
 | exi | 40 | unsigned integer |
 \-------------------+----------+-------------------------/

 Figure 16: CBOR Mappings to Token Introspection Parameters.

5.10. The Access Token

 This framework RECOMMENDS the use of CBOR web token (CWT) as
 specified in [RFC8392].

Seitz, et al. Expires May 21, 2021 [Page 35]

Internet-Draft ACE-OAuth November 2020

 In order to facilitate offline processing of access tokens, this
 document uses the "cnf" claim from [RFC8747] and the "scope" claim
 from [RFC8693] for JWT- and CWT-encoded tokens. In addition to
 string encoding specified for the "scope" claim, a binary encoding
 MAY be used. The syntax of such an encoding is explicitly not
 specified here and left to profiles or applications, specifically
 note that a binary encoded scope does not necessarily use the space
 character ’0x20’ to delimit scope-tokens.

 If the AS needs to convey a hint to the RS about which profile it
 should use to communicate with the client, the AS MAY include an
 "ace_profile" claim in the access token, with the same syntax and
 semantics as defined in Section 5.8.4.3.

 If the client submitted a client-nonce parameter in the access token
 request Section 5.8.4.4, the AS MUST include the value of this
 parameter in the "cnonce" claim specified here. The "cnonce" claim
 uses binary encoding.

5.10.1. The Authorization Information Endpoint

 The access token, containing authorization information and
 information about the proof-of-possession method used by the client,
 needs to be transported to the RS so that the RS can authenticate and
 authorize the client request.

 This section defines a method for transporting the access token to
 the RS using a RESTful protocol such as CoAP. Profiles of this
 framework MAY define other methods for token transport.

 The method consists of an authz-info endpoint, implemented by the RS.
 A client using this method MUST make a POST request to the authz-info
 endpoint at the RS with the access token in the payload. The RS
 receiving the token MUST verify the validity of the token. If the
 token is valid, the RS MUST respond to the POST request with 2.01
 (Created). Section Section 5.10.1.1 outlines how an RS MUST proceed
 to verify the validity of an access token.

 The RS MUST be prepared to store at least one access token for future
 use. This is a difference to how access tokens are handled in OAuth
 2.0, where the access token is typically sent along with each
 request, and therefore not stored at the RS.

 This specification RECOMMENDS that an RS stores only one token per
 proof-of-possession key, meaning that an additional token linked to
 the same key will overwrite any existing token at the RS. The reason
 is that this greatly simplifies (constrained) implementations, with

Seitz, et al. Expires May 21, 2021 [Page 36]

Internet-Draft ACE-OAuth November 2020

 respect to required storage and resolving a request to the applicable
 token.

 If the payload sent to the authz-info endpoint does not parse to a
 token, the RS MUST respond with a response code equivalent to the
 CoAP code 4.00 (Bad Request).

 The RS MAY make an introspection request to validate the token before
 responding to the POST request to the authz-info endpoint, e.g. if
 the token is an opaque reference. Some transport protocols may
 provide a way to indicate that the RS is busy and the client should
 retry after an interval; this type of status update would be
 appropriate while the RS is waiting for an introspection response.

 Profiles MUST specify whether the authz-info endpoint is protected,
 including whether error responses from this endpoint are protected.
 Note that since the token contains information that allow the client
 and the RS to establish a security context in the first place, mutual
 authentication may not be possible at this point.

 The default name of this endpoint in an url-path is ’/authz-info’,
 however implementations are not required to use this name and can
 define their own instead.

5.10.1.1. Verifying an Access Token

 When an RS receives an access token, it MUST verify it before storing
 it. The details of token verification depends on various aspects,
 including the token encoding, the type of token, the security
 protection applied to the token, and the claims. The token encoding
 matters since the security wrapper differs between the token
 encodings. For example, a CWT token uses COSE while a JWT token uses
 JOSE. The type of token also has an influence on the verification
 procedure since tokens may be self-contained whereby token
 verification may happen locally at the RS while a token-by-reference
 requires further interaction with the authorization server, for
 example using token introspection, to obtain the claims associated
 with the token reference. Self-contained tokens MUST, at a minimum,
 be integrity protected but they MAY also be encrypted.

 For self-contained tokens the RS MUST process the security protection
 of the token first, as specified by the respective token format. For
 CWT the description can be found in [RFC8392] and for JWT the
 relevant specification is [RFC7519]. This MUST include a
 verification that security protection (and thus the token) was
 generated by an AS that has the right to issue access tokens for this
 RS.

Seitz, et al. Expires May 21, 2021 [Page 37]

Internet-Draft ACE-OAuth November 2020

 In case the token is communicated by reference the RS needs to obtain
 the claims first. When the RS uses token introspection the relevant
 specification is [RFC7662] with CoAP transport specified in
 Section 5.9.

 Errors may happen during this initial processing stage:

 o If token or claim verification fails, the RS MUST discard the
 token and, if this was an interaction with authz-info, return an
 error message with a response code equivalent to the CoAP code
 4.01 (Unauthorized).

 o If the claims cannot be obtained the RS MUST discard the token
 and, in case of an interaction via the authz-info endpoint, return
 an error message with a response code equivalent to the CoAP code
 4.00 (Bad Request).

 Next, the RS MUST verify claims, if present, contained in the access
 token. Errors are returned when claim checks fail, in the order of
 priority of this list:

 iss The issuer claim must identify an AS that has the authority to
 issue access tokens for the receiving RS. If that is not the case
 the RS MUST discard the token. If this was an interaction with
 authz-info, the RS MUST also respond with a response code
 equivalent to the CoAP code 4.01 (Unauthorized).

 exp The expiration date must be in the future. If that is not the
 case the RS MUST discard the token. If this was an interaction
 with authz-info the RS MUST also respond with a response code
 equivalent to the CoAP code 4.01 (Unauthorized). Note that the RS
 has to terminate access rights to the protected resources at the
 time when the tokens expire.

 aud The audience claim must refer to an audience that the RS
 identifies with. If that is not the case the RS MUST discard the
 token. If this was an interaction with authz-info, the RS MUST
 also respond with a response code equivalent to the CoAP code 4.03
 (Forbidden).

 scope The RS must recognize value of the scope claim. If that is
 not the case the RS MUST discard the token. If this was an
 interaction with authz-info, the RS MUST also respond with a
 response code equivalent to the CoAP code 4.00 (Bad Request). The
 RS MAY provide additional information in the error response, to
 clarify what went wrong.

Seitz, et al. Expires May 21, 2021 [Page 38]

Internet-Draft ACE-OAuth November 2020

 Additional processing may be needed for other claims in a way
 specific to a profile or the underlying application.

 Note that the Subject (sub) claim cannot always be verified when the
 token is submitted to the RS since the client may not have
 authenticated yet. Also note that a counter for the expires_in (exi)
 claim MUST be initialized when the RS first verifies this token.

 Also note that profiles of this framework may define access token
 transport mechanisms that do not allow for error responses.
 Therefore the error messages specified here only apply if the token
 was sent to the authz-info endpoint.

 When sending error responses, the RS MAY use the error codes from
 Section 3.1 of [RFC6750], to provide additional details to the
 client.

5.10.1.2. Protecting the Authorization Information Endpoint

 As this framework can be used in RESTful environments, it is
 important to make sure that attackers cannot perform unauthorized
 requests on the authz-info endpoints, other than submitting access
 tokens.

 Specifically it SHOULD NOT be possible to perform GET, DELETE or PUT
 on the authz-info endpoint and on it’s children (if any).

 The POST method SHOULD NOT be allowed on children of the authz-info
 endpoint.

 The RS SHOULD implement rate limiting measures to mitigate attacks
 aiming to overload the processing capacity of the RS by repeatedly
 submitting tokens. For CoAP-based communication the RS could use the
 mechanisms from [RFC8516] to indicate that it is overloaded.

5.10.2. Client Requests to the RS

 Before sending a request to an RS, the client MUST verify that the
 keys used to protect this communication are still valid. See
 Section 5.10.4 for details on how the client determines the validity
 of the keys used.

 If an RS receives a request from a client, and the target resource
 requires authorization, the RS MUST first verify that it has an
 access token that authorizes this request, and that the client has
 performed the proof-of-possession binding that token to the request.

Seitz, et al. Expires May 21, 2021 [Page 39]

Internet-Draft ACE-OAuth November 2020

 The response code MUST be 4.01 (Unauthorized) in case the client has
 not performed the proof-of-possession, or if RS has no valid access
 token for the client. If RS has an access token for the client but
 the token does not authorize access for the resource that was
 requested, RS MUST reject the request with a 4.03 (Forbidden). If RS
 has an access token for the client but it does not cover the action
 that was requested on the resource, RS MUST reject the request with a
 4.05 (Method Not Allowed).

 Note: The use of the response codes 4.03 and 4.05 is intended to
 prevent infinite loops where a dumb Client optimistically tries to
 access a requested resource with any access token received from AS.
 As malicious clients could pretend to be C to determine C’s
 privileges, these detailed response codes must be used only when a
 certain level of security is already available which can be achieved
 only when the Client is authenticated.

 Note: The RS MAY use introspection for timely validation of an access
 token, at the time when a request is presented.

 Note: Matching the claims of the access token (e.g., scope) to a
 specific request is application specific.

 If the request matches a valid token and the client has performed the
 proof-of-possession for that token, the RS continues to process the
 request as specified by the underlying application.

5.10.3. Token Expiration

 Depending on the capabilities of the RS, there are various ways in
 which it can verify the expiration of a received access token. Here
 follows a list of the possibilities including what functionality they
 require of the RS.

 o The token is a CWT and includes an "exp" claim and possibly the
 "nbf" claim. The RS verifies these by comparing them to values
 from its internal clock as defined in [RFC7519]. In this case the
 RS’s internal clock must reflect the current date and time, or at
 least be synchronized with the AS’s clock. How this clock
 synchronization would be performed is out of scope for this
 specification.

 o The RS verifies the validity of the token by performing an
 introspection request as specified in Section 5.9. This requires
 the RS to have a reliable network connection to the AS and to be
 able to handle two secure sessions in parallel (C to RS and RS to
 AS).

Seitz, et al. Expires May 21, 2021 [Page 40]

Internet-Draft ACE-OAuth November 2020

 o In order to support token expiration for devices that have no
 reliable way of synchronizing their internal clocks, this
 specification defines the following approach: The claim "exi"
 ("expires in") can be used, to provide the RS with the lifetime of
 the token in seconds from the time the RS first receives the
 token. For CBOR-based interaction this parameter is encoded as
 unsigned integer, while JSON-based interactions encode this as
 JSON number.

 o Processing this claim requires that the RS does the following:

 * For each token the RS receives, that contains an "exi" claim:
 Keep track of the time it received that token and revisit that
 list regularly to expunge expired tokens.

 * Keep track of the identifiers of tokens containing the "exi"
 claim that have expired (in order to avoid accepting them
 again). In order to avoid an unbounded memory usage growth,
 this MUST be implemented in the following way when the "exi"
 claim is used:

 + When creating the token, the AS MUST add a ’cti’ claim (or
 ’jti’ for JWTs) to the access token. The value of this
 claim MUST be created as the binary representation of the
 concatenation of the identifier of the RS with a sequence
 number counting the tokens containing an ’exi’ claim, issued
 by this AS for the RS.

 + The RS MUST store the highest sequence number of an expired
 token containing the "exi" claim that it has seen, and treat
 tokens with lower sequence numbers as expired.

 If a token that authorizes a long running request such as a CoAP
 Observe [RFC7641] expires, the RS MUST send an error response with
 the response code equivalent to the CoAP code 4.01 (Unauthorized) to
 the client and then terminate processing the long running request.

5.10.4. Key Expiration

 The AS provides the client with key material that the RS uses. This
 can either be a common symmetric PoP-key, or an asymmetric key used
 by the RS to authenticate towards the client. Since there is
 currently no expiration metadata associated to those keys, the client
 has no way of knowing if these keys are still valid. This may lead
 to situations where the client sends requests containing sensitive
 information to the RS using a key that is expired and possibly in the
 hands of an attacker, or accepts responses from the RS that are not

Seitz, et al. Expires May 21, 2021 [Page 41]

Internet-Draft ACE-OAuth November 2020

 properly protected and could possibly have been forged by an
 attacker.

 In order to prevent this, the client must assume that those keys are
 only valid as long as the related access token is. Since the access
 token is opaque to the client, one of the following methods MUST be
 used to inform the client about the validity of an access token:

 o The client knows a default validity time for all tokens it is
 using (i.e. how long a token is valid after being issued). This
 information could be provisioned to the client when it is
 registered at the AS, or published by the AS in a way that the
 client can query.

 o The AS informs the client about the token validity using the
 "expires_in" parameter in the Access Information.

 A client that is not able to obtain information about the expiration
 of a token MUST NOT use this token.

6. Security Considerations

 Security considerations applicable to authentication and
 authorization in RESTful environments provided in OAuth 2.0 [RFC6749]
 apply to this work. Furthermore [RFC6819] provides additional
 security considerations for OAuth which apply to IoT deployments as
 well. If the introspection endpoint is used, the security
 considerations from [RFC7662] also apply.

 The following subsections address issues specific to this document
 and it’s use in constrained environments.

6.1. Protecting Tokens

 A large range of threats can be mitigated by protecting the contents
 of the access token by using a digital signature or a keyed message
 digest (MAC) or an Authenticated Encryption with Associated Data
 (AEAD) algorithm. Consequently, the token integrity protection MUST
 be applied to prevent the token from being modified, particularly
 since it contains a reference to the symmetric key or the asymmetric
 key used for proof-of-possession. If the access token contains the
 symmetric key, this symmetric key MUST be encrypted by the
 authorization server so that only the resource server can decrypt it.
 Note that using an AEAD algorithm is preferable over using a MAC
 unless the token needs to be publicly readable.

 If the token is intended for multiple recipients (i.e. an audience
 that is a group), integrity protection of the token with a symmetric

Seitz, et al. Expires May 21, 2021 [Page 42]

Internet-Draft ACE-OAuth November 2020

 key, shared between the AS and the recipients, is not sufficient,
 since any of the recipients could modify the token undetected by the
 other recipients. Therefore a token with a multi-recipient audience
 MUST be protected with an asymmetric signature.

 It is important for the authorization server to include the identity
 of the intended recipient (the audience), typically a single resource
 server (or a list of resource servers), in the token. The same
 shared secret MUST NOT be used as proof-of-possession key with
 multiple resource servers since the benefit from using the proof-of-
 possession concept is then significantly reduced.

 If clients are capable of doing so, they should frequently request
 fresh access tokens, as this allows the AS to keep the lifetime of
 the tokens short. This allows the AS to use shorter proof-of-
 possession key sizes, which translate to a performance benefit for
 the client and for the resource server. Shorter keys also lead to
 shorter messages (particularly with asymmetric keying material).

 When authorization servers bind symmetric keys to access tokens, they
 SHOULD scope these access tokens to a specific permission.

 In certain situations it may be necessary to revoke an access token
 that is still valid. Client-initiated revocation is specified in
 [RFC7009] for OAuth 2.0. Other revocation mechanisms are currently
 not specified, as the underlying assumption in OAuth is that access
 tokens are issued with a relatively short lifetime. This may not
 hold true for disconnected constrained devices, needing access tokens
 with relatively long lifetimes, and would therefore necessitate
 further standardization work that is out of scope for this document.

6.2. Communication Security

 Communication with the authorization server MUST use confidentiality
 protection. This step is extremely important since the client or the
 RS may obtain the proof-of-possession key from the authorization
 server for use with a specific access token. Not using
 confidentiality protection exposes this secret (and the access token)
 to an eavesdropper thereby completely negating proof-of-possession
 security. Profiles MUST specify how communication security according
 to the requirements in Section 5 is provided.

 Additional protection for the access token can be applied by
 encrypting it, for example encryption of CWTs is specified in
 Section 5.1 of [RFC8392]. Such additional protection can be
 necessary if the token is later transferred over an insecure
 connection (e.g. when it is sent to the authz-info endpoint).

Seitz, et al. Expires May 21, 2021 [Page 43]

Internet-Draft ACE-OAuth November 2020

 Developers MUST ensure that the ephemeral credentials (i.e., the
 private key or the session key) are not leaked to third parties. An
 adversary in possession of the ephemeral credentials bound to the
 access token will be able to impersonate the client. Be aware that
 this is a real risk with many constrained environments, since
 adversaries can often easily get physical access to the devices.
 This risk can also be mitigated to some extent by making sure that
 keys are refreshed more frequently.

6.3. Long-Term Credentials

 Both clients and RSs have long-term credentials that are used to
 secure communications, and authenticate to the AS. These credentials
 need to be protected against unauthorized access. In constrained
 devices, deployed in publicly accessible places, such protection can
 be difficult to achieve without specialized hardware (e.g. secure key
 storage memory).

 If credentials are lost or compromised, the operator of the affected
 devices needs to have procedures to invalidate any access these
 credentials give and to revoke tokens linked to such credentials.
 The loss of a credential linked to a specific device MUST NOT lead to
 a compromise of other credentials not linked to that device,
 therefore secret keys used for authentication MUST NOT be shared
 between more than two parties.

 Operators of clients or RS SHOULD have procedures in place to replace
 credentials that are suspected to have been compromised or that have
 been lost.

 Operators also SHOULD have procedures for decommissioning devices,
 that include securely erasing credentials and other security critical
 material in the devices being decommissioned.

6.4. Unprotected AS Request Creation Hints

 Initially, no secure channel exists to protect the communication
 between C and RS. Thus, C cannot determine if the AS Request
 Creation Hints contained in an unprotected response from RS to an
 unauthorized request (see Section 5.3) are authentic. C therefore
 MUST determine if an AS is authorized to provide access tokens for a
 certain RS.

 A compromised RS may use the hints for attempting to trick a client
 into contacting an AS that is not supposed to be in charge of that
 RS. Therefore, C must not communicate with an AS if it cannot
 determine that this AS has the authority to issue access tokens for
 this RS. Otherwise, a compromised RS may use this to perform a

Seitz, et al. Expires May 21, 2021 [Page 44]

Internet-Draft ACE-OAuth November 2020

 denial of service attack against a specific AS, by redirecting a
 large number of client requests to that AS.

6.5. Minimal security requirements for communication

 This section summarizes the minimal requirements for the
 communication security of the different protocol interactions.

 C-AS All communication between the client and the Authorization
 Server MUST be encrypted, integrity and replay protected.
 Furthermore responses from the AS to the client MUST be bound to
 the client’s request to avoid attacks where the attacker swaps the
 intended response for an older one valid for a previous request.
 This requires that the client and the Authorization Server have
 previously exchanged either a shared secret or their public keys
 in order to negotiate a secure communication. Furthermore the
 client MUST be able to determine whether an AS has the authority
 to issue access tokens for a certain RS. This can for example be
 done through pre-configured lists, or through an online lookup
 mechanism that in turn also must be secured.

 RS-AS The communication between the Resource Server and the
 Authorization Server via the introspection endpoint MUST be
 encrypted, integrity and replay protected. Furthermore responses
 from the AS to the RS MUST be bound to the RS’s request. This
 requires that the RS and the Authorization Server have previously
 exchanged either a shared secret, or their public keys in order to
 negotiate a secure communication. Furthermore the RS MUST be able
 to determine whether an AS has the authority to issue access
 tokens itself. This is usually configured out of band, but could
 also be performed through an online lookup mechanism provided that
 it is also secured in the same way.

 C-RS The initial communication between the client and the Resource
 Server can not be secured in general, since the RS is not in
 possession of on access token for that client, which would carry
 the necessary parameters. If both parties support DTLS without
 client authentication it is RECOMMEND to use this mechanism for
 protecting the initial communication. After the client has
 successfully transmitted the access token to the RS, a secure
 communication protocol MUST be established between client and RS
 for the actual resource request. This protocol MUST provide
 confidentiality, integrity and replay protection as well as a
 binding between requests and responses. This requires that the
 client learned either the RS’s public key or received a symmetric
 proof-of-possession key bound to the access token from the AS.
 The RS must have learned either the client’s public key or a
 shared symmetric key from the claims in the token or an

Seitz, et al. Expires May 21, 2021 [Page 45]

Internet-Draft ACE-OAuth November 2020

 introspection request. Since ACE does not provide profile
 negotiation between C and RS, the client MUST have learned what
 profile the RS supports (e.g. from the AS or pre-configured) and
 initiate the communication accordingly.

6.6. Token Freshness and Expiration

 An RS that is offline faces the problem of clock drift. Since it
 cannot synchronize its clock with the AS, it may be tricked into
 accepting old access tokens that are no longer valid or have been
 compromised. In order to prevent this, an RS may use the nonce-based
 mechanism defined in Section 5.3 to ensure freshness of an Access
 Token subsequently presented to this RS.

 Another problem with clock drift is that evaluating the standard
 token expiration claim "exp" can give unpredictable results.

 Acceptable ranges of clock drift are highly dependent on the concrete
 application. Important factors are how long access tokens are valid,
 and how critical timely expiration of access token is.

 The expiration mechanism implemented by the "exi" claim, based on the
 first time the RS sees the token was defined to provide a more
 predictable alternative. The "exi" approach has some drawbacks that
 need to be considered:

 A malicious client may hold back tokens with the "exi" claim in
 order to prolong their lifespan.

 If an RS loses state (e.g. due to an unscheduled reboot), it may
 loose the current values of counters tracking the "exi" claims of
 tokens it is storing.

 The first drawback is inherent to the deployment scenario and the
 "exi" solution. It can therefore not be mitigated without requiring
 the the RS be online at times. The second drawback can be mitigated
 by regularly storing the value of "exi" counters to persistent
 memory.

6.7. Combining profiles

 There may be use cases were different profiles of this framework are
 combined. For example, an MQTT-TLS profile is used between the
 client and the RS in combination with a CoAP-DTLS profile for
 interactions between the client and the AS. The security of a
 profile MUST NOT depend on the assumption that the profile is used
 for all the different types of interactions in this framework.

Seitz, et al. Expires May 21, 2021 [Page 46]

Internet-Draft ACE-OAuth November 2020

6.8. Unprotected Information

 Communication with the authz-info endpoint, as well as the various
 error responses defined in this framework, all potentially include
 sending information over an unprotected channel. These messages may
 leak information to an adversary, or may be manipulated by active
 attackers to induce incorrect behavior. For example error responses
 for requests to the Authorization Information endpoint can reveal
 information about an otherwise opaque access token to an adversary
 who has intercepted this token.

 As far as error messages are concerned, this framework is written
 under the assumption that, in general, the benefits of detailed error
 messages outweigh the risk due to information leakage. For
 particular use cases, where this assessment does not apply, detailed
 error messages can be replaced by more generic ones.

 In some scenarios it may be possible to protect the communication
 with the authz-info endpoint (e.g. through DTLS with only server-side
 authentication). In cases where this is not possible this framework
 RECOMMENDS to use encrypted CWTs or tokens that are opaque references
 and need to be subjected to introspection by the RS.

 If the initial unauthorized resource request message (see
 Section 5.2) is used, the client MUST make sure that it is not
 sending sensitive content in this request. While GET and DELETE
 requests only reveal the target URI of the resource, POST and PUT
 requests would reveal the whole payload of the intended operation.

 Since the client is not authenticated at the point when it is
 submitting an access token to the authz-info endpoint, attackers may
 be pretending to be a client and trying to trick an RS to use an
 obsolete profile that in turn specifies a vulnerable security
 mechanism via the authz-info endpoint. Such an attack would require
 a valid access token containing an "ace_profile" claim requesting the
 use of said obsolete profile. Resource Owners should update the
 configuration of their RS’s to prevent them from using such obsolete
 profiles.

6.9. Identifying audiences

 The audience claim as defined in [RFC7519] and the equivalent
 "audience" parameter from [RFC8693] are intentionally vague on how to
 match the audience value to a specific RS. This is intended to allow
 application specific semantics to be used. This section attempts to
 give some general guidance for the use of audiences in constrained
 environments.

Seitz, et al. Expires May 21, 2021 [Page 47]

Internet-Draft ACE-OAuth November 2020

 URLs are not a good way of identifying mobile devices that can switch
 networks and thus be associated with new URLs. If the audience
 represents a single RS, and asymmetric keys are used, the RS can be
 uniquely identified by a hash of its public key. If this approach is
 used this framework RECOMMENDS to apply the procedure from section 3
 of [RFC6920].

 If the audience addresses a group of resource servers, the mapping of
 group identifier to individual RS has to be provisioned to each RS
 before the group-audience is usable. Managing dynamic groups could
 be an issue, if any RS is not always reachable when the groups’
 memberships change. Furthermore, issuing access tokens bound to
 symmetric proof-of-possession keys that apply to a group-audience is
 problematic, as an RS that is in possession of the access token can
 impersonate the client towards the other RSs that are part of the
 group. It is therefore NOT RECOMMENDED to issue access tokens bound
 to a group audience and symmetric proof-of possession keys.

 Even the client must be able to determine the correct values to put
 into the "audience" parameter, in order to obtain a token for the
 intended RS. Errors in this process can lead to the client
 inadvertently obtaining a token for the wrong RS. The correct values
 for "audience" can either be provisioned to the client as part of its
 configuration, or dynamically looked up by the client in some
 directory. In the latter case the integrity and correctness of the
 directory data must be assured. Note that the "audience" hint
 provided by the RS as part of the "AS Request Creation Hints"
 Section 5.3 is not typically source authenticated and integrity
 protected, and should therefore not be treated a trusted value.

6.10. Denial of service against or with Introspection

 The optional introspection mechanism provided by OAuth and supported
 in the ACE framework allows for two types of attacks that need to be
 considered by implementers.

 First, an attacker could perform a denial of service attack against
 the introspection endpoint at the AS in order to prevent validation
 of access tokens. To maintain the security of the system, an RS that
 is configured to use introspection MUST NOT allow access based on a
 token for which it couldn’t reach the introspection endpoint.

 Second, an attacker could use the fact that an RS performs
 introspection to perform a denial of service attack against that RS
 by repeatedly sending tokens to its authz-info endpoint that require
 an introspection call. RS can mitigate such attacks by implementing
 rate limits on how many introspection requests they perform in a
 given time interval for a certain client IP address submitting tokens

Seitz, et al. Expires May 21, 2021 [Page 48]

Internet-Draft ACE-OAuth November 2020

 to /authz-info. When that limit has been reached, incoming requests
 from that address are rejected for a certain amount of time. A
 general rate limit on the introspection requests should also be
 considered, to mitigate distributed attacks.

7. Privacy Considerations

 Implementers and users should be aware of the privacy implications of
 the different possible deployments of this framework.

 The AS is in a very central position and can potentially learn
 sensitive information about the clients requesting access tokens. If
 the client credentials grant is used, the AS can track what kind of
 access the client intends to perform. With other grants this can be
 prevented by the Resource Owner. To do so, the resource owner needs
 to bind the grants it issues to anonymous, ephemeral credentials that
 do not allow the AS to link different grants and thus different
 access token requests by the same client.

 The claims contained in a token can reveal privacy sensitive
 information about the client and the RS to any party having access to
 them (whether by processing the content of a self-contained token or
 by introspection). The AS SHOULD be configured to minimize the
 information about clients and RSs disclosed in the tokens it issues.

 If tokens are only integrity protected and not encrypted, they may
 reveal information to attackers listening on the wire, or able to
 acquire the access tokens in some other way. In the case of CWTs the
 token may, e.g., reveal the audience, the scope and the confirmation
 method used by the client. The latter may reveal the identity of the
 device or application running the client. This may be linkable to
 the identity of the person using the client (if there is a person and
 not a machine-to-machine interaction).

 Clients using asymmetric keys for proof-of-possession should be aware
 of the consequences of using the same key pair for proof-of-
 possession towards different RSs. A set of colluding RSs or an
 attacker able to obtain the access tokens will be able to link the
 requests, or even to determine the client’s identity.

 An unprotected response to an unauthorized request (see Section 5.3)
 may disclose information about RS and/or its existing relationship
 with C. It is advisable to include as little information as possible
 in an unencrypted response. Even the absolute URI of the AS may
 reveal sensitive information about the service that RS provides.
 Developers must ensure that the RS does not disclose information that
 has an impact on the privacy of the stakeholders in the AS Request
 Creation Hints. They may choose to use a different mechanism for the

Seitz, et al. Expires May 21, 2021 [Page 49]

Internet-Draft ACE-OAuth November 2020

 discovery of the AS if necessary. If means of encrypting
 communication between C and RS already exist, more detailed
 information may be included with an error response to provide C with
 sufficient information to react on that particular error.

8. IANA Considerations

 This document creates several registries with a registration policy
 of "Expert Review"; guidelines to the experts are given in
 Section 8.17.

8.1. ACE Authorization Server Request Creation Hints

 This specification establishes the IANA "ACE Authorization Server
 Request Creation Hints" registry. The registry has been created to
 use the "Expert Review" registration procedure [RFC8126]. It should
 be noted that, in addition to the expert review, some portions of the
 registry require a specification, potentially a Standards Track RFC,
 be supplied as well.

 The columns of the registry are:

 Name The name of the parameter

 CBOR Key CBOR map key for the parameter. Different ranges of values
 use different registration policies [RFC8126]. Integer values
 from -256 to 255 are designated as Standards Action. Integer
 values from -65536 to -257 and from 256 to 65535 are designated as
 Specification Required. Integer values greater than 65535 are
 designated as Expert Review. Integer values less than -65536 are
 marked as Private Use.

 Value Type The CBOR data types allowable for the values of this
 parameter.

 Reference This contains a pointer to the public specification of the
 request creation hint abbreviation, if one exists.

 This registry will be initially populated by the values in Figure 2.
 The Reference column for all of these entries will be this document.

8.2. CoRE Resource Type registry

 IANA is requested to register a new Resource Type (rt=) Link Target
 Attribute in the "Resource Type (rt=) Link Target Attribute Values"
 subregistry under the "Constrained RESTful Environments (CoRE)
 Parameters" [IANA.CoreParameters] registry:

Seitz, et al. Expires May 21, 2021 [Page 50]

Internet-Draft ACE-OAuth November 2020

 rt="ace.ai". This resource type describes an ACE-OAuth authz-info
 endpoint resource.

 Specific ACE-OAuth profiles can use this common resource type for
 defining their profile-specific discovery processes.

8.3. OAuth Extensions Error Registration

 This specification registers the following error values in the OAuth
 Extensions Error registry [IANA.OAuthExtensionsErrorRegistry].

 o Error name: "unsupported_pop_key"
 o Error usage location: token error response
 o Related protocol extension: [this document]
 o Change Controller: IESG
 o Specification document(s): Section 5.8.3 of [this document]

 o Error name: "incompatible_ace_profiles"
 o Error usage location: token error response
 o Related protocol extension: [this document]
 o Change Controller: IESG
 o Specification document(s): Section 5.8.3 of [this document]

8.4. OAuth Error Code CBOR Mappings Registry

 This specification establishes the IANA "OAuth Error Code CBOR
 Mappings" registry. The registry has been created to use the "Expert
 Review" registration procedure [RFC8126], except for the value range
 designated for private use.

 The columns of the registry are:

 Name The OAuth Error Code name, refers to the name in Section 5.2.
 of [RFC6749], e.g., "invalid_request".
 CBOR Value CBOR abbreviation for this error code. Integer values
 less than -65536 are marked as "Private Use", all other values use
 the registration policy "Expert Review" [RFC8126].
 Reference This contains a pointer to the public specification of the
 error code abbreviation, if one exists.

 This registry will be initially populated by the values in Figure 10.
 The Reference column for all of these entries will be this document.

8.5. OAuth Grant Type CBOR Mappings

 This specification establishes the IANA "OAuth Grant Type CBOR
 Mappings" registry. The registry has been created to use the "Expert

Seitz, et al. Expires May 21, 2021 [Page 51]

Internet-Draft ACE-OAuth November 2020

 Review" registration procedure [RFC8126], except for the value range
 designated for private use.

 The columns of this registry are:

 Name The name of the grant type as specified in Section 1.3 of
 [RFC6749].
 CBOR Value CBOR abbreviation for this grant type. Integer values
 less than -65536 are marked as "Private Use", all other values use
 the registration policy "Expert Review" [RFC8126].
 Reference This contains a pointer to the public specification of the
 grant type abbreviation, if one exists.
 Original Specification This contains a pointer to the public
 specification of the grant type, if one exists.

 This registry will be initially populated by the values in Figure 11.
 The Reference column for all of these entries will be this document.

8.6. OAuth Access Token Types

 This section registers the following new token type in the "OAuth
 Access Token Types" registry [IANA.OAuthAccessTokenTypes].

 o Type name: "PoP"
 o Additional Token Endpoint Response Parameters: "cnf", "rs_cnf" see
 section 3.3 of [I-D.ietf-ace-oauth-params].
 o HTTP Authentication Scheme(s): N/A
 o Change Controller: IETF
 o Specification document(s): [this document]

8.7. OAuth Access Token Type CBOR Mappings

 This specification established the IANA "OAuth Access Token Type CBOR
 Mappings" registry. The registry has been created to use the "Expert
 Review" registration procedure [RFC8126], except for the value range
 designated for private use.

 The columns of this registry are:

 Name The name of token type as registered in the OAuth Access Token
 Types registry, e.g., "Bearer".
 CBOR Value CBOR abbreviation for this token type. Integer values
 less than -65536 are marked as "Private Use", all other values use
 the registration policy "Expert Review" [RFC8126].
 Reference This contains a pointer to the public specification of the
 OAuth token type abbreviation, if one exists.
 Original Specification This contains a pointer to the public
 specification of the OAuth token type, if one exists.

Seitz, et al. Expires May 21, 2021 [Page 52]

Internet-Draft ACE-OAuth November 2020

8.7.1. Initial Registry Contents

 o Name: "Bearer"
 o Value: 1
 o Reference: [this document]
 o Original Specification: [RFC6749]

 o Name: "PoP"
 o Value: 2
 o Reference: [this document]
 o Original Specification: [this document]

8.8. ACE Profile Registry

 This specification establishes the IANA "ACE Profile" registry. The
 registry has been created to use the "Expert Review" registration
 procedure [RFC8126]. It should be noted that, in addition to the
 expert review, some portions of the registry require a specification,
 potentially a Standards Track RFC, be supplied as well.

 The columns of this registry are:

 Name The name of the profile, to be used as value of the profile
 attribute.
 Description Text giving an overview of the profile and the context
 it is developed for.
 CBOR Value CBOR abbreviation for this profile name. Different
 ranges of values use different registration policies [RFC8126].
 Integer values from -256 to 255 are designated as Standards
 Action. Integer values from -65536 to -257 and from 256 to 65535
 are designated as Specification Required. Integer values greater
 than 65535 are designated as "Expert Review". Integer values less
 than -65536 are marked as Private Use.
 Reference This contains a pointer to the public specification of the
 profile abbreviation, if one exists.

 This registry will be initially empty and will be populated by the
 registrations from the ACE framework profiles.

8.9. OAuth Parameter Registration

 This specification registers the following parameter in the "OAuth
 Parameters" registry [IANA.OAuthParameters]:

 o Name: "ace_profile"
 o Parameter Usage Location: token response
 o Change Controller: IESG
 o Reference: Section 5.8.2 and Section 5.8.4.3 of [this document]

Seitz, et al. Expires May 21, 2021 [Page 53]

Internet-Draft ACE-OAuth November 2020

8.10. OAuth Parameters CBOR Mappings Registry

 This specification establishes the IANA "OAuth Parameters CBOR
 Mappings" registry. The registry has been created to use the "Expert
 Review" registration procedure [RFC8126], except for the value range
 designated for private use.

 The columns of this registry are:

 Name The OAuth Parameter name, refers to the name in the OAuth
 parameter registry, e.g., "client_id".
 CBOR Key CBOR map key for this parameter. Integer values less than
 -65536 are marked as "Private Use", all other values use the
 registration policy "Expert Review" [RFC8126].
 Value Type The allowable CBOR data types for values of this
 parameter.
 Reference This contains a pointer to the public specification of the
 OAuth parameter abbreviation, if one exists.

 This registry will be initially populated by the values in Figure 12.
 The Reference column for all of these entries will be this document.

8.11. OAuth Introspection Response Parameter Registration

 This specification registers the following parameters in the OAuth
 Token Introspection Response registry
 [IANA.TokenIntrospectionResponse].

 o Name: "ace_profile"
 o Description: The ACE profile used between client and RS.
 o Change Controller: IESG
 o Reference: Section 5.9.2 of [this document]

 o Name: "cnonce"
 o Description: "client-nonce". A nonce previously provided to the
 AS by the RS via the client. Used to verify token freshness when
 the RS cannot synchronize its clock with the AS.
 o Change Controller: IESG
 o Reference: Section 5.9.2 of [this document]

 o Name: "exi"
 o Description: "Expires in". Lifetime of the token in seconds from
 the time the RS first sees it. Used to implement a weaker from of
 token expiration for devices that cannot synchronize their
 internal clocks.
 o Change Controller: IESG
 o Reference: Section 5.9.2 of [this document]

Seitz, et al. Expires May 21, 2021 [Page 54]

Internet-Draft ACE-OAuth November 2020

8.12. OAuth Token Introspection Response CBOR Mappings Registry

 This specification establishes the IANA "OAuth Token Introspection
 Response CBOR Mappings" registry. The registry has been created to
 use the "Expert Review" registration procedure [RFC8126], except for
 the value range designated for private use.

 The columns of this registry are:

 Name The OAuth Parameter name, refers to the name in the OAuth
 parameter registry, e.g., "client_id".
 CBOR Key CBOR map key for this parameter. Integer values less than
 -65536 are marked as "Private Use", all other values use the
 registration policy "Expert Review" [RFC8126].
 Value Type The allowable CBOR data types for values of this
 parameter.
 Reference This contains a pointer to the public specification of the
 introspection response parameter abbreviation, if one exists.

 This registry will be initially populated by the values in Figure 16.
 The Reference column for all of these entries will be this document.

 Note that the mappings of parameters corresponding to claim names
 intentionally coincide with the CWT claim name mappings from
 [RFC8392].

8.13. JSON Web Token Claims

 This specification registers the following new claims in the JSON Web
 Token (JWT) registry of JSON Web Token Claims
 [IANA.JsonWebTokenClaims]:

 o Claim Name: "ace_profile"
 o Claim Description: The ACE profile a token is supposed to be used
 with.
 o Change Controller: IESG
 o Reference: Section 5.10 of [this document]

 o Claim Name: "cnonce"
 o Claim Description: "client-nonce". A nonce previously provided to
 the AS by the RS via the client. Used to verify token freshness
 when the RS cannot synchronize its clock with the AS.
 o Change Controller: IESG
 o Reference: Section 5.10 of [this document]

 o Claim Name: "exi"
 o Claim Description: "Expires in". Lifetime of the token in seconds
 from the time the RS first sees it. Used to implement a weaker

Seitz, et al. Expires May 21, 2021 [Page 55]

Internet-Draft ACE-OAuth November 2020

 from of token expiration for devices that cannot synchronize their
 internal clocks.
 o Change Controller: IESG
 o Reference: Section 5.10.3 of [this document]

8.14. CBOR Web Token Claims

 This specification registers the following new claims in the "CBOR
 Web Token (CWT) Claims" registry [IANA.CborWebTokenClaims].

 o Claim Name: "ace_profile"
 o Claim Description: The ACE profile a token is supposed to be used
 with.
 o JWT Claim Name: ace_profile
 o Claim Key: TBD (suggested: 38)
 o Claim Value Type(s): integer
 o Change Controller: IESG
 o Specification Document(s): Section 5.10 of [this document]

 o Claim Name: "cnonce"
 o Claim Description: The client-nonce sent to the AS by the RS via
 the client.
 o JWT Claim Name: cnonce
 o Claim Key: TBD (suggested: 39)
 o Claim Value Type(s): byte string
 o Change Controller: IESG
 o Specification Document(s): Section 5.10 of [this document]

 o Claim Name: "exi"
 o Claim Description: The expiration time of a token measured from
 when it was received at the RS in seconds.
 o JWT Claim Name: exi
 o Claim Key: TBD (suggested: 40)
 o Claim Value Type(s): integer
 o Change Controller: IESG
 o Specification Document(s): Section 5.10.3 of [this document]

 o Claim Name: "scope"
 o Claim Description: The scope of an access token as defined in
 [RFC6749].
 o JWT Claim Name: scope
 o Claim Key: TBD (suggested: 9)
 o Claim Value Type(s): byte string or text string
 o Change Controller: IESG
 o Specification Document(s): Section 4.2 of [RFC8693]

Seitz, et al. Expires May 21, 2021 [Page 56]

Internet-Draft ACE-OAuth November 2020

8.15. Media Type Registrations

 This specification registers the ’application/ace+cbor’ media type
 for messages of the protocols defined in this document carrying
 parameters encoded in CBOR. This registration follows the procedures
 specified in [RFC6838].

 Type name: application

 Subtype name: ace+cbor

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: Must be encoded as CBOR map containing the
 protocol parameters defined in [this document].

 Security considerations: See Section 6 of [this document]

 Interoperability considerations: N/A

 Published specification: [this document]

 Applications that use this media type: The type is used by
 authorization servers, clients and resource servers that support the
 ACE framework as specified in [this document].

 Fragment identifier considerations: N/A

 Additional information: N/A

 Person & email address to contact for further information:
 <iesg@ietf.org>

 Intended usage: COMMON

 Restrictions on usage: none

 Author: Ludwig Seitz <ludwig.seitz@combitech.se>

 Change controller: IESG

8.16. CoAP Content-Format Registry

 This specification registers the following entry to the "CoAP
 Content-Formats" registry:

Seitz, et al. Expires May 21, 2021 [Page 57]

Internet-Draft ACE-OAuth November 2020

 Media Type: application/ace+cbor

 Encoding: -

 ID: TBD (suggested: 19)

 Reference: [this document]

8.17. Expert Review Instructions

 All of the IANA registries established in this document are defined
 to use a registration policy of Expert Review. This section gives
 some general guidelines for what the experts should be looking for,
 but they are being designated as experts for a reason, so they should
 be given substantial latitude.

 Expert reviewers should take into consideration the following points:

 o Point squatting should be discouraged. Reviewers are encouraged
 to get sufficient information for registration requests to ensure
 that the usage is not going to duplicate one that is already
 registered, and that the point is likely to be used in
 deployments. The zones tagged as private use are intended for
 testing purposes and closed environments; code points in other
 ranges should not be assigned for testing.
 o Specifications are needed for the first-come, first-serve range if
 they are expected to be used outside of closed environments in an
 interoperable way. When specifications are not provided, the
 description provided needs to have sufficient information to
 identify what the point is being used for.
 o Experts should take into account the expected usage of fields when
 approving point assignment. The fact that there is a range for
 standards track documents does not mean that a standards track
 document cannot have points assigned outside of that range. The
 length of the encoded value should be weighed against how many
 code points of that length are left, the size of device it will be
 used on.
 o Since a high degree of overlap is expected between these
 registries and the contents of the OAuth parameters
 [IANA.OAuthParameters] registries, experts should require new
 registrations to maintain alignment with parameters from OAuth
 that have comparable functionality. Deviation from this alignment
 should only be allowed if there are functional differences, that
 are motivated by the use case and that cannot be easily or
 efficiently addressed by comparable OAuth parameters.

Seitz, et al. Expires May 21, 2021 [Page 58]

Internet-Draft ACE-OAuth November 2020

9. Acknowledgments

 This document is a product of the ACE working group of the IETF.

 Thanks to Eve Maler for her contributions to the use of OAuth 2.0 and
 UMA in IoT scenarios, Robert Taylor for his discussion input, and
 Malisa Vucinic for his input on the predecessors of this proposal.

 Thanks to the authors of draft-ietf-oauth-pop-key-distribution, from
 where large parts of the security considerations where copied.

 Thanks to Stefanie Gerdes, Olaf Bergmann, and Carsten Bormann for
 contributing their work on AS discovery from draft-gerdes-ace-dcaf-
 authorize (see Section 5.1).

 Thanks to Jim Schaad and Mike Jones for their comprehensive reviews.

 Thanks to Benjamin Kaduk for his input on various questions related
 to this work.

 Thanks to Cigdem Sengul for some very useful review comments.

 Thanks to Carsten Bormann for contributing the text for the CoRE
 Resource Type registry.

 Ludwig Seitz and Goeran Selander worked on this document as part of
 the CelticPlus project CyberWI, with funding from Vinnova. Ludwig
 Seitz was also received further funding for this work by Vinnova in
 the context of the CelticNext project Critisec.

10. References

10.1. Normative References

 [I-D.ietf-ace-oauth-params]
 Seitz, L., "Additional OAuth Parameters for Authorization
 in Constrained Environments (ACE)", draft-ietf-ace-oauth-
 params-13 (work in progress), April 2020.

 [IANA.CborWebTokenClaims]
 IANA, "CBOR Web Token (CWT) Claims",
 <https://www.iana.org/assignments/cwt/cwt.xhtml#claims-
 registry>.

 [IANA.CoreParameters]
 IANA, "Constrained RESTful Environments (CoRE)
 Parameters", <https://www.iana.org/assignments/core-
 parameters/core-parameters.xhtml>.

Seitz, et al. Expires May 21, 2021 [Page 59]

Internet-Draft ACE-OAuth November 2020

 [IANA.JsonWebTokenClaims]
 IANA, "JSON Web Token Claims",
 <https://www.iana.org/assignments/jwt/jwt.xhtml#claims>.

 [IANA.OAuthAccessTokenTypes]
 IANA, "OAuth Access Token Types",
 <https://www.iana.org/assignments/oauth-parameters/oauth-
 parameters.xhtml#token-types>.

 [IANA.OAuthExtensionsErrorRegistry]
 IANA, "OAuth Extensions Error Registry",
 <https://www.iana.org/assignments/oauth-parameters/oauth-
 parameters.xhtml#extensions-error>.

 [IANA.OAuthParameters]
 IANA, "OAuth Parameters",
 <https://www.iana.org/assignments/oauth-parameters/oauth-
 parameters.xhtml#parameters>.

 [IANA.TokenIntrospectionResponse]
 IANA, "OAuth Token Introspection Response",
 <https://www.iana.org/assignments/oauth-parameters/oauth-
 parameters.xhtml#token-introspection-response>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

Seitz, et al. Expires May 21, 2021 [Page 60]

Internet-Draft ACE-OAuth November 2020

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC6920] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
 Keranen, A., and P. Hallam-Baker, "Naming Things with
 Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,
 <https://www.rfc-editor.org/info/rfc6920>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

Seitz, et al. Expires May 21, 2021 [Page 61]

Internet-Draft ACE-OAuth November 2020

 [RFC8693] Jones, M., Nadalin, A., Campbell, B., Ed., Bradley, J.,
 and C. Mortimore, "OAuth 2.0 Token Exchange", RFC 8693,
 DOI 10.17487/RFC8693, January 2020,
 <https://www.rfc-editor.org/info/rfc8693>.

 [RFC8747] Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March
 2020, <https://www.rfc-editor.org/info/rfc8747>.

10.2. Informative References

 [BLE] Bluetooth SIG, "Bluetooth Core Specification v5.1",
 Section 4.4, January 2019,
 <https://www.bluetooth.com/specifications/bluetooth-core-
 specification/>.

 [I-D.erdtman-ace-rpcc]
 Seitz, L. and S. Erdtman, "Raw-Public-Key and Pre-Shared-
 Key as OAuth client credentials", draft-erdtman-ace-
 rpcc-02 (work in progress), October 2017.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-32 (work
 in progress), October 2020.

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-39 (work in progress),
 November 2020.

 [Margi10impact]
 Margi, C., de Oliveira, B., de Sousa, G., Simplicio Jr,
 M., Barreto, P., Carvalho, T., Naeslund, M., and R. Gold,
 "Impact of Operating Systems on Wireless Sensor Networks
 (Security) Applications and Testbeds", Proceedings of
 the 19th International Conference on Computer
 Communications and Networks (ICCCN), August 2010.

 [MQTT5.0] Banks, A., Briggs, E., Borgendale, K., and R. Gupta, "MQTT
 Version 5.0", OASIS Standard, March 2019,
 <https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-
 v5.0.html>.

Seitz, et al. Expires May 21, 2021 [Page 62]

Internet-Draft ACE-OAuth November 2020

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/info/rfc6690>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth
 2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,
 August 2013, <https://www.rfc-editor.org/info/rfc7009>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7521] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521,
 May 2015, <https://www.rfc-editor.org/info/rfc7521>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/info/rfc7641>.

 [RFC7744] Seitz, L., Ed., Gerdes, S., Ed., Selander, G., Mani, M.,
 and S. Kumar, "Use Cases for Authentication and
 Authorization in Constrained Environments", RFC 7744,
 DOI 10.17487/RFC7744, January 2016,
 <https://www.rfc-editor.org/info/rfc7744>.

Seitz, et al. Expires May 21, 2021 [Page 63]

Internet-Draft ACE-OAuth November 2020

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
 BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
 <https://www.rfc-editor.org/info/rfc8252>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8516] Keranen, A., ""Too Many Requests" Response Code for the
 Constrained Application Protocol", RFC 8516,
 DOI 10.17487/RFC8516, January 2019,
 <https://www.rfc-editor.org/info/rfc8516>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

 [RFC8628] Denniss, W., Bradley, J., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Device Authorization Grant", RFC 8628,
 DOI 10.17487/RFC8628, August 2019,
 <https://www.rfc-editor.org/info/rfc8628>.

Appendix A. Design Justification

 This section provides further insight into the design decisions of
 the solution documented in this document. Section 3 lists several
 building blocks and briefly summarizes their importance. The
 justification for offering some of those building blocks, as opposed
 to using OAuth 2.0 as is, is given below.

 Common IoT constraints are:

Seitz, et al. Expires May 21, 2021 [Page 64]

Internet-Draft ACE-OAuth November 2020

 Low Power Radio:

 Many IoT devices are equipped with a small battery which needs to
 last for a long time. For many constrained wireless devices, the
 highest energy cost is associated to transmitting or receiving
 messages (roughly by a factor of 10 compared to AES)
 [Margi10impact]. It is therefore important to keep the total
 communication overhead low, including minimizing the number and
 size of messages sent and received, which has an impact of choice
 on the message format and protocol. By using CoAP over UDP and
 CBOR encoded messages, some of these aspects are addressed.
 Security protocols contribute to the communication overhead and
 can, in some cases, be optimized. For example, authentication and
 key establishment may, in certain cases where security
 requirements allow, be replaced by provisioning of security
 context by a trusted third party, using transport or application
 layer security.

 Low CPU Speed:

 Some IoT devices are equipped with processors that are
 significantly slower than those found in most current devices on
 the Internet. This typically has implications on what timely
 cryptographic operations a device is capable of performing, which
 in turn impacts, e.g., protocol latency. Symmetric key
 cryptography may be used instead of the computationally more
 expensive public key cryptography where the security requirements
 so allow, but this may also require support for trusted-third-
 party-assisted secret key establishment using transport- or
 application-layer security.
 Small Amount of Memory:

 Microcontrollers embedded in IoT devices are often equipped with
 only a small amount of RAM and flash memory, which places
 limitations on what kind of processing can be performed and how
 much code can be put on those devices. To reduce code size, fewer
 and smaller protocol implementations can be put on the firmware of
 such a device. In this case, CoAP may be used instead of HTTP,
 symmetric-key cryptography instead of public-key cryptography, and
 CBOR instead of JSON. An authentication and key establishment
 protocol, e.g., the DTLS handshake, in comparison with assisted
 key establishment, also has an impact on memory and code
 footprints.

 User Interface Limitations:

 Protecting access to resources is both an important security as
 well as privacy feature. End users and enterprise customers may

Seitz, et al. Expires May 21, 2021 [Page 65]

Internet-Draft ACE-OAuth November 2020

 not want to give access to the data collected by their IoT device
 or to functions it may offer to third parties. Since the
 classical approach of requesting permissions from end users via a
 rich user interface does not work in many IoT deployment
 scenarios, these functions need to be delegated to user-controlled
 devices that are better suitable for such tasks, such as smart
 phones and tablets.

 Communication Constraints:

 In certain constrained settings an IoT device may not be able to
 communicate with a given device at all times. Devices may be
 sleeping, or just disconnected from the Internet because of
 general lack of connectivity in the area, for cost reasons, or for
 security reasons, e.g., to avoid an entry point for Denial-of-
 Service attacks.

 The communication interactions this framework builds upon (as
 shown graphically in Figure 1) may be accomplished using a variety
 of different protocols, and not all parts of the message flow are
 used in all applications due to the communication constraints.
 Deployments making use of CoAP are expected, but this framework is
 not limited to them. Other protocols such as HTTP, or even
 protocols such as Bluetooth Smart communication that do not
 necessarily use IP, could also be used. The latter raises the
 need for application layer security over the various interfaces.

 In the light of these constraints we have made the following design
 decisions:

 CBOR, COSE, CWT:

 This framework RECOMMENDS the use of CBOR [RFC7049] as data
 format. Where CBOR data needs to be protected, the use of COSE
 [RFC8152] is RECOMMENDED. Furthermore, where self-contained
 tokens are needed, this framework RECOMMENDS the use of CWT
 [RFC8392]. These measures aim at reducing the size of messages
 sent over the wire, the RAM size of data objects that need to be
 kept in memory and the size of libraries that devices need to
 support.

 CoAP:

 This framework RECOMMENDS the use of CoAP [RFC7252] instead of
 HTTP. This does not preclude the use of other protocols
 specifically aimed at constrained devices, like, e.g., Bluetooth
 Low Energy (see Section 3.2). This aims again at reducing the
 size of messages sent over the wire, the RAM size of data objects

Seitz, et al. Expires May 21, 2021 [Page 66]

Internet-Draft ACE-OAuth November 2020

 that need to be kept in memory and the size of libraries that
 devices need to support.

 Access Information:

 This framework defines the name "Access Information" for data
 concerning the RS that the AS returns to the client in an access
 token response (see Section 5.8.2). This aims at enabling
 scenarios where a powerful client, supporting multiple profiles,
 needs to interact with an RS for which it does not know the
 supported profiles and the raw public key.

 Proof-of-Possession:

 This framework makes use of proof-of-possession tokens, using the
 "cnf" claim [RFC8747]. A request parameter "cnf" and a Response
 parameter "cnf", both having a value space semantically and
 syntactically identical to the "cnf" claim, are defined for the
 token endpoint, to allow requesting and stating confirmation keys.
 This aims at making token theft harder. Token theft is
 specifically relevant in constrained use cases, as communication
 often passes through middle-boxes, which could be able to steal
 bearer tokens and use them to gain unauthorized access.

 Authz-Info endpoint:

 This framework introduces a new way of providing access tokens to
 an RS by exposing a authz-info endpoint, to which access tokens
 can be POSTed. This aims at reducing the size of the request
 message and the code complexity at the RS. The size of the
 request message is problematic, since many constrained protocols
 have severe message size limitations at the physical layer (e.g.,
 in the order of 100 bytes). This means that larger packets get
 fragmented, which in turn combines badly with the high rate of
 packet loss, and the need to retransmit the whole message if one
 packet gets lost. Thus separating sending of the request and
 sending of the access tokens helps to reduce fragmentation.

 Client Credentials Grant:

 This framework RECOMMENDS the use of the client credentials grant
 for machine-to-machine communication use cases, where manual
 intervention of the resource owner to produce a grant token is not
 feasible. The intention is that the resource owner would instead
 pre-arrange authorization with the AS, based on the client’s own
 credentials. The client can then (without manual intervention)
 obtain access tokens from the AS.

Seitz, et al. Expires May 21, 2021 [Page 67]

Internet-Draft ACE-OAuth November 2020

 Introspection:

 This framework RECOMMENDS the use of access token introspection in
 cases where the client is constrained in a way that it can not
 easily obtain new access tokens (i.e. it has connectivity issues
 that prevent it from communicating with the AS). In that case
 this framework RECOMMENDS the use of a long-term token, that could
 be a simple reference. The RS is assumed to be able to
 communicate with the AS, and can therefore perform introspection,
 in order to learn the claims associated with the token reference.
 The advantage of such an approach is that the resource owner can
 change the claims associated to the token reference without having
 to be in contact with the client, thus granting or revoking access
 rights.

Appendix B. Roles and Responsibilities

 Resource Owner

 * Make sure that the RS is registered at the AS. This includes
 making known to the AS which profiles, token_type, scopes, and
 key types (symmetric/asymmetric) the RS supports. Also making
 it known to the AS which audience(s) the RS identifies itself
 with.
 * Make sure that clients can discover the AS that is in charge of
 the RS.
 * If the client-credentials grant is used, make sure that the AS
 has the necessary, up-to-date, access control policies for the
 RS.

 Requesting Party

 * Make sure that the client is provisioned the necessary
 credentials to authenticate to the AS.
 * Make sure that the client is configured to follow the security
 requirements of the Requesting Party when issuing requests
 (e.g., minimum communication security requirements, trust
 anchors).
 * Register the client at the AS. This includes making known to
 the AS which profiles, token_types, and key types (symmetric/
 asymmetric) the client.

 Authorization Server

 * Register the RS and manage corresponding security contexts.
 * Register clients and authentication credentials.

Seitz, et al. Expires May 21, 2021 [Page 68]

Internet-Draft ACE-OAuth November 2020

 * Allow Resource Owners to configure and update access control
 policies related to their registered RSs.
 * Expose the token endpoint to allow clients to request tokens.
 * Authenticate clients that wish to request a token.
 * Process a token request using the authorization policies
 configured for the RS.
 * Optionally: Expose the introspection endpoint that allows RS’s
 to submit token introspection requests.
 * If providing an introspection endpoint: Authenticate RSs that
 wish to get an introspection response.
 * If providing an introspection endpoint: Process token
 introspection requests.
 * Optionally: Handle token revocation.
 * Optionally: Provide discovery metadata. See [RFC8414]
 * Optionally: Handle refresh tokens.

 Client

 * Discover the AS in charge of the RS that is to be targeted with
 a request.
 * Submit the token request (see step (A) of Figure 1).

 + Authenticate to the AS.
 + Optionally (if not pre-configured): Specify which RS, which
 resource(s), and which action(s) the request(s) will target.
 + If raw public keys (rpk) or certificates are used, make sure
 the AS has the right rpk or certificate for this client.
 * Process the access token and Access Information (see step (B)
 of Figure 1).

 + Check that the Access Information provides the necessary
 security parameters (e.g., PoP key, information on
 communication security protocols supported by the RS).
 + Safely store the proof-of-possession key.
 + If provided by the AS: Safely store the refresh token.
 * Send the token and request to the RS (see step (C) of
 Figure 1).

 + Authenticate towards the RS (this could coincide with the
 proof of possession process).
 + Transmit the token as specified by the AS (default is to the
 authz-info endpoint, alternative options are specified by
 profiles).
 + Perform the proof-of-possession procedure as specified by
 the profile in use (this may already have been taken care of
 through the authentication procedure).
 * Process the RS response (see step (F) of Figure 1) of the RS.

Seitz, et al. Expires May 21, 2021 [Page 69]

Internet-Draft ACE-OAuth November 2020

 Resource Server

 * Expose a way to submit access tokens. By default this is the
 authz-info endpoint.
 * Process an access token.

 + Verify the token is from a recognized AS.
 + Check the token’s integrity.
 + Verify that the token applies to this RS.
 + Check that the token has not expired (if the token provides
 expiration information).
 + Store the token so that it can be retrieved in the context
 of a matching request.

 Note: The order proposed here is not normative, any process
 that arrives at an equivalent result can be used. A noteworthy
 consideration is whether one can use cheap operations early on
 to quickly discard non-applicable or invalid tokens, before
 performing expensive cryptographic operations (e.g. doing an
 expiration check before verifying a signature).

 * Process a request.

 + Set up communication security with the client.
 + Authenticate the client.
 + Match the client against existing tokens.
 + Check that tokens belonging to the client actually authorize
 the requested action.
 + Optionally: Check that the matching tokens are still valid,
 using introspection (if this is possible.)
 * Send a response following the agreed upon communication
 security mechanism(s).
 * Safely store credentials such as raw public keys for
 authentication or proof-of-possession keys linked to access
 tokens.

Appendix C. Requirements on Profiles

 This section lists the requirements on profiles of this framework,
 for the convenience of profile designers.

 o Optionally define new methods for the client to discover the
 necessary permissions and AS for accessing a resource, different
 from the one proposed in Section 5.1. Section 4
 o Optionally specify new grant types. Section 5.4
 o Optionally define the use of client certificates as client
 credential type. Section 5.5

Seitz, et al. Expires May 21, 2021 [Page 70]

Internet-Draft ACE-OAuth November 2020

 o Specify the communication protocol the client and RS the must use
 (e.g., CoAP). Section 5 and Section 5.8.4.3
 o Specify the security protocol the client and RS must use to
 protect their communication (e.g., OSCORE or DTLS). This must
 provide encryption, integrity and replay protection.
 Section 5.8.4.3
 o Specify how the client and the RS mutually authenticate.
 Section 4
 o Specify the proof-of-possession protocol(s) and how to select one,
 if several are available. Also specify which key types (e.g.,
 symmetric/asymmetric) are supported by a specific proof-of-
 possession protocol. Section 5.8.4.2
 o Specify a unique ace_profile identifier. Section 5.8.4.3
 o If introspection is supported: Specify the communication and
 security protocol for introspection. Section 5.9
 o Specify the communication and security protocol for interactions
 between client and AS. This must provide encryption, integrity
 protection, replay protection and a binding between requests and
 responses. Section 5 and Section 5.8
 o Specify how/if the authz-info endpoint is protected, including how
 error responses are protected. Section 5.10.1
 o Optionally define other methods of token transport than the authz-
 info endpoint. Section 5.10.1

Appendix D. Assumptions on AS knowledge about C and RS

 This section lists the assumptions on what an AS should know about a
 client and an RS in order to be able to respond to requests to the
 token and introspection endpoints. How this information is
 established is out of scope for this document.

 o The identifier of the client or RS.
 o The profiles that the client or RS supports.
 o The scopes that the RS supports.
 o The audiences that the RS identifies with.
 o The key types (e.g., pre-shared symmetric key, raw public key, key
 length, other key parameters) that the client or RS supports.
 o The types of access tokens the RS supports (e.g., CWT).
 o If the RS supports CWTs, the COSE parameters for the crypto
 wrapper (e.g., algorithm, key-wrap algorithm, key-length) that the
 RS supports.
 o The expiration time for access tokens issued to this RS (unless
 the RS accepts a default time chosen by the AS).
 o The symmetric key shared between client and AS (if any).
 o The symmetric key shared between RS and AS (if any).
 o The raw public key of the client or RS (if any).
 o Whether the RS has synchronized time (and thus is able to use the
 ’exp’ claim) or not.

Seitz, et al. Expires May 21, 2021 [Page 71]

Internet-Draft ACE-OAuth November 2020

Appendix E. Deployment Examples

 There is a large variety of IoT deployments, as is indicated in
 Appendix A, and this section highlights a few common variants. This
 section is not normative but illustrates how the framework can be
 applied.

 For each of the deployment variants, there are a number of possible
 security setups between clients, resource servers and authorization
 servers. The main focus in the following subsections is on how
 authorization of a client request for a resource hosted by an RS is
 performed. This requires the security of the requests and responses
 between the clients and the RS to be considered.

 Note: CBOR diagnostic notation is used for examples of requests and
 responses.

E.1. Local Token Validation

 In this scenario, the case where the resource server is offline is
 considered, i.e., it is not connected to the AS at the time of the
 access request. This access procedure involves steps A, B, C, and F
 of Figure 1.

 Since the resource server must be able to verify the access token
 locally, self-contained access tokens must be used.

 This example shows the interactions between a client, the
 authorization server and a temperature sensor acting as a resource
 server. Message exchanges A and B are shown in Figure 17.

 A: The client first generates a public-private key pair used for
 communication security with the RS.
 The client sends a CoAP POST request to the token endpoint at the
 AS. The security of this request can be transport or application
 layer. It is up the the communication security profile to define.
 In the example it is assumed that both client and AS have
 performed mutual authentication e.g. via DTLS. The request
 contains the public key of the client and the Audience parameter
 set to "tempSensorInLivingRoom", a value that the temperature
 sensor identifies itself with. The AS evaluates the request and
 authorizes the client to access the resource.
 B: The AS responds with a 2.05 Content response containing the
 Access Information, including the access token. The PoP access
 token contains the public key of the client, and the Access
 Information contains the public key of the RS. For communication
 security this example uses DTLS RawPublicKey between the client
 and the RS. The issued token will have a short validity time,

Seitz, et al. Expires May 21, 2021 [Page 72]

Internet-Draft ACE-OAuth November 2020

 i.e., "exp" close to "iat", in order to mitigate attacks using
 stolen client credentials. The token includes the claim such as
 "scope" with the authorized access that an owner of the
 temperature device can enjoy. In this example, the "scope" claim,
 issued by the AS, informs the RS that the owner of the token, that
 can prove the possession of a key is authorized to make a GET
 request against the /temperature resource and a POST request on
 the /firmware resource. Note that the syntax and semantics of the
 scope claim are application specific.
 Note: In this example it is assumed that the client knows what
 resource it wants to access, and is therefore able to request
 specific audience and scope claims for the access token.

 Authorization
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | and mutual authentication
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"token"
 | | Content-Format: application/ace+cbor
 | | Payload: <Request-Payload>
 | |
 B: |<--------+ Header: 2.05 Content
 | 2.05 | Content-Format: application/ace+cbor
 | | Payload: <Response-Payload>
 | |

 Figure 17: Token Request and Response Using Client Credentials.

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 18 Note that the parameter "rs_cnf" from
 [I-D.ietf-ace-oauth-params] is used to inform the client about the
 resource server’s public key.

Seitz, et al. Expires May 21, 2021 [Page 73]

Internet-Draft ACE-OAuth November 2020

 Request-Payload :
 {
 "audience" : "tempSensorInLivingRoom",
 "client_id" : "myclient",
 "req_cnf" : {
 "COSE_Key" : {
 "kid" : b64’1Bg8vub9tLe1gHMzV76e8’,
 "kty" : "EC",
 "crv" : "P-256",
 "x" : b64’f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU’,
 "y" : b64’x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0’
 }
 }
 }

 Response-Payload :
 {
 "access_token" : b64’0INDoQEKoQVNKkXfb7xaWqMTf6 ...’,
 "rs_cnf" : {
 "COSE_Key" : {
 "kid" : b64’c29tZSBwdWJsaWMga2V5IGlk’,
 "kty" : "EC",
 "crv" : "P-256",
 "x" : b64’MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4’,
 "y" : b64’4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM’
 }
 }
 }

 Figure 18: Request and Response Payload Details.

 The content of the access token is shown in Figure 19.

Seitz, et al. Expires May 21, 2021 [Page 74]

Internet-Draft ACE-OAuth November 2020

 {
 "aud" : "tempSensorInLivingRoom",
 "iat" : "1563451500",
 "exp" : "1563453000",
 "scope" : "temperature_g firmware_p",
 "cnf" : {
 "COSE_Key" : {
 "kid" : b64’1Bg8vub9tLe1gHMzV76e8’,
 "kty" : "EC",
 "crv" : "P-256",
 "x" : b64’f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU’,
 "y" : b64’x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0’
 }
 }
 }

 Figure 19: Access Token including Public Key of the Client.

 Messages C and F are shown in Figure 20 - Figure 21.

 C: The client then sends the PoP access token to the authz-info
 endpoint at the RS. This is a plain CoAP POST request, i.e., no
 transport or application layer security is used between client and
 RS since the token is integrity protected between the AS and RS.
 The RS verifies that the PoP access token was created by a known
 and trusted AS, that it applies to this RS, and that it is valid.
 The RS caches the security context together with authorization
 information about this client contained in the PoP access token.

 Resource
 Client Server
 | |
 C: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"authz-info"
 | | Payload: 0INDoQEKoQVN ...
 | |
 |<--------+ Header: 2.04 Changed
 | 2.04 |
 | |

 Figure 20: Access Token provisioning to RS
 The client and the RS runs the DTLS handshake using the raw public
 keys established in step B and C.
 The client sends a CoAP GET request to /temperature on RS over
 DTLS. The RS verifies that the request is authorized, based on
 previously established security context.

Seitz, et al. Expires May 21, 2021 [Page 75]

Internet-Draft ACE-OAuth November 2020

 F: The RS responds over the same DTLS channel with a CoAP 2.05
 Content response, containing a resource representation as payload.

 Resource
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | using Raw Public Keys
 | |
 +-------->| Header: GET (Code=0.01)
 | GET | Uri-Path: "temperature"
 | |
 | |
 | |
 F: |<--------+ Header: 2.05 Content
 | 2.05 | Payload: <sensor value>
 | |

 Figure 21: Resource Request and Response protected by DTLS.

E.2. Introspection Aided Token Validation

 In this deployment scenario it is assumed that a client is not able
 to access the AS at the time of the access request, whereas the RS is
 assumed to be connected to the back-end infrastructure. Thus the RS
 can make use of token introspection. This access procedure involves
 steps A-F of Figure 1, but assumes steps A and B have been carried
 out during a phase when the client had connectivity to AS.

 Since the client is assumed to be offline, at least for a certain
 period of time, a pre-provisioned access token has to be long-lived.
 Since the client is constrained, the token will not be self contained
 (i.e. not a CWT) but instead just a reference. The resource server
 uses its connectivity to learn about the claims associated to the
 access token by using introspection, which is shown in the example
 below.

 In the example interactions between an offline client (key fob), an
 RS (online lock), and an AS is shown. It is assumed that there is a
 provisioning step where the client has access to the AS. This
 corresponds to message exchanges A and B which are shown in
 Figure 22.

 Authorization consent from the resource owner can be pre-configured,
 but it can also be provided via an interactive flow with the resource
 owner. An example of this for the key fob case could be that the
 resource owner has a connected car, he buys a generic key that he
 wants to use with the car. To authorize the key fob he connects it

Seitz, et al. Expires May 21, 2021 [Page 76]

Internet-Draft ACE-OAuth November 2020

 to his computer that then provides the UI for the device. After that
 OAuth 2.0 implicit flow can used to authorize the key for his car at
 the the car manufacturers AS.

 Note: In this example the client does not know the exact door it will
 be used to access since the token request is not send at the time of
 access. So the scope and audience parameters are set quite wide to
 start with, while tailored values narrowing down the claims to the
 specific RS being accessed can be provided to that RS during an
 introspection step.

 A: The client sends a CoAP POST request to the token endpoint at
 AS. The request contains the Audience parameter set to "PACS1337"
 (PACS, Physical Access System), a value the that identifies the
 physical access control system to which the individual doors are
 connected. The AS generates an access token as an opaque string,
 which it can match to the specific client and the targeted
 audience. It furthermore generates a symmetric proof-of-
 possession key. The communication security and authentication
 between client and AS is assumed to have been provided at
 transport layer (e.g. via DTLS) using a pre-shared security
 context (psk, rpk or certificate).
 B: The AS responds with a CoAP 2.05 Content response, containing
 as playload the Access Information, including the access token and
 the symmetric proof-of-possession key. Communication security
 between C and RS will be DTLS and PreSharedKey. The PoP key is
 used as the PreSharedKey.

 Note: In this example we are using a symmetric key for a multi-RS
 audience, which is not recommended normally (see Section 6.9).
 However in this case the risk is deemed to be acceptable, since all
 the doors are part of the same physical access control system, and
 therefore the risk of a malicious RS impersonating the client towards
 another RS is low.

Seitz, et al. Expires May 21, 2021 [Page 77]

Internet-Draft ACE-OAuth November 2020

 Authorization
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | and mutual authentication
 | |
 A: +-------->| Header: POST (Code=0.02)
 | POST | Uri-Path:"token"
 | | Content-Format: application/ace+cbor
 | | Payload: <Request-Payload>
 | |
 B: |<--------+ Header: 2.05 Content
 | | Content-Format: application/ace+cbor
 | 2.05 | Payload: <Response-Payload>
 | |

 Figure 22: Token Request and Response using Client Credentials.

 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 23.

 Request-Payload:
 {
 "client_id" : "keyfob",
 "audience" : "PACS1337"
 }

 Response-Payload:
 {
 "access_token" : b64’VGVzdCB0b2tlbg==’,
 "cnf" : {
 "COSE_Key" : {
 "kid" : b64’c29tZSBwdWJsaWMga2V5IGlk’,
 "kty" : "oct",
 "alg" : "HS256",
 "k": b64’ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl-IXRtztJ6uE’
 }
 }
 }

 Figure 23: Request and Response Payload for C offline

 The access token in this case is just an opaque byte string
 referencing the authorization information at the AS.

 C: Next, the client POSTs the access token to the authz-info
 endpoint in the RS. This is a plain CoAP request, i.e., no DTLS
 between client and RS. Since the token is an opaque string, the

Seitz, et al. Expires May 21, 2021 [Page 78]

Internet-Draft ACE-OAuth November 2020

 RS cannot verify it on its own, and thus defers to respond the
 client with a status code until after step E.
 D: The RS sends the token to the introspection endpoint on the AS
 using a CoAP POST request. In this example RS and AS are assumed
 to have performed mutual authentication using a pre shared
 security context (psk, rpk or certificate) with the RS acting as
 DTLS client.
 E: The AS provides the introspection response (2.05 Content)
 containing parameters about the token. This includes the
 confirmation key (cnf) parameter that allows the RS to verify the
 client’s proof of possession in step F. Note that our example in
 Figure 25 assumes a pre-established key (e.g. one used by the
 client and the RS for a previous token) that is now only
 referenced by its key-identifier ’kid’.
 After receiving message E, the RS responds to the client’s POST in
 step C with the CoAP response code 2.01 (Created).

 Resource
 Client Server
 | |
 C: +-------->| Header: POST (T=CON, Code=0.02)
 | POST | Uri-Path:"authz-info"
 | | Payload: b64’VGVzdCB0b2tlbg==’
 | |
 | | Authorization
 | | Server
 | | |
 | D: +--------->| Header: POST (Code=0.02)
 | | POST | Uri-Path: "introspect"
 | | | Content-Format: "application/ace+cbor"
 | | | Payload: <Request-Payload>
 | | |
 | E: |<---------+ Header: 2.05 Content
 | | 2.05 | Content-Format: "application/ace+cbor"
 | | | Payload: <Response-Payload>
 | | |
 | |
 |<--------+ Header: 2.01 Created
 | 2.01 |
 | |

 Figure 24: Token Introspection for C offline
 The information contained in the Request-Payload and the Response-
 Payload is shown in Figure 25.

Seitz, et al. Expires May 21, 2021 [Page 79]

Internet-Draft ACE-OAuth November 2020

 Request-Payload:
 {
 "token" : b64’VGVzdCB0b2tlbg==’,
 "client_id" : "FrontDoor",
 }

 Response-Payload:
 {
 "active" : true,
 "aud" : "lockOfDoor4711",
 "scope" : "open, close",
 "iat" : 1563454000,
 "cnf" : {
 "kid" : b64’c29tZSBwdWJsaWMga2V5IGlk’
 }
 }

 Figure 25: Request and Response Payload for Introspection

 The client uses the symmetric PoP key to establish a DTLS
 PreSharedKey secure connection to the RS. The CoAP request PUT is
 sent to the uri-path /state on the RS, changing the state of the
 door to locked.
 F: The RS responds with a appropriate over the secure DTLS
 channel.

 Resource
 Client Server
 | |
 |<=======>| DTLS Connection Establishment
 | | using Pre Shared Key
 | |
 +-------->| Header: PUT (Code=0.03)
 | PUT | Uri-Path: "state"
 | | Payload: <new state for the lock>
 | |
 F: |<--------+ Header: 2.04 Changed
 | 2.04 | Payload: <new state for the lock>
 | |

 Figure 26: Resource request and response protected by OSCORE

Appendix F. Document Updates

 RFC EDITOR: PLEASE REMOVE THIS SECTION.

Seitz, et al. Expires May 21, 2021 [Page 80]

Internet-Draft ACE-OAuth November 2020

F.1. Version -21 to 22

 o Provided section numbers in references to OAuth RFC.
 o Updated IANA mapping registries to only use "Private Use" and
 "Expert Review".
 o Made error messages optional for RS at token submission since it
 may not be able to send them depending on the profile.
 o Corrected errors in examples.

F.2. Version -20 to 21

 o Added text about expiration of RS keys.

F.3. Version -19 to 20

 o Replaced "req_aud" with "audience" from the OAuth token exchange
 draft.
 o Updated examples to remove unnecessary elements.

F.4. Version -18 to -19

 o Added definition of "Authorization Information".
 o Explicitly state that ACE allows encoding refresh tokens in binary
 format in addition to strings.
 o Renamed "AS Information" to "AS Request Creation Hints" and added
 the possibility to specify req_aud and scope as hints.
 o Added the "kid" parameter to AS Request Creation Hints.
 o Added security considerations about the integrity protection of
 tokens with multi-RS audiences.
 o Renamed IANA registries mapping OAuth parameters to reflect the
 mapped registry.
 o Added JWT claim names to CWT claim registrations.
 o Added expert review instructions.
 o Updated references to TLS from 1.2 to 1.3.

F.5. Version -17 to -18

 o Added OSCORE options in examples involving OSCORE.
 o Removed requirement for the client to send application/cwt, since
 the client has no way to know.
 o Clarified verification of tokens by the RS.
 o Added exi claim CWT registration.

F.6. Version -16 to -17

 o Added references to (D)TLS 1.3.
 o Added requirement that responses are bound to requests.

Seitz, et al. Expires May 21, 2021 [Page 81]

Internet-Draft ACE-OAuth November 2020

 o Specify that grant_type is OPTIONAL in C2AS requests (as opposed
 to REQUIRED in OAuth).
 o Replaced examples with hypothetical COSE profile with OSCORE.
 o Added requirement for content type application/ace+cbor in error
 responses for token and introspection requests and responses.
 o Reworked abbreviation space for claims, request and response
 parameters.
 o Added text that the RS may indicate that it is busy at the authz-
 info resource.
 o Added section that specifies how the RS verifies an access token.
 o Added section on the protection of the authz-info endpoint.
 o Removed the expiration mechanism based on sequence numbers.
 o Added reference to RFC7662 security considerations.
 o Added considerations on minimal security requirements for
 communication.
 o Added security considerations on unprotected information sent to
 authz-info and in the error responses.

F.7. Version -15 to -16

 o Added text the RS using RFC6750 error codes.
 o Defined an error code for incompatible token request parameters.
 o Removed references to the actors draft.
 o Fixed errors in examples.

F.8. Version -14 to -15

 o Added text about refresh tokens.
 o Added text about protection of credentials.
 o Rephrased introspection so that other entities than RS can do it.
 o Editorial improvements.

F.9. Version -13 to -14

 o Split out the ’aud’, ’cnf’ and ’rs_cnf’ parameters to
 [I-D.ietf-ace-oauth-params]
 o Introduced the "application/ace+cbor" Content-Type.
 o Added claim registrations from ’profile’ and ’rs_cnf’.
 o Added note on schema part of AS Information Section 5.3
 o Realigned the parameter abbreviations to push rarely used ones to
 the 2-byte encoding size of CBOR integers.

F.10. Version -12 to -13

 o Changed "Resource Information" to "Access Information" to avoid
 confusion.
 o Clarified section about AS discovery.
 o Editorial changes

Seitz, et al. Expires May 21, 2021 [Page 82]

Internet-Draft ACE-OAuth November 2020

F.11. Version -11 to -12

 o Moved the Request error handling to a section of its own.
 o Require the use of the abbreviation for profile identifiers.
 o Added rs_cnf parameter in the introspection response, to inform
 RS’ with several RPKs on which key to use.
 o Allowed use of rs_cnf as claim in the access token in order to
 inform an RS with several RPKs on which key to use.
 o Clarified that profiles must specify if/how error responses are
 protected.
 o Fixed label number range to align with COSE/CWT.
 o Clarified the requirements language in order to allow profiles to
 specify other payload formats than CBOR if they do not use CoAP.

F.12. Version -10 to -11

 o Fixed some CBOR data type errors.
 o Updated boilerplate text

F.13. Version -09 to -10

 o Removed CBOR major type numbers.
 o Removed the client token design.
 o Rephrased to clarify that other protocols than CoAP can be used.
 o Clarifications regarding the use of HTTP

F.14. Version -08 to -09

 o Allowed scope to be byte strings.
 o Defined default names for endpoints.
 o Refactored the IANA section for briefness and consistency.
 o Refactored tables that define IANA registry contents for
 consistency.
 o Created IANA registry for CBOR mappings of error codes, grant
 types and Authorization Server Information.
 o Added references to other document sections defining IANA entries
 in the IANA section.

F.15. Version -07 to -08

 o Moved AS discovery from the DTLS profile to the framework, see
 Section 5.1.
 o Made the use of CBOR mandatory. If you use JSON you can use
 vanilla OAuth.
 o Made it mandatory for profiles to specify C-AS security and RS-AS
 security (the latter only if introspection is supported).
 o Made the use of CBOR abbreviations mandatory.

Seitz, et al. Expires May 21, 2021 [Page 83]

Internet-Draft ACE-OAuth November 2020

 o Added text to clarify the use of token references as an
 alternative to CWTs.
 o Added text to clarify that introspection must not be delayed, in
 case the RS has to return a client token.
 o Added security considerations about leakage through unprotected AS
 discovery information, combining profiles and leakage through
 error responses.
 o Added privacy considerations about leakage through unprotected AS
 discovery.
 o Added text that clarifies that introspection is optional.
 o Made profile parameter optional since it can be implicit.
 o Clarified that CoAP is not mandatory and other protocols can be
 used.
 o Clarified the design justification for specific features of the
 framework in appendix A.
 o Clarified appendix E.2.
 o Removed specification of the "cnf" claim for CBOR/COSE, and
 replaced with references to [RFC8747]

F.16. Version -06 to -07

 o Various clarifications added.
 o Fixed erroneous author email.

F.17. Version -05 to -06

 o Moved sections that define the ACE framework into a subsection of
 the framework Section 5.
 o Split section on client credentials and grant into two separate
 sections, Section 5.4, and Section 5.5.
 o Added Section 5.6 on AS authentication.
 o Added Section 5.7 on the Authorization endpoint.

F.18. Version -04 to -05

 o Added RFC 2119 language to the specification of the required
 behavior of profile specifications.
 o Added Section 5.5 on the relation to the OAuth2 grant types.
 o Added CBOR abbreviations for error and the error codes defined in
 OAuth2.
 o Added clarification about token expiration and long-running
 requests in Section 5.10.3
 o Added security considerations about tokens with symmetric PoP keys
 valid for more than one RS.
 o Added privacy considerations section.
 o Added IANA registry mapping the confirmation types from RFC 7800
 to equivalent COSE types.

Seitz, et al. Expires May 21, 2021 [Page 84]

Internet-Draft ACE-OAuth November 2020

 o Added appendix D, describing assumptions about what the AS knows
 about the client and the RS.

F.19. Version -03 to -04

 o Added a description of the terms "framework" and "profiles" as
 used in this document.
 o Clarified protection of access tokens in section 3.1.
 o Clarified uses of the "cnf" parameter in section 6.4.5.
 o Clarified intended use of Client Token in section 7.4.

F.20. Version -02 to -03

 o Removed references to draft-ietf-oauth-pop-key-distribution since
 the status of this draft is unclear.
 o Copied and adapted security considerations from draft-ietf-oauth-
 pop-key-distribution.
 o Renamed "client information" to "RS information" since it is
 information about the RS.
 o Clarified the requirements on profiles of this framework.
 o Clarified the token endpoint protocol and removed negotiation of
 "profile" and "alg" (section 6).
 o Renumbered the abbreviations for claims and parameters to get a
 consistent numbering across different endpoints.
 o Clarified the introspection endpoint.
 o Renamed token, introspection and authz-info to "endpoint" instead
 of "resource" to mirror the OAuth 2.0 terminology.
 o Updated the examples in the appendices.

F.21. Version -01 to -02

 o Restructured to remove communication security parts. These shall
 now be defined in profiles.
 o Restructured section 5 to create new sections on the OAuth
 endpoints token, introspection and authz-info.
 o Pulled in material from draft-ietf-oauth-pop-key-distribution in
 order to define proof-of-possession key distribution.
 o Introduced the "cnf" parameter as defined in RFC7800 to reference
 or transport keys used for proof of possession.
 o Introduced the "client-token" to transport client information from
 the AS to the client via the RS in conjunction with introspection.
 o Expanded the IANA section to define parameters for token request,
 introspection and CWT claims.
 o Moved deployment scenarios to the appendix as examples.

Seitz, et al. Expires May 21, 2021 [Page 85]

Internet-Draft ACE-OAuth November 2020

F.22. Version -00 to -01

 o Changed 5.1. from "Communication Security Protocol" to "Client
 Information".
 o Major rewrite of 5.1 to clarify the information exchanged between
 C and AS in the PoP access token request profile for IoT.

 * Allow the client to indicate preferences for the communication
 security protocol.
 * Defined the term "Client Information" for the additional
 information returned to the client in addition to the access
 token.
 * Require that the messages between AS and client are secured,
 either with (D)TLS or with COSE_Encrypted wrappers.
 * Removed dependency on OSCOAP and added generic text about
 object security instead.
 * Defined the "rpk" parameter in the client information to
 transmit the raw public key of the RS from AS to client.
 * (D)TLS MUST use the PoP key in the handshake (either as PSK or
 as client RPK with client authentication).
 * Defined the use of x5c, x5t and x5tS256 parameters when a
 client certificate is used for proof of possession.
 * Defined "tktn" parameter for signaling for how to transfer the
 access token.
 o Added 5.2. the CoAP Access-Token option for transferring access
 tokens in messages that do not have payload.
 o 5.3.2. Defined success and error responses from the RS when
 receiving an access token.
 o 5.6.:Added section giving guidance on how to handle token
 expiration in the absence of reliable time.
 o Appendix B Added list of roles and responsibilities for C, AS and
 RS.

Authors’ Addresses

 Ludwig Seitz
 Combitech
 Djaeknegatan 31
 Malmoe 211 35
 Sweden

 Email: ludwig.seitz@combitech.se

Seitz, et al. Expires May 21, 2021 [Page 86]

Internet-Draft ACE-OAuth November 2020

 Goeran Selander
 Ericsson
 Faroegatan 6
 Kista 164 80
 Sweden

 Email: goran.selander@ericsson.com

 Erik Wahlstroem
 Sweden

 Email: erik@wahlstromstekniska.se

 Samuel Erdtman
 Spotify AB
 Birger Jarlsgatan 61, 4tr
 Stockholm 113 56
 Sweden

 Email: erdtman@spotify.com

 Hannes Tschofenig
 Arm Ltd.
 Absam 6067
 Austria

 Email: Hannes.Tschofenig@arm.com

Seitz, et al. Expires May 21, 2021 [Page 87]

ACE Working Group F. Palombini
Internet-Draft Ericsson AB
Intended status: Standards Track L. Seitz
Expires: April 30, 2021 Combitech
 G. Selander
 Ericsson AB
 M. Gunnarsson
 RISE
 October 27, 2020

 OSCORE Profile of the Authentication and Authorization for Constrained
 Environments Framework
 draft-ietf-ace-oscore-profile-13

Abstract

 This memo specifies a profile for the Authentication and
 Authorization for Constrained Environments (ACE) framework. It
 utilizes Object Security for Constrained RESTful Environments
 (OSCORE) to provide communication security and proof-of-possession
 for a key owned by the client and bound to an OAuth 2.0 access token.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Palombini, et al. Expires April 30, 2021 [Page 1]

Internet-Draft OSCORE Profile of ACE October 2020

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 2. Protocol Overview . 4
 3. Client-AS Communication 6
 3.1. C-to-AS: POST to token endpoint 6
 3.2. AS-to-C: Access Token 8
 3.2.1. The OSCORE_Input_Material 12
 4. Client-RS Communication 15
 4.1. C-to-RS: POST to authz-info endpoint 16
 4.1.1. The Nonce 1 Parameter 17
 4.1.2. The ace_client_recipientid Parameter 17
 4.2. RS-to-C: 2.01 (Created) 17
 4.2.1. The Nonce 2 Parameter 19
 4.2.2. The ace_server_recipientid Parameter 19
 4.3. OSCORE Setup . 19
 4.4. Access rights verification 22
 5. Secure Communication with AS 22
 6. Discarding the Security Context 22
 7. Security Considerations 23
 8. Privacy Considerations 25
 9. IANA Considerations . 25
 9.1. ACE Profile Registry 25
 9.2. OAuth Parameters Registry 26
 9.3. OAuth Parameters CBOR Mappings Registry 26
 9.4. OSCORE Security Context Parameters Registry 27
 9.5. CWT Confirmation Methods Registry 28
 9.6. JWT Confirmation Methods Registry 28
 9.7. Expert Review Instructions 28
 10. References . 29
 10.1. Normative References 29
 10.2. Informative References 30
 Appendix A. Profile Requirements 31
 Acknowledgments . 31
 Authors’ Addresses . 32

Palombini, et al. Expires April 30, 2021 [Page 2]

Internet-Draft OSCORE Profile of ACE October 2020

1. Introduction

 This memo specifies a profile of the ACE framework
 [I-D.ietf-ace-oauth-authz]. In this profile, a client and a resource
 server use the Constrained Application Protocol (CoAP) [RFC7252] to
 communicate. The client uses an access token, bound to a symmetric
 key (the proof-of-possession key) to authorize its access to the
 resource server. Note that this profile uses a symmetric-crypto-
 based scheme, where the symmetric secret is used as input material
 for keying material derivation. In order to provide communication
 security and proof of possession, the client and resource server use
 Object Security for Constrained RESTful Environments (OSCORE)
 [RFC8613]. Note that the proof of possession is not done by a
 dedicated protocol element, but rather occurs after the first OSCORE
 exchange.

 OSCORE specifies how to use CBOR Object Signing and Encryption (COSE)
 [RFC8152] to secure CoAP messages. Note that OSCORE can be used to
 secure CoAP messages, as well as HTTP and combinations of HTTP and
 CoAP; a profile of ACE similar to the one described in this document,
 with the difference of using HTTP instead of CoAP as communication
 protocol, could be specified analogously to this one.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Certain security-related terms such as "authentication",
 "authorization", "confidentiality", "(data) integrity", "message
 authentication code", and "verify" are taken from [RFC4949].

 RESTful terminology follows HTTP [RFC7231].

 Terminology for entities in the architecture is defined in OAuth 2.0
 [RFC6749], such as client (C), resource server (RS), and
 authorization server (AS). It is assumed in this document that a
 given resource on a specific RS is associated to a unique AS.

 Concise Binary Object Representation (CBOR) [I-D.ietf-cbor-7049bis]
 and Concise Data Definition Language (CDDL) [RFC8610] are used in
 this specification. CDDL predefined type names, especially bstr for
 CBOR byte strings and tstr for CBOR text strings, are used
 extensively in the document.

Palombini, et al. Expires April 30, 2021 [Page 3]

Internet-Draft OSCORE Profile of ACE October 2020

 Note that the term "endpoint" is used here, as in
 [I-D.ietf-ace-oauth-authz], following its OAuth definition, which is
 to denote resources such as token and introspect at the AS and authz-
 info at the RS. The CoAP [RFC7252] definition, which is "An entity
 participating in the CoAP protocol" is not used in this memo.

2. Protocol Overview

 This section gives an overview of how to use the ACE Framework
 [I-D.ietf-ace-oauth-authz] to secure the communication between a
 client and a resource server using OSCORE [RFC8613]. The parameters
 needed by the client to negotiate the use of this profile with the
 authorization server, as well as the OSCORE setup process, are
 described in detail in the following sections.

 The RS maintains a collection of OSCORE Security Contexts with
 associated authorization information for all the clients that it is
 communicating with. The authorization information is maintained as
 policy that is used as input to processing requests from those
 clients.

 This profile requires a client to retrieve an access token from the
 AS for the resource it wants to access on an RS, by sending an access
 token request to the token endpoint, as specified in section 5.6 of
 [I-D.ietf-ace-oauth-authz]. The access token request and response
 MUST be confidentiality-protected and ensure authenticity. This
 profile RECOMMENDS the use of OSCORE between client and AS, but other
 protocols (such as TLS or DTLS) can be used as well.

 Once the client has retrieved the access token, it generates a nonce
 N1. The client also generates its OSCORE Recipient ID (see
 Section 3.1 of [RFC8613]), ID1, for use with the keying material
 associated to the RS. The client posts the token, N1 and its
 Recipient ID to the RS using the authz-info endpoint and mechanisms
 specified in section 5.8 of [I-D.ietf-ace-oauth-authz] and Content-
 Format = application/ace+cbor. When using this profile, the
 communication with the authz-info endpoint is not protected, except
 for update of access rights.

 If the access token is valid, the RS replies to this request with a
 2.01 (Created) response with Content-Format = application/ace+cbor,
 which contains a nonce N2 and its newly generated OSCORE Recipient
 ID, ID2, for use with the keying material associated to the client.
 Moreover, the server concatenates the input salt received in the
 token, N1, and N2 to obtain the Master Salt of the OSCORE Security
 Context (see section 3 of [RFC8613]). The RS then derives the
 complete Security Context associated with the received token from the
 Master Salt, the OSCORE Recipient ID generated by the client (set as

Palombini, et al. Expires April 30, 2021 [Page 4]

Internet-Draft OSCORE Profile of ACE October 2020

 its OSCORE Sender ID), its own OSCORE Recipient ID, plus the
 parameters received in the access token from the AS, following
 section 3.2 of [RFC8613].

 In a similar way, after receiving the nonce N2, the client
 concatenates the input salt, N1 and N2 to obtain the Master Salt of
 the OSCORE Security Context. The client then derives the complete
 Security Context from the Master Salt, the OSCORE Recipient ID
 generated by the RS (set as its OSCORE Sender ID), its own OSCORE
 Recipient ID, plus the parameters received from the AS.

 Finally, the client sends a request protected with OSCORE to the RS.
 If the request verifies, the server stores the complete Security
 Context state that is ready for use in protecting messages, and uses
 it in the response, and in further communications with the client,
 until token expiration. This Security Context is discarded when a
 token (whether the same or different) is used to successfully derive
 a new Security Context for that client.

 The use of random nonces during the exchange prevents the reuse of an
 Authenticated Encryption with Associated Data (AEAD) nonces/key pair
 for two different messages. Two-time pad might otherwise occur when
 client and RS derive a new Security Context from an existing (non-
 expired) access token, as might occur when either party has just
 rebooted. Instead, by using random nonces as part of the Master
 Salt, the request to the authz-info endpoint posting the same token
 results in a different Security Context, by OSCORE construction,
 since even though the Master Secret, Sender ID and Recipient ID are
 the same, the Master Salt is different (see Section 3.2.1 of
 [RFC8613]). Therefore, the main requirement for the nonces is that
 they have a good amount of randomness. If random nonces were not
 used, a node re-using a non-expired old token would be susceptible to
 on-path attackers provoking the creation of OSCORE messages using old
 AEAD keys and nonces.

 After the whole message exchange has taken place, the client can
 contact the AS to request an update of its access rights, sending a
 similar request to the token endpoint that also includes an
 identifier so that the AS can find the correct OSCORE security
 material it has previously shared with the client. This specific
 identifier, encoded as a byte string, is assigned by the AS to be
 unique in the sets of its OSCORE Security Contexts, and is not used
 as input material to derive the full OSCORE Security Context.

 An overview of the profile flow for the OSCORE profile is given in
 Figure 1. The names of messages coincide with those of
 [I-D.ietf-ace-oauth-authz] when applicable.

Palombini, et al. Expires April 30, 2021 [Page 5]

Internet-Draft OSCORE Profile of ACE October 2020

 C RS AS
 | | |
 | ----- POST /token ----------------------------> |
 | | |
 | <---------------------------- Access Token ----- |
 | + Access Information |
 | ---- POST /authz-info ---> | |
 | (access_token, N1, ID1) | |
 | | |
 | <- 2.01 Created (N2, ID2)- | |
 | | |
 /Sec Context /Sec Context |
 derivation/ derivation/ |
 | | |
 | ---- OSCORE Request -----> | |
 | | |
 | /proof-of-possession |
 | Sec Context storage/ |
 | | |
 | <--- OSCORE Response ----- | |
 | | |
 /proof-of-possession | |
 Sec Context storage/ | |
 | | |
 | ---- OSCORE Request -----> | |
 | | |
 | <--- OSCORE Response ----- | |
 | ... | |

 Figure 1: Protocol Overview

3. Client-AS Communication

 The following subsections describe the details of the POST request
 and response to the token endpoint between client and AS.
 Section 3.2 of [RFC8613] defines how to derive a Security Context
 based on a shared master secret and a set of other parameters,
 established between client and server, which the client receives from
 the AS in this exchange. The proof-of-possession key (pop-key)
 included in the response from the AS MUST be used as master secret in
 OSCORE.

3.1. C-to-AS: POST to token endpoint

 The client-to-AS request is specified in Section 5.6.1 of
 [I-D.ietf-ace-oauth-authz].

Palombini, et al. Expires April 30, 2021 [Page 6]

Internet-Draft OSCORE Profile of ACE October 2020

 The client must send this POST request to the token endpoint over a
 secure channel that guarantees authentication, message integrity and
 confidentiality (see Section 5).

 An example of such a request, with payload in CBOR diagnostic
 notation without the tag and value abbreviations is reported in
 Figure 2

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "token"
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "req_aud" : "tempSensor4711",
 "scope" : "read"
 }

 Figure 2: Example C-to-AS POST /token request for an access token
 bound to a symmetric key.

 If the client wants to update its access rights without changing an
 existing OSCORE Security Context, it MUST include in its POST request
 to the token endpoint a req_cnf object. kid field carrying a CBOR
 byte string containing the OSCORE_Input_Material Identifier (assigned
 as discussed in Section 3.2). This identifier, together with other
 information such as audience (see Section 5.6.1 of
 [I-D.ietf-ace-oauth-authz]), can be used by the AS to determine the
 shared secret bound to the proof-of-possession token and therefore
 MUST identify a symmetric key that was previously generated by the AS
 as a shared secret for the communication between the client and the
 RS. The AS MUST verify that the received value identifies a proof-
 of-possession key that has previously been issued to the requesting
 client. If that is not the case, the Client-to-AS request MUST be
 declined with the error code ’invalid_request’ as defined in
 Section 5.6.3 of [I-D.ietf-ace-oauth-authz].

 An example of such a request, with payload in CBOR diagnostic
 notation without the tag and value abbreviations is reported in
 Figure 3

Palombini, et al. Expires April 30, 2021 [Page 7]

Internet-Draft OSCORE Profile of ACE October 2020

 Header: POST (Code=0.02)
 Uri-Host: "as.example.com"
 Uri-Path: "token"
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "req_aud" : "tempSensor4711",
 "scope" : "write",
 "req_cnf" : {
 "kid" : h’01’
 }

 Figure 3: Example C-to-AS POST /token request for updating rights to
 an access token bound to a symmetric key.

3.2. AS-to-C: Access Token

 After verifying the POST request to the token endpoint and that the
 client is authorized to obtain an access token corresponding to its
 access token request, the AS responds as defined in section 5.6.2 of
 [I-D.ietf-ace-oauth-authz]. If the client request was invalid, or
 not authorized, the AS returns an error response as described in
 section 5.6.3 of [I-D.ietf-ace-oauth-authz].

 The AS can signal that the use of OSCORE is REQUIRED for a specific
 access token by including the "profile" parameter with the value
 "coap_oscore" in the access token response. This means that the
 client MUST use OSCORE towards all resource servers for which this
 access token is valid, and follow Section 4.3 to derive the security
 context to run OSCORE. Usually it is assumed that constrained
 devices will be pre-configured with the necessary profile, so that
 this kind of profile negotiation can be omitted.

 Moreover, the AS MUST send the following data:

 o a master secret

 o an identifier of the OSCORE Input Material

 Additionally, the AS MAY send the following data, in the same
 response.

 o a context identifier

 o an AEAD algorithm

 o an HMAC-based key derivation function (HKDF) algorithm

Palombini, et al. Expires April 30, 2021 [Page 8]

Internet-Draft OSCORE Profile of ACE October 2020

 o a salt

 o the OSCORE version number

 This data is transported in the the OSCORE_Input_Material. The
 OSCORE_Input_Material is a CBOR map object, defined in Section 3.2.1.
 This object is transported in the ’cnf’ parameter of the access token
 response as defined in Section 3.2 of [I-D.ietf-ace-oauth-params], as
 the value of a field named ’osc’, registered in Section 9.5 and
 Section 9.6.

 The AS MAY assign an identifier to the context (context identifier).
 This identifier is used as ID Context in the OSCORE context as
 described in section 3.1 of [RFC8613]. If assigned, this parameters
 MUST be communicated as the ’contextId’ field in the
 OSCORE_Input_Material. The applications needs to consider that this
 identifier is sent in the clear and may reveal information about the
 endpoints, as mentioned in section 12.8 of [RFC8613].

 The master secret and the identifier of the OSCORE_Input_Material
 MUST be communicated as the ’ms’ and ’id’ field in the ’osc’ field in
 the ’cnf’ parameter of the access token response. If included, the
 AEAD algorithm is sent in the ’alg’ parameter in the
 OSCORE_Input_Material; the HKDF algorithm in the ’hkdf’ parameter of
 the OSCORE_Input_Material; a salt in the ’salt’ parameter of the
 OSCORE_Input_Material; and the OSCORE version in the ’version’
 parameter of the OSCORE_Input_Material.

 The same parameters MUST be included in the claims associated with
 the access token. This profile RECOMMENDS the use of CBOR web token
 (CWT) as specified in [RFC8392]. If the token is a CWT, the same
 OSCORE_Input_Material structure defined above MUST be placed in the
 ’osc’ field of the ’cnf’ claim of this token.

 The AS MUST send different OSCORE_Input_Material (and therefore
 different access tokens) to different authorized clients, in order
 for the RS to differentiate between clients.

 Figure 4 shows an example of an AS response, with payload in CBOR
 diagnostic notation without the tag and value abbreviations. The
 access token has been truncated for readability.

Palombini, et al. Expires April 30, 2021 [Page 9]

Internet-Draft OSCORE Profile of ACE October 2020

 Header: Created (Code=2.01)
 Content-Type: "application/ace+cbor"
 Payload:
 {
 "access_token" : h’8343a1010aa2044c53 ...
 (remainder of access token (CWT) omitted for brevity)’,
 "profile" : "coap_oscore",
 "expires_in" : "3600",
 "cnf" : {
 "osc" : {
 "id" : h’01’,
 "ms" : h’f9af838368e353e78888e1426bd94e6f’
 }
 }
 }

 Figure 4: Example AS-to-C Access Token response with OSCORE profile.

 Figure 5 shows an example CWT Claims Set, including the relevant
 OSCORE parameters in the ’cnf’ claim, in CBOR diagnostic notation
 without tag and value abbreviations.

 {
 "aud" : "tempSensorInLivingRoom",
 "iat" : "1360189224",
 "exp" : "1360289224",
 "scope" : "temperature_g firmware_p",
 "cnf" : {
 "osc" : {
 "ms" : h’f9af838368e353e78888e1426bd94e6f’,
 "id" : h’01’
 }
 }
 }

 Figure 5: Example CWT Claims Set with OSCORE parameters.

 The same CWT Claims Set as in Figure 5, using the value abbreviations
 defined in [I-D.ietf-ace-oauth-authz] and [RFC8747] and encoded in
 CBOR is shown in Figure 6. The bytes in hexadecimal are reported in
 the first column, while their corresponding CBOR meaning is reported
 after the ’#’ sign on the second column, for easiness of readability.

 NOTE TO THE RFC EDITOR: before publishing, it should be checked (and
 in case fixed) that the values used below (which are not yet
 registered) are the final values registered in IANA.

Palombini, et al. Expires April 30, 2021 [Page 10]

Internet-Draft OSCORE Profile of ACE October 2020

 A5 # map(5)
 63 # text(3)
 617564 # "aud"
 76 # text(22)
 74656D7053656E736F72496E4C6976696E67526F6F6D
 # "tempSensorInLivingRoom"
 63 # text(3)
 696174 # "iat"
 6A # text(10)
 31333630313839323234 # "1360189224"
 63 # text(3)
 657870 # "exp"
 6A # text(10)
 31333630323839323234 # "1360289224"
 65 # text(5)
 73636F7065 # "scope"
 78 18 # text(24)
 74656D70657261747572655F67206669726D776172655F70
 # "temperature_g firmware_p"
 63 # text(3)
 636E66 # "cnf"
 A1 # map(1)
 63 # text(3)
 6F7363 # "osc"
 A2 # map(2)
 62 # text(2)
 6D73 # "ms"
 50 # bytes(16)
 F9AF838368E353E78888E1426BD94E6F
 # "\xF9\xAF\x83\x83h\xE3S\xE7
 \x88\x88\xE1Bk\xD9No"
 62 # text(2)
 6964 # "id"
 41 # bytes(1)
 01 # "\x01"

 Figure 6: Example CWT Claims Set with OSCORE parameters, CBOR
 encoded.

 If the client has requested an update to its access rights using the
 same OSCORE Security Context, which is valid and authorized, the AS
 MUST omit the ’cnf’ parameter in the response, and MUST carry the
 OSCORE Input Material identifier in the ’kid’ field in the ’cnf’
 parameter of the token. This identifier needs to be included in the
 token in order for the RS to identify the correct OSCORE Input
 Material.

Palombini, et al. Expires April 30, 2021 [Page 11]

Internet-Draft OSCORE Profile of ACE October 2020

 Figure 7 shows an example of such an AS response, with payload in
 CBOR diagnostic notation without the tag and value abbreviations.
 The access token has been truncated for readability.

 Header: Created (Code=2.01)
 Content-Type: "application/ace+cbor"
 Payload:
 {
 "access_token" : h’8343a1010aa2044c53 ...
 (remainder of access token (CWT) omitted for brevity)’,
 "profile" : "coap_oscore",
 "expires_in" : "3600"
 }

 Figure 7: Example AS-to-C Access Token response with OSCORE profile,
 for update of access rights.

 Figure 8 shows an example CWT Claims Set, containing the necessary
 OSCORE parameters in the ’cnf’ claim for update of access rights, in
 CBOR diagnostic notation without tag and value abbreviations.

 {
 "aud" : "tempSensorInLivingRoom",
 "iat" : "1360189224",
 "exp" : "1360289224",
 "scope" : "temperature_h",
 "cnf" : {
 "kid" : h’01’
 }
 }

 Figure 8: Example CWT Claims Set with OSCORE parameters for update of
 access rights.

3.2.1. The OSCORE_Input_Material

 An OSCORE_Input_Material is an object that represents the input
 material to derive an OSCORE Security Context, i.e., the local set of
 information elements necessary to carry out the cryptographic
 operations in OSCORE (Section 3.1 of [RFC8613]). In particular, the
 OSCORE_Input_Material is defined to be serialized and transported
 between nodes, as specified by this document, but can also be used by
 other specifications if needed. The OSCORE_Input_Material can either
 be encoded as a JSON object or as a CBOR map. The set of common
 parameters that can appear in an OSCORE_Input_Material can be found
 in the IANA "OSCORE Security Context Parameters" registry

Palombini, et al. Expires April 30, 2021 [Page 12]

Internet-Draft OSCORE Profile of ACE October 2020

 (Section 9.4), defined for extensibility, and is specified below.
 All parameters are optional. Table 1 provides a summary of the
 OSCORE_Input_Material parameters defined in this section.

 +-----------+-------+-------------+-------------------+-------------+
 | name | CBOR | CBOR type | registry | description |
 | | label | | | |
 +-----------+-------+-------------+-------------------+-------------+
version	0	unsigned		OSCORE
		integer		Version
ms	1	byte string		OSCORE
				Master
				Secret
				value
id	2	byte string		OSCORE
				Input
				Material
				Identifier
hkdf	3	text string	[COSE.Algorithms]	OSCORE HKDF
		/ integer	Values (HMAC-	value
			based)	
alg	4	text string	[COSE.Algorithms]	OSCORE AEAD
		/ integer	Values (AEAD)	Algorithm
				value
salt	5	byte string		an input to
				OSCORE
				Master Salt
				value
contextId	6	byte string		OSCORE ID
				Context
				value
 +-----------+-------+-------------+-------------------+-------------+

 Table 1: OSCORE_Input_Material Parameters

 version: This parameter identifies the OSCORE Version number, which
 is an unsigned integer. For more information about this field,
 see section 5.4 of [RFC8613]. In JSON, the "version" value is an
 integer. In CBOR, the "version" type is int, and has label 0.

 ms: This parameter identifies the OSCORE Master Secret value, which
 is a byte string. For more information about this field, see

Palombini, et al. Expires April 30, 2021 [Page 13]

Internet-Draft OSCORE Profile of ACE October 2020

 section 3.1 of [RFC8613]. In JSON, the "ms" value is a Base64
 encoded byte string. In CBOR, the "ms" type is bstr, and has
 label 1.

 id: This parameter identifies the OSCORE_Input_Material and is
 encoded as a byte string. In JSON, the "id" value is a Base64
 encoded byte string. In CBOR, the "id" type is byte string, and
 has label 8.

 hkdf: This parameter identifies the OSCORE HKDF Algorithm. For more
 information about this field, see section 3.1 of [RFC8613]. The
 values used MUST be registered in the IANA "COSE Algorithms"
 registry (see [COSE.Algorithms]) and MUST be HMAC-based HKDF
 algorithms. The value can either be the integer or the text
 string value of the HMAC-based HKDF algorithm in the "COSE
 Algorithms" registry. In JSON, the "hkdf" value is a case-
 sensitive ASCII string or an integer. In CBOR, the "hkdf" type is
 tstr or int, and has label 4.

 alg: This parameter identifies the OSCORE AEAD Algorithm. For more
 information about this field, see section 3.1 of [RFC8613] The
 values used MUST be registered in the IANA "COSE Algorithms"
 registry (see [COSE.Algorithms]) and MUST be AEAD algorithms. The
 value can either be the integer or the text string value of the
 HMAC-based HKDF algorithm in the "COSE Algorithms" registry. In
 JSON, the "alg" value is a case-sensitive ASCII string or an
 integer. In CBOR, the "alg" type is tstr or int, and has label 5.

 salt: This parameter identifies an input to the OSCORE Master Salt
 value, which is a byte string. For more information about this
 field, see section 3.1 of [RFC8613]. In JSON, the "salt" value is
 a Base64 encoded byte string. In CBOR, the "salt" type is bstr,
 and has label 6.

 contextId: This parameter identifies the security context as a byte
 string. This identifier is used as OSCORE ID Context. For more
 information about this field, see section 3.1 of [RFC8613]. In
 JSON, the "contextID" value is a Base64 encoded byte string. In
 CBOR, the "contextID" type is bstr, and has label 7.

 An example of JSON OSCORE_Input_Material is given in Figure 9.

Palombini, et al. Expires April 30, 2021 [Page 14]

Internet-Draft OSCORE Profile of ACE October 2020

 "osc" : {
 "alg" : "AES-CCM-16-64-128",
 "id" : b64’AQ==’
 "ms" : b64’+a+Dg2jjU+eIiOFCa9lObw’
 }

 Figure 9: Example JSON OSCORE_Input_Material

 The CDDL grammar describing the CBOR OSCORE_Input_Material is:

 OSCORE_Input_Material = {
 ? 0 => int, ; version
 ? 1 => bstr, ; ms
 ? 2 => bstr, ; id
 ? 3 => tstr / int, ; hkdf
 ? 4 => tstr / int, ; alg
 ? 5 => bstr, ; salt
 ? 6 => bstr, ; contextId
 * int / tstr => any
 }

4. Client-RS Communication

 The following subsections describe the details of the POST request
 and response to the authz-info endpoint between client and RS. The
 client generates a nonce N1 and an identifier ID1 unique in the sets
 of its own Recipient IDs, and posts them together with the token that
 includes the materials (e.g., OSCORE parameters) received from the AS
 to the RS. The RS then generates a nonce N2 and an identifier ID2
 unique in the sets of its own Recipient IDs, and uses Section 3.2 of
 [RFC8613] to derive a security context based on a shared master
 secret, the two nonces and the two identifiers, established between
 client and server. The nonces and identifiers are encoded as CBOR
 byte string if CBOR is used, and as Base64 string if JSON is used.
 This security context is used to protect all future communication
 between client and RS using OSCORE, as long as the access token is
 valid.

 Note that the RS and client authenticates themselves by generating
 the shared OSCORE Security Context using the pop-key as master
 secret. An attacker posting a valid token to the RS will not be able
 to generate a valid OSCORE context and thus not be able to prove
 possession of the pop-key. Additionally, the mutual authentication
 is only achieved after the client has successfully verified the
 response from the RS.

Palombini, et al. Expires April 30, 2021 [Page 15]

Internet-Draft OSCORE Profile of ACE October 2020

4.1. C-to-RS: POST to authz-info endpoint

 The client MUST generate a nonce value very unlikely to have been
 previously used with the same input keying material. This profile
 RECOMMENDS to use a 64-bit long random number as nonce’s value. The
 client MUST store the nonce N1 as long as the response from the RS is
 not received and the access token related to it is still valid.

 The client generates its own Recipient ID, ID1, for the OSCORE
 Security Context that it is establishing with the RS. By generating
 its own Recipient ID, the client makes sure that it does not collide
 with any of its Recipient IDs.

 The client MUST use CoAP and the Authorization Information resource
 as described in section 5.8.1 of [I-D.ietf-ace-oauth-authz] to
 transport the token, N1 and ID1 to the RS.

 Note that the use of the payload and the Content-Format is different
 from what is described in section 5.8.1 of
 [I-D.ietf-ace-oauth-authz], which only transports the token without
 any CBOR wrapping. In this profile, the client MUST wrap the token
 and N1 in a CBOR map. The client MUST use the Content-Format
 "application/ace+cbor" defined in section 8.14 of
 [I-D.ietf-ace-oauth-authz]. The client MUST include the access token
 using the "access_token" parameter, N1 using the ’nonce1’ parameter
 defined in Section 4.1.1, and ID1 using the ’ace_client_recipientid’
 parameter defined in Section 4.1.2.

 The communication with the authz-info endpoint does not have to be
 protected, except for the update of access rights case described
 below.

 Note that a client may be required to re-POST the access token in
 order to complete a request, since an RS may delete a stored access
 token (and associated Security Context) at any time, for example due
 to all storage space being consumed. This situation is detected by
 the client when it receives an AS Request Creation Hints response.
 Reposting the same access token will result in deriving a new OSCORE
 Security Context to be used with the RS, as different nonces will be
 used.

 Figure 10 shows an example of the request sent from the client to the
 RS, with payload in CBOR diagnostic notation without the tag and
 value abbreviations. The access token has been truncated for
 readability.

Palombini, et al. Expires April 30, 2021 [Page 16]

Internet-Draft OSCORE Profile of ACE October 2020

 Header: POST (Code=0.02)
 Uri-Host: "rs.example.com"
 Uri-Path: "authz-info"
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "access_token": h’8343a1010aa2044c53 ...
 (remainder of access token (CWT) omitted for brevity)’,
 "nonce1": h’018a278f7faab55a’,
 "ace_client_recipientid" : h’1645’
 }

 Figure 10: Example C-to-RS POST /authz-info request using CWT

 If the client has already posted a valid token, has already
 established a security association with the RS, and wants to update
 its access rights, the client can do so by posting the new token
 (retrieved from the AS and containing the update of access rights) to
 the /authz-info endpoint. The client MUST protect the request using
 the OSCORE Security Context established during the first token
 exchange. The client MUST only send the access token in the payload,
 no nonce or identifier are sent. After proper verification (see
 Section 4.2), the RS will replace the old token with the new one,
 maintaining the same Security Context.

4.1.1. The Nonce 1 Parameter

 This parameter MUST be sent from the client to the RS, together with
 the access token, if the ace profile used is coap_oscore. The
 parameter is encoded as a byte string for CBOR-based interactions,
 and as a string (Base64 encoded binary) for JSON-based interactions.
 This parameter is registered in Section 9.2.

4.1.2. The ace_client_recipientid Parameter

 This parameter MUST be sent from the client to the RS, together with
 the access token, if the ace profile used is coap_oscore. The
 parameter is encoded as a byte string for CBOR-based interactions,
 and as a string (Base64 encoded binary) for JSON-based interactions.
 This parameter is registered in Section 9.2.

4.2. RS-to-C: 2.01 (Created)

 The RS MUST follow the procedures defined in section 5.8.1 of
 [I-D.ietf-ace-oauth-authz]: the RS must verify the validity of the
 token. If the token is valid, the RS must respond to the POST
 request with 2.01 (Created). If the token is valid but is associated

Palombini, et al. Expires April 30, 2021 [Page 17]

Internet-Draft OSCORE Profile of ACE October 2020

 to claims that the RS cannot process (e.g., an unknown scope), or if
 any of the expected parameters is missing (e.g., any of the mandatory
 parameters from the AS or the identifier), or if any parameters
 received in the ’osc’ is unrecognized, the RS must respond with an
 error response code equivalent to the CoAP code 4.00 (Bad Request).
 In the latter two cases, the RS may provide additional information in
 the error response, in order to clarify what went wrong. The RS may
 make an introspection request (see Section 5.7.1 of
 [I-D.ietf-ace-oauth-authz]) to validate the token before responding
 to the POST request to the authz-info endpoint.

 Additionally, the RS MUST generate a nonce N2 very unlikely to have
 been previously used with the same input keying material, and its own
 Recipient ID, ID2. The RS makes sure that ID2 does not collide with
 any of its Recipient IDs. The RS MUST ensure that ID2 is different
 from the ace_client_recipientid. The RS sends N2 and ID2 within the
 2.01 (Created) response. The payload of the 2.01 (Created) response
 MUST be a CBOR map containing the ’nonce2’ parameter defined in
 Section 4.2.1, set to N2, and the ’ace_server_recipientid’ parameter
 defined in Section 4.2.2, set to ID2. This profile RECOMMENDS to use
 a 64-bit long random number as nonce’s value. The RS MUST use the
 Content-Format "application/ace+cbor" defined in section 8.14 of
 [I-D.ietf-ace-oauth-authz].

 Figure 11 shows an example of the response sent from the RS to the
 client, with payload in CBOR diagnostic notation without the tag and
 value abbreviations.

 Header: Created (Code=2.01)
 Content-Format: "application/ace+cbor"
 Payload:
 {
 "nonce2": h’25a8991cd700ac01’,
 "ace_server_recipientid" : h’0000’
 }

 Figure 11: Example RS-to-C 2.01 (Created) response

 As specified in section 5.8.3 of [I-D.ietf-ace-oauth-authz], the RS
 must notify the client with an error response with code 4.01
 (Unauthorized) for any long running request before terminating the
 session, when the access token expires.

 If the RS receives the token in a OSCORE protected message, it means
 that the client is requesting an update of access rights. The RS
 MUST discard any nonce and identifiers in the request, if any was
 sent. The RS MUST check that the "kid" of the "cnf" parameter of the

Palombini, et al. Expires April 30, 2021 [Page 18]

Internet-Draft OSCORE Profile of ACE October 2020

 new access token matches the OSCORE Input Material of the context
 used to protect the message. If that is the case, the RS MUST
 discard the old token and associate the new token to the Security
 Context identified by the "kid" value in the "cnf" parameter. The RS
 MUST respond with a 2.01 (Created) response protected with the same
 Security Context, with no payload. If any verification fails, the RS
 MUST respond with a 4.01 (Unauthorized) error response.

 As specified in section 5.8.1 of [I-D.ietf-ace-oauth-authz], when
 receiving an updated access token with updated authorization
 information from the client (see Section 3.1), it is recommended that
 the RS overwrites the previous token, that is only the latest
 authorization information in the token received by the RS is valid.
 This simplifies the process needed by the RS to keep track of
 authorization information for a given client.

4.2.1. The Nonce 2 Parameter

 This parameter MUST be sent from the RS to the client if the ace
 profile used is coap_oscore. The parameter is encoded as a byte
 string for CBOR-based interactions, and as a string (Base64 encoded
 binary) for JSON-based interactions. This parameter is registered in
 Section 9.2

4.2.2. The ace_server_recipientid Parameter

 This parameter MUST be sent from the RS to the client if the ace
 profile used is coap_oscore. The parameter is encoded as a byte
 string for CBOR-based interactions, and as a string (Base64 encoded
 binary) for JSON-based interactions. This parameter is registered in
 Section 9.2

4.3. OSCORE Setup

 Once receiving the 2.01 (Created) response from the RS, following the
 POST request to authz-info endpoint, the client MUST extract the bstr
 nonce N2 from the ’nonce2’ parameter in the CBOR map in the payload
 of the response. Then, the client MUST set the Master Salt of the
 Security Context created to communicate with the RS to the
 concatenation of salt, N1, and N2, in this order: Master Salt =
 salt | N1 | N2, where | denotes byte string concatenation, where salt
 is the CBOR byte string received from the AS in Section 3.2, and
 where N1 and N2 are the two nonces encoded as CBOR byte strings. An
 example of Master Salt construction using CBOR encoding is given in
 Figure 12.

Palombini, et al. Expires April 30, 2021 [Page 19]

Internet-Draft OSCORE Profile of ACE October 2020

N1, N2 and input salt expressed in CBOR diagnostic notation:
 nonce1 = h’018a278f7faab55a’
 nonce2 = h’25a8991cd700ac01’
 input salt = h’f9af838368e353e78888e1426bd94e6f’

N1, N2 and input salt as CBOR encoded byte strings:
 nonce1 = 0x48018a278f7faab55a
 nonce2 = 0x4825a8991cd700ac01
 input salt = 0x50f9af838368e353e78888e1426bd94e6f

Master Salt = 0x50 f9af838368e353e78888e1426bd94e6f 48 018a278f7faab55a 48 25a899
1cd700ac01

 Figure 12: Example of Master Salt construction using CBOR encoding

 If JSON is used instead of CBOR, the Master Salt of the Security
 Context is the Base64 encoding of the concatenation of the same
 parameters, each of them prefixed by their size, encoded in 1 byte.
 When using JSON, the nonces and input salt have a maximum size of 255
 bytes. An example of Master Salt construction using Base64 encoding
 is given in Figure 13.

N1, N2 and input salt values:
 nonce1 = 0x018a278f7faab55a (8 bytes)
 nonce2 = 0x25a8991cd700ac01 (8 bytes)
 input salt = 0xf9af838368e353e78888e1426bd94e6f (16 bytes)

Input to Base64 encoding: 0x10 f9af838368e353e78888e1426bd94e6f 08 018a278f7faab5
5a 08 25a8991cd700ac01

Master Salt = b64’EPmvg4No41PniIjhQmvZTm8IAYonj3+qtVoIJaiZHNcArAE=’

 Figure 13: Example of Master Salt construction using Base64 encoding

 The client MUST set the Sender ID to the ace_server_recipientid
 received in Section 4.2, and the Recipient ID to the
 ace_client_recipientid sent in Section 4.1. The client MUST set the
 Master Secret from the parameter received from the AS in Section 3.2.
 The client MUST set the AEAD Algorithm, ID Context, HKDF, and OSCORE
 Version from the parameters received from the AS in Section 3.2, if
 present. In case an optional parameter is omitted, the default value
 SHALL be used as described in sections 3.2 and 5.4 of [RFC8613].
 After that, the client MUST derive the complete Security Context
 following section 3.2.1 of [RFC8613]. From this point on, the client
 MUST use this Security Context to communicate with the RS when
 accessing the resources as specified by the authorization
 information.

Palombini, et al. Expires April 30, 2021 [Page 20]

Internet-Draft OSCORE Profile of ACE October 2020

 If any of the expected parameters is missing (e.g., any of the
 mandatory parameters from the AS or the RS), or if
 ace_client_recipientid equals ace_server_recipientid, then the client
 MUST stop the exchange, and MUST NOT derive the Security Context.
 The client MAY restart the exchange, to get the correct security
 material.

 The client then uses this Security Context to send requests to RS
 using OSCORE.

 After sending the 2.01 (Created) response, the RS MUST set the Master
 Salt of the Security Context created to communicate with the client
 to the concatenation of salt, N1, and N2, in the same way described
 above. An example of Master Salt construction using CBOR encoding is
 given in Figure 12 and using Base64 encoding is given in Figure 13.
 The RS MUST set the Sender ID from the ace_client_recipientid
 received in Section 4.1, and the Recipient ID from the
 ace_server_recipientid sent in Section 4.2. The RS MUST set the
 Master Secret from the parameter, received from the AS and forwarded
 by the client in the access token in Section 4.1 after validation of
 the token as specified in Section 4.2. The RS MUST set the AEAD
 Algorithm, ID Context, HKDF, and OSCORE Version from the parameters
 received from the AS and forwarded by the client in the access token
 in Section 4.1 after validation of the token as specified in
 Section 4.2, if present. In case an optional parameter is omitted,
 the default value SHALL be used as described in sections 3.2 and 5.4
 of [RFC8613]. After that, the RS MUST derive the complete Security
 Context following section 3.2.1 of [RFC8613], and MUST associate this
 Security Context with the authorization information from the access
 token.

 The RS then uses this Security Context to verify requests and send
 responses to C using OSCORE. If OSCORE verification fails, error
 responses are used, as specified in section 8 of [RFC8613].
 Additionally, if OSCORE verification succeeds, the verification of
 access rights is performed as described in section Section 4.4. The
 RS MUST NOT use the Security Context after the related token has
 expired, and MUST respond with a unprotected 4.01 (Unauthorized)
 error message to requests received that correspond to a Security
 Context with an expired token.

 Note that the ID Context can be assigned by the AS, communicated and
 set in both the RS and client after the exchange specified in this
 profile is executed. Subsequently, client and RS can update their ID
 Context by running a mechanism such as the one defined in
 Appendix B.2 of [RFC8613] if they both support it and are configured
 to do so. In that case, the ID Context in the OSCORE Security
 Context will not match the "contextId" parameter of the corresponding

Palombini, et al. Expires April 30, 2021 [Page 21]

Internet-Draft OSCORE Profile of ACE October 2020

 OSCORE_Input_Material. Running Appendix B.2 results in the keying
 material in the Security Contexts of client and RS being updated;
 this same result can also be achieved by the client reposting the
 access token as described in Section 4.1, but without updating the ID
 Context.

4.4. Access rights verification

 The RS MUST follow the procedures defined in section 5.8.2 of
 [I-D.ietf-ace-oauth-authz]: if an RS receives an OSCORE-protected
 request from a client, then the RS processes it according to
 [RFC8613]. If OSCORE verification succeeds, and the target resource
 requires authorization, the RS retrieves the authorization
 information using the access token associated to the Security
 Context. The RS then must verify that the authorization information
 covers the resource and the action requested.

5. Secure Communication with AS

 As specified in the ACE framework (section 5.7 of
 [I-D.ietf-ace-oauth-authz]), the requesting entity (RS and/or client)
 and the AS communicates via the introspection or token endpoint. The
 use of CoAP and OSCORE ([RFC8613]) for this communication is
 RECOMMENDED in this profile, other protocols (such as HTTP and DTLS
 or TLS) MAY be used instead.

 If OSCORE is used, the requesting entity and the AS are expected to
 have pre-established security contexts in place. How these security
 contexts are established is out of scope for this profile.
 Furthermore the requesting entity and the AS communicate through the
 introspection endpoint as specified in section 5.7 of
 [I-D.ietf-ace-oauth-authz] and through the token endpoint as
 specified in section 5.6 of [I-D.ietf-ace-oauth-authz].

6. Discarding the Security Context

 There are a number of scenarios where a client or RS needs to discard
 the OSCORE security context, and acquire a new one.

 The client MUST discard the current Security Context associated with
 an RS when:

 o the Sequence Number space ends.

 o the access token associated with the context expires.

Palombini, et al. Expires April 30, 2021 [Page 22]

Internet-Draft OSCORE Profile of ACE October 2020

 o the client receives a number of 4.01 Unauthorized responses to
 OSCORE requests using the same Security Context. The exact number
 needs to be specified by the application.

 o the client receives a new nonce in the 2.01 (Created) response
 (see Section 4.2) to a POST request to the authz-info endpoint,
 when re-posting a (non-expired) token associated to the existing
 context.

 The RS MUST discard the current Security Context associated with a
 client when:

 o the Sequence Number space ends.

 o the access token associated with the context expires.

 o the client has successfully replaced the current security context
 with a newer one by posting an access token to the unprotected
 /authz-info endpoint at the RS, e.g., by re-posting the same
 token, as specified in Section 4.1.

 Whenever one more access token is successfully posted to the RS, and
 a new Security Context is derived between the client and RS, messages
 in transit that were protected with the previous Security Context
 might not pass verification, as the old context is discarded. That
 means that messages sent shortly before the client posts one more
 access token to the RS might not successfully reach the destination.
 Analogously, implementations may want to cancel CoAP observations at
 the RS registered before the Security Context is replaced, or
 conversely they will need to implement a mechanism to ensure that
 those observation are to be protected with the newly derived Security
 Context.

7. Security Considerations

 This document specifies a profile for the Authentication and
 Authorization for Constrained Environments (ACE) framework
 [I-D.ietf-ace-oauth-authz]. Thus the general security considerations
 from the framework also apply to this profile.

 Furthermore the general security considerations of OSCORE [RFC8613]
 also apply to this specific use of the OSCORE protocol.

 As previously stated, the proof-of-possession in this profile is
 performed by both parties verifying that they have established the
 same Security Context, as specified in Section 4.3, which means that
 both the OSCORE request and OSCORE response pass verification. RS

Palombini, et al. Expires April 30, 2021 [Page 23]

Internet-Draft OSCORE Profile of ACE October 2020

 authentication requires both that the client trusts the AS and that
 the OSCORE response from the RS pass verification.

 OSCORE is designed to secure point-to-point communication, providing
 a secure binding between the request and the response(s). Thus the
 basic OSCORE protocol is not intended for use in point-to-multipoint
 communication (e.g., multicast, publish-subscribe). Implementers of
 this profile should make sure that their usecase corresponds to the
 expected use of OSCORE, to prevent weakening the security assurances
 provided by OSCORE.

 Since the use of nonces in the exchange guarantees uniqueness of AEAD
 keys and nonces, it is REQUIRED that nonces are not reused with the
 same input keying material even in case of re-boots. This document
 RECOMMENDS the use of 64 bit random nonces. Considering the birthday
 paradox, the average collision for each nonce will happen after 2^32
 messages, which is considerably more token provisionings than
 expected for intended applications. If applications use something
 else, such as a counter, they need to guarantee that reboot and loss
 of state on either node does not provoke re-use. If that is not
 guaranteed, nodes are susceptible to re-use of AEAD (nonces, keys)
 pairs, especially since an on-path attacker can cause the client to
 use an arbitrary nonce for Security Context establishment by
 replaying client-to-server messages.

 This profile recommends that the RS maintains a single access token
 for a client. The use of multiple access tokens for a single client
 increases the strain on the resource server as it must consider every
 access token and calculate the actual permissions of the client.
 Also, tokens indicating different or disjoint permissions from each
 other may lead the server to enforce wrong permissions. If one of
 the access tokens expires earlier than others, the resulting
 permissions may offer insufficient protection. Developers should
 avoid using multiple access tokens for a client.

 If a single OSCORE_Input_Material is used with multiple RSs, the RSs
 can impersonate C to one of the other RS, and impersonate another RS
 to the client. If a master secret is used with several clients, the
 Cs can impersonate RS to one of the other C. Similarly if symmetric
 keys are used to integrity protect the token between AS and RS and
 the token can be used with multiple RSs, the RSs can impersonate AS
 to one of the other RS. If the token key is used for any other
 communication between the RSs and AS, the RSs can impersonate each
 other to the AS.

Palombini, et al. Expires April 30, 2021 [Page 24]

Internet-Draft OSCORE Profile of ACE October 2020

8. Privacy Considerations

 This document specifies a profile for the Authentication and
 Authorization for Constrained Environments (ACE) framework
 [I-D.ietf-ace-oauth-authz]. Thus the general privacy considerations
 from the framework also apply to this profile.

 As this document uses OSCORE, thus the privacy considerations from
 [RFC8613] apply here as well.

 An unprotected response to an unauthorized request may disclose
 information about the resource server and/or its existing
 relationship with the client. It is advisable to include as little
 information as possible in an unencrypted response. When an OSCORE
 Security Context already exists between the client and the resource
 server, more detailed information may be included.

 The token is sent in the clear to the authz-info endpoint, so if a
 client uses the same single token from multiple locations with
 multiple Resource Servers, it can risk being tracked by the token’s
 value even when the access token is encrypted.

 The nonces exchanged in the request and response to the authz-info
 endpoint are also sent in the clear, so using random nonces is best
 for privacy (as opposed to, e.g., a counter, that might leak some
 information about the client).

 The identifiers used in OSCORE, negotiated between client and RS are
 privacy sensitive (see Section 12.8 of [RFC8613]), and could reveal
 information about the client, or may be used for correlating requests
 from one client.

 Note that some information might still leak after OSCORE is
 established, due to observable message sizes, the source, and the
 destination addresses.

9. IANA Considerations

 Note to RFC Editor: Please replace all occurrences of "[[this
 specification]]" with the RFC number of this specification and delete
 this paragraph.

9.1. ACE Profile Registry

 The following registration is done for the ACE Profile Registry
 following the procedure specified in section 8.8 of
 [I-D.ietf-ace-oauth-authz]:

Palombini, et al. Expires April 30, 2021 [Page 25]

Internet-Draft OSCORE Profile of ACE October 2020

 o Name: coap_oscore
 o Description: Profile for using OSCORE to secure communication
 between constrained nodes using the Authentication and
 Authorization for Constrained Environments framework.
 o CBOR Value: TBD (value between 1 and 255)
 o Reference: [[this specification]]

9.2. OAuth Parameters Registry

 The following registrations are done for the OAuth Parameters
 Registry following the procedure specified in section 11.2 of
 [RFC6749]:

 o Parameter name: nonce1
 o Parameter usage location: client-rs request
 o Change Controller: IESG
 o Specification Document(s): [[this specification]]

 o Parameter name: nonce2
 o Parameter usage location: rs-client response
 o Change Controller: IESG
 o Specification Document(s): [[this specification]]

 o Parameter name: ace_client_recipientid
 o Parameter usage location: client-rs request
 o Change Controller: IESG
 o Specification Document(s): [[this specification]]

 o Parameter name: ace_server_recipientid
 o Parameter usage location: rs-client response
 o Change Controller: IESG
 o Specification Document(s): [[this specification]]

9.3. OAuth Parameters CBOR Mappings Registry

 The following registrations are done for the OAuth Parameters CBOR
 Mappings Registry following the procedure specified in section 8.10
 of [I-D.ietf-ace-oauth-authz]:

 o Name: nonce1
 o CBOR Key: TBD1
 o Value Type: bstr
 o Reference: [[this specification]]

 o Name: nonce2
 o CBOR Key: TBD2
 o Value Type: bstr
 o Reference: [[this specification]]

Palombini, et al. Expires April 30, 2021 [Page 26]

Internet-Draft OSCORE Profile of ACE October 2020

 o Name: ace_client_recipientid
 o CBOR Key: TBD3
 o Value Type: bstr
 o Reference: [[this specification]]

 o Name: ace_server_recipientid
 o CBOR Key: TBD4
 o Value Type: bstr
 o Reference: [[this specification]]

9.4. OSCORE Security Context Parameters Registry

 It is requested that IANA create a new registry entitled "OSCORE
 Security Context Parameters" registry. The registry is to be created
 as Expert Review Required. Guidelines for the experts is provided
 Section 9.7. It should be noted that in addition to the expert
 review, some portions of the registry require a specification,
 potentially on standards track, be supplied as well.

 The columns of the registry are:

 name The JSON name requested (e.g., "ms"). Because a core goal of
 this specification is for the resulting representations to be
 compact, it is RECOMMENDED that the name be short. This name is
 case sensitive. Names may not match other registered names in a
 case-insensitive manner unless the Designated Experts determine
 that there is a compelling reason to allow an exception. The name
 is not used in the CBOR encoding.
 CBOR label The value to be used to identify this algorithm. Map key
 labels MUST be unique. The label can be a positive integer, a
 negative integer or a string. Integer values between -256 and 255
 and strings of length 1 are designated as Standards Track Document
 required. Integer values from -65536 to -257 and from 256 to
 65535 and strings of length 2 are designated as Specification
 Required. Integer values greater than 65535 and strings of length
 greater than 2 are designated as expert review. Integer values
 less than -65536 are marked as private use.
 CBOR Type This field contains the CBOR type for the field.
 registry This field denotes the registry that values may come from,
 if one exists.
 description This field contains a brief description for the field.
 specification This contains a pointer to the public specification
 for the field if one exists

 This registry will be initially populated by the values in Table 1.
 The specification column for all of these entries will be this
 document and [RFC8613].

Palombini, et al. Expires April 30, 2021 [Page 27]

Internet-Draft OSCORE Profile of ACE October 2020

9.5. CWT Confirmation Methods Registry

 The following registration is done for the CWT Confirmation Methods
 Registry following the procedure specified in section 7.2.1 of
 [RFC8747]:

 o Confirmation Method Name: "osc"
 o Confirmation Method Description: OSCORE_Input_Material carrying
 the parameters for using OSCORE per-message security with implicit
 key confirmation
 o Confirmation Key: TBD (value between 4 and 255)
 o Confirmation Value Type(s): map
 o Change Controller: IESG
 o Specification Document(s): Section 3.2.1 of [[this specification]]

9.6. JWT Confirmation Methods Registry

 The following registration is done for the JWT Confirmation Methods
 Registry following the procedure specified in section 6.2.1 of
 [RFC7800]:

 o Confirmation Method Value: "osc"
 o Confirmation Method Description: OSCORE_Input_Material carrying
 the parameters for using OSCORE per-message security with implicit
 key confirmation
 o Change Controller: IESG
 o Specification Document(s): Section 3.2.1 of [[this specification]]

9.7. Expert Review Instructions

 The IANA registry established in this document is defined to use the
 Expert Review registration policy. This section gives some general
 guidelines for what the experts should be looking for, but they are
 being designated as experts for a reason so they should be given
 substantial latitude.

 Expert reviewers should take into consideration the following points:

 o Point squatting should be discouraged. Reviewers are encouraged
 to get sufficient information for registration requests to ensure
 that the usage is not going to duplicate one that is already
 registered and that the point is likely to be used in deployments.
 The zones tagged as private use are intended for testing purposes
 and closed environments. Code points in other ranges should not
 be assigned for testing.
 o Specifications are required for the standards track range of point
 assignment. Specifications should exist for specification
 required ranges, but early assignment before a specification is

Palombini, et al. Expires April 30, 2021 [Page 28]

Internet-Draft OSCORE Profile of ACE October 2020

 available is considered to be permissible. Specifications are
 needed for the first-come, first-serve range if they are expected
 to be used outside of closed environments in an interoperable way.
 When specifications are not provided, the description provided
 needs to have sufficient information to identify what the point is
 being used for.
 o Experts should take into account the expected usage of fields when
 approving point assignment. The fact that there is a range for
 standards track documents does not mean that a standards track
 document cannot have points assigned outside of that range. The
 length of the encoded value should be weighed against how many
 code points of that length are left, the size of device it will be
 used on, and the number of code points left that encode to that
 size.

10. References

10.1. Normative References

 [COSE.Algorithms]
 IANA, "COSE Algorithms",
 <https://www.iana.org/assignments/cose/
 cose.xhtml#algorithms>.

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-35
 (work in progress), June 2020.

 [I-D.ietf-ace-oauth-params]
 Seitz, L., "Additional OAuth Parameters for Authorization
 in Constrained Environments (ACE)", draft-ietf-ace-oauth-
 params-13 (work in progress), April 2020.

 [I-D.ietf-cbor-7049bis]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", draft-ietf-cbor-7049bis-16 (work
 in progress), September 2020.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Palombini, et al. Expires April 30, 2021 [Page 29]

Internet-Draft OSCORE Profile of ACE October 2020

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

10.2. Informative References

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

Palombini, et al. Expires April 30, 2021 [Page 30]

Internet-Draft OSCORE Profile of ACE October 2020

 [RFC8747] Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March
 2020, <https://www.rfc-editor.org/info/rfc8747>.

Appendix A. Profile Requirements

 This section lists the specifications on this profile based on the
 requirements on the framework, as requested in Appendix C of
 [I-D.ietf-ace-oauth-authz].

 o Optionally define new methods for the client to discover the
 necessary permissions and AS for accessing a resource, different
 from the one proposed in: Not specified
 o Optionally specify new grant types: Not specified
 o Optionally define the use of client certificates as client
 credential type: Not specified
 o Specify the communication protocol the client and RS the must use:
 CoAP
 o Specify the security protocol the client and RS must use to
 protect their communication: OSCORE
 o Specify how the client and the RS mutually authenticate:
 Implicitly by possession of a common OSCORE security context.
 Note that the mutual authentication is not completed before the
 client has verified an OSCORE response using this security
 context.
 o Specify the proof-of-possession protocol(s) and how to select one,
 if several are available. Also specify which key types (e.g.,
 symmetric/asymmetric) are supported by a specific proof-of-
 possession protocol: OSCORE algorithms; pre-established symmetric
 keys
 o Specify a unique ace_profile identifier: coap_oscore
 o If introspection is supported: Specify the communication and
 security protocol for introspection: HTTP/CoAP (+ TLS/DTLS/OSCORE)
 o Specify the communication and security protocol for interactions
 between client and AS: HTTP/CoAP (+ TLS/DTLS/OSCORE)
 o Specify how/if the authz-info endpoint is protected, including how
 error responses are protected: Not protected.
 o Optionally define other methods of token transport than the authz-
 info endpoint: Not defined

Acknowledgments

 The authors wish to thank Jim Schaad and Marco Tiloca for the input
 on this memo. Special thanks to the responsible area director
 Benjamin Kaduk for his extensive review and contributed text. Ludwig
 Seitz worked on this document as part of the CelticNext projects
 CyberWI, and CRITISEC with funding from Vinnova.

Palombini, et al. Expires April 30, 2021 [Page 31]

Internet-Draft OSCORE Profile of ACE October 2020

Authors’ Addresses

 Francesca Palombini
 Ericsson AB

 Email: francesca.palombini@ericsson.com

 Ludwig Seitz
 Combitech
 Djaeknegatan 31
 Malmoe 211 35
 Sweden

 Email: ludwig.seitz@combitech.se

 Goeran Selander
 Ericsson AB

 Email: goran.selander@ericsson.com

 Martin Gunnarsson
 RISE
 Scheelevagen 17
 Lund 22370
 Sweden

 Email: martin.gunnarsson@ri.se

Palombini, et al. Expires April 30, 2021 [Page 32]

ACE Working Group F. Palombini
Internet-Draft Ericsson
Intended status: Standards Track November 04, 2019
Expires: May 7, 2020

 CoAP Pub-Sub Profile for Authentication and Authorization for
 Constrained Environments (ACE)
 draft-palombini-ace-coap-pubsub-profile-06

Abstract

 This specification defines an application profile for authentication
 and authorization for publishers and subscribers in a pub-sub setting
 scenario in a constrained environment, using the ACE framework. This
 profile relies on transport layer or application layer security to
 authorize the publisher to the broker. Moreover, it relies on
 application layer security for publisher-broker and subscriber-broker
 communication.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Palombini Expires May 7, 2020 [Page 1]

Internet-Draft coap-pubsub-profile November 2019

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 2
 2. Application Profile Overview 3
 3. coap_pubsub_app Application Profile 5
 3.1. Retrieval of COSE Key for protection of content 5
 4. Publisher . 8
 5. Subscriber . 10
 6. Pub-Sub Protected Communication 12
 6.1. Using COSE Objects To Protect The Resource Representation 13
 7. Security Considerations 14
 8. IANA Considerations . 15
 8.1. ACE Groupcomm Profile Registry 15
 8.2. ACE Groupcomm Key Registry 16
 9. References . 16
 9.1. Normative References 16
 9.2. Informative References 17
 Appendix A. Requirements on Application Profiles 17
 Acknowledgments . 19
 Author’s Address . 19

1. Introduction

 The publisher-subscriber setting allows for devices with limited
 reachability to communicate via a broker that enables store-and-
 forward messaging between the devices. The pub-sub scenario using
 the Constrained Application Protocol (CoAP) is specified in
 [I-D.ietf-core-coap-pubsub]. This document defines a way to
 authorize nodes in a CoAP pub-sub type of setting, using the ACE
 framework [I-D.ietf-ace-oauth-authz], and to provide the keys for
 protecting the communication between these nodes.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Readers are expected to be familiar with the terms and concepts
 described in [I-D.ietf-ace-oauth-authz], [I-D.ietf-ace-key-groupcomm]
 and [I-D.ietf-core-coap-pubsub]. In particular, analogously to
 [I-D.ietf-ace-oauth-authz], terminology for entities in the
 architecture such as Client (C), Resource Server (RS), and

Palombini Expires May 7, 2020 [Page 2]

Internet-Draft coap-pubsub-profile November 2019

 Authorization Server (AS) is defined in OAuth 2.0 [RFC6749] and
 [I-D.ietf-ace-actors], and terminology for entities such as the Key
 Distribution Center (KDC) and Dispatcher in
 [I-D.ietf-ace-key-groupcomm].

2. Application Profile Overview

 The objective of this document is to specify how to authorize nodes,
 provide keys, and protect a CoAP pub-sub communication, as described
 in [I-D.ietf-core-coap-pubsub], using [I-D.ietf-ace-key-groupcomm],
 which itself expands the Ace framework ([I-D.ietf-ace-oauth-authz]),
 and transport profiles ([I-D.ietf-ace-dtls-authorize],
 [I-D.ietf-ace-oscore-profile]).

 The architecture of the scenario is shown in Figure 1.

 +----------------+ +----------------+
 | | | |
 | Authorization | | Authorization |
 | Server 1 | | Server 2 |
 | | | |
 +----------------+ +----------------+
 ^ ^ ^
 | | |
 +---------(A)----+ | +-----(D)------+
 | +--------------------(B)--------+ |
 v v v
 +------------+ +------------+ +------------+
CoAP	----(C)--->	CoAP		CoAP
Client -	----(E)--->	Server -		Client -
			<----(F)----	
Publisher		Broker	-----(G)--->	Subscriber
 +------------+ +------------+ +------------+

 Figure 1: Architecture CoAP pubsub with Authorization Servers

 The RS is the broker, which contains the topic. This node
 corresponds to the Dispatcher, in [I-D.ietf-ace-key-groupcomm]. The
 AS1 hosts the policies about the Broker: what endpoints are allowed
 to Publish on the Broker. The Clients access this node to get write
 access to the Broker. The AS2 hosts the policies about the topic:
 what endpoints are allowed to access what topic. This node
 represents both the AS and Key Distribution Center roles from
 [I-D.ietf-ace-key-groupcomm].

 There are four phases, the first three can be done in parallel.

Palombini Expires May 7, 2020 [Page 3]

Internet-Draft coap-pubsub-profile November 2019

 1. The Publisher requests publishing access to the Broker at the
 AS1, and communicates with the Broker to set up security.

 2. The Publisher requests access to a specific topic at the AS2

 3. The Subscriber requests access to a specific topic at the AS2.

 4. The Publisher and the Subscriber securely post to and get
 publications from the Broker.

 This exchange aims at setting up 2 different security associations:
 on the one hand, the Publisher has a security association with the
 Broker, to protect the communication and securely authorize the
 Publisher to publish on a topic (Security Association 1). On the
 other hand, the Publisher has a security association with the
 Subscriber, to protect the publication content itself (Security
 Association 2). The Security Association 1 is set up using AS1 and a
 transport profile of [I-D.ietf-ace-oauth-authz], the Security
 Association 2 is set up using AS2 and [I-D.ietf-ace-key-groupcomm].

 Note that, analogously to the Publisher, the Subscriber can also set
 up an additional security association with the Broker, using an AS,
 in the same way the Publisher does with AS1. In this case, only
 authorized Subscribers would be able to get notifications from the
 Broker. The overhead would be that each Subscriber should access the
 AS and get all the information to start a secure exchange with the
 Broker.

 +------------+ +------------+ +------------+
CoAP		CoAP		CoAP
Client -		Server -		Client -
Publisher		Broker		Subscriber
 +------------+ +------------+ +------------+
 : : : :
 : ’------ Security -------’ :
 : Association 1 :
 ’------------------------------- Security --------------’
 Association 2

 Note that AS1 and AS2 might either be co-resident or be 2 separate
 physical entities, in which case access control policies must be
 exchanged between AS1 and AS2, so that they agree on rights for
 joining nodes about specific topics. How the policies are exchanged
 is out of scope for this specification.

Palombini Expires May 7, 2020 [Page 4]

Internet-Draft coap-pubsub-profile November 2019

3. coap_pubsub_app Application Profile

 This profile uses [I-D.ietf-ace-key-groupcomm], which expands the ACE
 framework. This document specifies which exact parameters from
 [I-D.ietf-ace-key-groupcomm] have to be used, and the values for each
 parameter.

 The Publisher and the Subscriber map to the Client in
 [I-D.ietf-ace-key-groupcomm], the AS2 maps to the AS and to the KDC,
 the Broker maps to the Dispatcher.

 Note that both publishers and subscribers use the same profile,
 called "coap_pubsub_app".

3.1. Retrieval of COSE Key for protection of content

 This phase is common to both Publisher and Subscriber. To maintain
 the generality, the Publisher or Subscriber is referred as Client in
 this section.

 Client Broker AS2
 | [----- Resource Request ---->] | |
 | | |
 | [<-- AS1, AS2 Information ---] | |
 | |
 | [------ Pub Key Format Negociation Request --->] |
 | |
 | [<---- Pub Key Format Negociation Response ----] |
 | |
 | -- Authorization + Key Distribution Request ---> |
 | |
 | <-- Authorization + Key Distribution Response -- |
 | |

 Figure 2: B: Access request - response

 Complementary to what is defined in [I-D.ietf-ace-oauth-authz]
 (Section 5.1.1), to determine the AS2 in charge of a topic hosted at
 the Broker, the Broker MAY send the address of both the AS in charge
 of the topic back to the Client in the ’AS’ parameter in the AS
 Information, as a response to an Unauthorized Resource Request
 (Section 5.1.2). The uri of AS2 is concatenated to the uri of AS1,
 and separated by a comma. An example using CBOR diagnostic notation
 is given below:

Palombini Expires May 7, 2020 [Page 5]

Internet-Draft coap-pubsub-profile November 2019

 4.01 Unauthorized
 Content-Format: application/ace+cbor
 {"AS": "coaps://as1.example.com/token,
 coaps://as2.example.com/pubsubkey"}

 Figure 3: AS1, AS2 Information example

 After retrieving the AS2 address, the Client MAY send a request to
 the AS, in order to retrieve necessary information concerning the
 public keys in the group, as well as concerning the algorithm and
 related parameters for computing signatures in the group. This
 request is a subset of the Token POST request defined in Section 3.3
 of [I-D.ietf-ace-key-groupcomm], specifically a CoAP POST request to
 a specific resource at the AS, including only the parameters
 ’sign_info’ and ’pub_key_enc’ in the CBOR map in the payload. The
 default url-path for this resource is /ace-group/gid/cs-info, where
 "gid" is the topic identifier, but implementations are not required
 to use this name, and can use their own instead. The AS MUST respond
 with the response defined in Section 3.3 of
 [I-D.ietf-ace-key-groupcomm], specifically including the parameters
 ’sign_info’, ’pub_key_enc’, and ’rsnonce’ (8 bytes pseudo-random
 nonce generated by the AS).

 After that, the Client sends an Authorization + Joining Request,
 which is an Authorization Request merged with a Joining Request, as
 described in [I-D.ietf-ace-key-groupcomm], Sections 3.1 and 4.2. The
 reason for merging these two messages is that the AS2 is both the AS
 and the KDC, in this setting, so the Authorization Response and the
 Post Token message are not necessary.

 More specifically, the Client sends a POST request to the /ace-group/
 gid endpoint on AS2, with Content-Format = "application/ace+cbor"
 that MUST contain in the payload (formatted as a CBOR map):

 o the following fields from the Joining Request (Section 4.2 of
 [I-D.ietf-ace-key-groupcomm]):

 * ’scope’ parameter set to a CBOR array containing:

 + the broker’s topic as first element, and

 + the text string "publisher" if the client request to be a
 publisher, "subscriber" if the client request to be a
 subscriber, or a CBOR array containing both, if the client
 request to be both.

 * ’get_pub_keys’ parameter set to the empty array if the Client
 needs to retrieve the public keys of the other pubsub members,

Palombini Expires May 7, 2020 [Page 6]

Internet-Draft coap-pubsub-profile November 2019

 * ’client_cred’ parameter containing the Client’s public key
 formatted as a COSE_Key, if the Client needs to directly send
 that to the AS2,

 * ’cnonce’, set to a 8 bytes long pseudo-random nonce, if
 ’client_cred’ is present,

 * ’client_cred_verify’, set to a singature computed over the
 rsnonce concatenated with cnonce, if ’client_cred’ is present,

 * OPTIONALLY, if needed, the ’pub_keys_repos’ parameter

 o the following fields from the Authorization Request (Section 3.1
 of [I-D.ietf-ace-key-groupcomm]):

 * OPTIONALLY, if needed, additional parameters such as
 ’client_id’

 Note that the alg parameter in the ’client_cred’ COSE_Key MUST be a
 signing algorithm, as defined in section 8 of [RFC8152], and that it
 is the same algorithm used to compute the signature sent in
 ’client_cred_verify’.

 Examples of the payload of a Authorization + Joining Request are
 specified in Figure 5 and Figure 8.

 The AS2 verifies that the Client is authorized to access the topic
 and, if the ’client_cred’ parameter is present, stores the public key
 of the Client.

 The AS2 response is an Authorization + Joining Response, with
 Content-Format = "application/ace+cbor". The payload (formatted as a
 CBOR map) MUST contain:

 o the following fields from the Joining Response (Section 4.1 of
 [I-D.ietf-ace-key-groupcomm]):

 * ’kty’ identifies a key type "COSE_Key", as defined in
 Section 8.2.

 * ’key’, which contains a "COSE_Key" object (defined in
 [RFC8152], containing:

 + ’kty’ with value 4 (symmetric)

 + ’alg’ with value defined by the AS2 (Content Encryption
 Algorithm)

Palombini Expires May 7, 2020 [Page 7]

Internet-Draft coap-pubsub-profile November 2019

 + ’Base IV’ with value defined by the AS2

 + ’k’ with value the symmetric key value

 + OPTIONALLY, ’kid’ with an identifier for the key value

 * OPTIONALLY, ’exp’ with the expiration time of the key

 * ’pub_keys’, containing the public keys of all authorized
 signing members formatted as COSE_Keys, if the ’get_pub_keys’
 parameter was present and set to the empty array in the
 Authorization + Key Distribution Request

 o the following fields from the Authorization Response (Section 3.2
 of [I-D.ietf-ace-key-groupcomm]):

 * ’profile’ set to "coap_pubsub_app", as specified in Section 8.1

 * OPTIONALLY ’scope’, set to a CBOR array containing:

 + the broker’s topic as first element, and

 + the string "publisher" if the client is an authorized
 publisher, "subscriber" if the client is an authorized
 subscriber, or a CBOR array containing both, if the client
 is authorized to be both.

 Examples for the response payload are detailed in Figure 6 and
 Figure 9.

4. Publisher

 In this section, it is specified how the Publisher requests, obtains
 and communicates to the Broker the access token, as well as the
 retrieval of the keying material to protect the publication.

Palombini Expires May 7, 2020 [Page 8]

Internet-Draft coap-pubsub-profile November 2019

 +----------------+ +----------------+
 | | | |
 | Authorization | | Authorization |
 | Server 1 | | Server 2 |
 | | | |
 +----------------+ +----------------+
 ^ ^
 | |
 +---------(A)----+ |
 | +--------------------(B)--------+
 v v
 +------------+ +------------+
 | CoAP | ----(C)---> | CoAP |
 | Client - | | Server - |
 | | | |
 | Publisher | | Broker |
 +------------+ +------------+

 Figure 4: Phase 1: Publisher side

 This is a combination of two independent phases:

 o one is the establishment of a secure connection between Publisher
 and Broker, using an ACE transport profile such as DTLS
 [I-D.ietf-ace-dtls-authorize] or OSCORE
 [I-D.ietf-ace-oscore-profile]. (A)(C)

 o the other is the Publisher’s retrieval of keying material to
 protect the publication. (B)

 In detail:

 (A) corresponds to the Access Token Request and Response between
 Publisher and Authorization Server to retrieve the Access Token and
 RS (Broker) Information. As specified, the Publisher has the role of
 a CoAP client, the Broker has the role of the CoAP server.

 (C) corresponds to the exchange between Publisher and Broker, where
 the Publisher sends its access token to the Broker and establishes a
 secure connection with the Broker. Depending on the Information
 received in (A), this can be for example DTLS handshake, or other
 protocols. Depending on the application, there may not be the need
 for this set up phase: for example, if OSCORE is used directly.

 (A) and (C) details are specified in the profile used.

 (B) corresponds to the retrieval of the keying material to protect
 the publication end-to-end with the subscribers (see Section 6.1),

Palombini Expires May 7, 2020 [Page 9]

Internet-Draft coap-pubsub-profile November 2019

 and uses [I-D.ietf-ace-key-groupcomm]. The details are defined in
 Section 3.1.

 An example of the payload of an Authorization + Joining Request and
 corresponding Response for a Publisher is specified in Figure 5 and
 Figure 6, where SIG is a signature computed using the private key
 associated to the public key and the algorithm in "client_cred".

 {
 "scope" : ["Broker1/Temp", "publisher"],
 "client_id" : "publisher1",
 "client_cred" :
 { / COSE_Key /
 / type / 1 : 2, / EC2 /
 / kid / 2 : h’11’,
 / alg / 3 : -7, / ECDSA with SHA-256 /
 / crv / -1 : 1 , / P-256 /
 / x / -2 : h’65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de1
 08de439c08551d’,
 / y /-3 : h’1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e
 9eecd0084d19c’,
 "cnonce" : h’d36b581d1eef9c7c,
 "client_cred_verify" : SIG
 }
 }

 Figure 5: Authorization + Joining Request payload for a Publisher

 {
 "profile" : "coap_pubsub_app",
 "kty" : "COSE_Key",
 "key" : {1: 4, 2: h’1234’, 3: 12, 5: h’1f389d14d17dc7’,
 -1: h’02e2cc3a9b92855220f255fff1c615bc’}
 }

 Figure 6: Authorization + Joining Response payload for a Publisher

5. Subscriber

 In this section, it is specified how the Subscriber retrieves the
 keying material to protect the publication.

Palombini Expires May 7, 2020 [Page 10]

Internet-Draft coap-pubsub-profile November 2019

 +----------------+
 | |
 | Authorization |
 | Server 2 |
 | |
 +----------------+
 ^
 |
 +-----(D)------+
 |
 v
 +------------+
 | CoAP |
 | Client - |
 | |
 | Subscriber |
 | |
 +------------+

 Figure 7: Phase 2: Subscriber side

 Step (D) between Subscriber and AS2 corresponds to the retrieval of
 the keying material to verify the publication end-to-end with the
 publishers (see Section 6.1). The details are defined in Section 3.1

 This step is the same as (B) between Publisher and AS2 (Section 3.1),
 with the following differences:

 o The Authorization + Joining Request MUST NOT contain the
 ’client_cred parameter’, the role element in the ’scope’ parameter
 MUST be set to "subscriber". The Subscriber MUST have access to
 the public keys of all the Publishers; this MAY be achieved in the
 Authorization + Joining Request by using the parameter
 ’get_pub_keys’ set to empty array.

 o The Authorization + Key Distribution Response MUST contain the
 ’pub_keys’ parameter.

 An example of the payload of an Authorization + Joining Request and
 corresponding Response for a Subscriber is specified in Figure 8 and
 Figure 9.

 {
 "scope" : ["Broker1/Temp", "subscriber"],
 "get_pub_keys" : []
 }

 Figure 8: Authorization + Joining Request payload for a Subscriber

Palombini Expires May 7, 2020 [Page 11]

Internet-Draft coap-pubsub-profile November 2019

 {
 "profile" : "coap_pubsub_app",
 "scope" : ["Broker1/Temp", "subscriber"],
 "kty" : "COSE_Key"
 "key" : {1: 4, 2: h’1234’, 3: 12, 5: h’1f389d14d17dc7’,
 -1: h’02e2cc3a9b92855220f255fff1c615bc’},
 "pub_keys" : [
 {
 1 : 2, / type EC2 /
 2 : h’11’, / kid /
 3 : -7, / alg ECDSA with SHA-256 /
 -1 : 1 , / crv P-256 /
 -2 : h’65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de43
 9c08551d’, / x /
 -3 : h’1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eecd
 0084d19c’ / y /
 }
]
 }

 Figure 9: Authorization + Joining Response payload for a Subscriber

6. Pub-Sub Protected Communication

 This section specifies the communication Publisher-Broker and
 Subscriber-Broker, after the previous phases have taken place. The
 operations of publishing and subscribing are defined in
 [I-D.ietf-core-coap-pubsub].

 +------------+ +------------+ +------------+
CoAP		CoAP		CoAP
Client -		Server -		Client -
	----(E)--->			
Publisher		Broker	<----(F)----	Subscriber
			-----(G)--->	
 +------------+ +------------+ +------------+

 Figure 10: Phase 3: Secure communication between Publisher and
 Subscriber

 The (E) message corresponds to the publication of a topic on the
 Broker. The publication (the resource representation) is protected
 with COSE ([RFC8152]). The (F) message is the subscription of the
 Subscriber, which is unprotected, unless a profile of ACE
 [I-D.ietf-ace-oauth-authz] is used between Subscriber and Broker.
 The (G) message is the response from the Broker, where the
 publication is protected with COSE.

Palombini Expires May 7, 2020 [Page 12]

Internet-Draft coap-pubsub-profile November 2019

 The flow graph is presented below.

 Publisher Broker Subscriber
 | --- PUT /topic ----> | |
 | protected with COSE | |
 | | <--- GET /topic ----- |
 | | |
 | | ---- response ------> |
 | | protected with COSE |

 Figure 11: (E), (F), (G): Example of protected communication

6.1. Using COSE Objects To Protect The Resource Representation

 The Publisher uses the symmetric COSE Key received from AS2 in
 exchange B (Section 3.1) to protect the payload of the PUBLISH
 operation (Section 4.3 of [I-D.ietf-core-coap-pubsub]).
 Specifically, the COSE Key is used to create a COSE_Encrypt0 with
 algorithm specified by AS2. The Publisher uses the private key
 corresponding to the public key sent to the AS2 in exchange B
 (Section 3.1) to countersign the COSE Object as specified in
 Section 4.5 of [RFC8152]. The CoAP payload is replaced by the COSE
 object before the publication is sent to the Broker.

 The Subscriber uses the kid in the countersignature field in the COSE
 object to retrieve the right public key to verify the
 countersignature. It then uses the symmetric key received from AS2
 to verify and decrypt the publication received in the payload of the
 CoAP Notification from the Broker.

 The COSE object is constructed in the following way:

 o The protected Headers (as described in Section 3 of [RFC8152]) MAY
 contain the kid parameter, with value the kid of the symmetric
 COSE Key received in Section 3.1 and MUST contain the content
 encryption algorithm.

 o The unprotected Headers MUST contain the Partial IV, with value a
 sequence number that is incremented for every message sent, and
 the counter signature that includes:

 * the algorithm (same value as in the asymmetric COSE Key
 received in (B)) in the protected header;

 * the kid (same value as the kid of the asymmetric COSE Key
 received in (B)) in the unprotected header;

Palombini Expires May 7, 2020 [Page 13]

Internet-Draft coap-pubsub-profile November 2019

 * the signature computed as specified in Section 4.5 of
 [RFC8152].

 o The ciphertext, computed over the plaintext that MUST contain the
 CoAP payload.

 The external_aad is an empty string.

 An example is given in Figure 12

 16(
 [
 / protected / h’a2010c04421234’ / {
 \ alg \ 1:12, \ AES-CCM-64-64-128 \
 \ kid \ 4: h’1234’
 } / ,
 / unprotected / {
 / iv / 5:h’89f52f65a1c580’,
 / countersign / 7:[
 / protected / h’a10126’ / {
 \ alg \ 1:-7
 } / ,
 / unprotected / {
 / kid / 4:h’11’
 },
 / signature / SIG / 64 bytes signature /
]
 },
 / ciphertext / h’8df0a3b62fccff37aa313c8020e971f8aC8d’
]
)

 Figure 12: Example of COSE Object sent in the payload of a PUBLISH
 operation

 The encryption and decryption operations are described in sections
 5.3 and 5.4 of [RFC8152].

7. Security Considerations

 In the profile described above, the Publisher and Subscriber use
 asymmetric crypto, which would make the message exchange quite heavy
 for small constrained devices. Moreover, all Subscribers must be
 able to access the public keys of all the Publishers to a specific
 topic to be able to verify the publications. Such a database could
 be set up and managed by the same entity having control of the topic,
 i.e. AS2.

Palombini Expires May 7, 2020 [Page 14]

Internet-Draft coap-pubsub-profile November 2019

 An application where it is not critical that only authorized
 Publishers can publish on a topic may decide not to make use of the
 asymmetric crypto and only use symmetric encryption/MAC to
 confidentiality and integrity protect the publication, but this is
 not recommended since, as a result, any authorized Subscribers with
 access to the Broker may forge unauthorized publications without
 being detected. In this symmetric case the Subscribers would only
 need one symmetric key per topic, and would not need to know any
 information about the Publishers, that can be anonymous to it and the
 Broker.

 Subscribers can be excluded from future publications through re-
 keying for a certain topic. This could be set up to happen on a
 regular basis, for certain applications. How this could be done is
 out of scope for this work.

 The Broker is only trusted with verifying that the Publisher is
 authorized to publish, but is not trusted with the publications
 itself, which it cannot read nor modify. In this setting, caching of
 publications on the Broker is still allowed.

 TODO: expand on security and privacy considerations

8. IANA Considerations

8.1. ACE Groupcomm Profile Registry

 The following registrations are done for the "ACE Groupcomm Profile"
 Registry following the procedure specified in
 [I-D.ietf-ace-key-groupcomm].

 Note to RFC Editor: Please replace all occurrences of "[[This
 document]]" with the RFC number of this specification and delete this
 paragraph.

 Name: coap_pubsub_app

 Description: Profile for delegating client authentication and
 authorization for publishers and subscribers in a pub-sub setting
 scenario in a constrained environment.

 CBOR Key: TBD

 Reference: [[This document]]

Palombini Expires May 7, 2020 [Page 15]

Internet-Draft coap-pubsub-profile November 2019

8.2. ACE Groupcomm Key Registry

 The following registrations are done for the ACE Groupcomm Key
 Registry following the procedure specified in
 [I-D.ietf-ace-key-groupcomm].

 Note to RFC Editor: Please replace all occurrences of "[[This
 document]]" with the RFC number of this specification and delete this
 paragraph.

 Name: COSE_Key

 Key Type Value: TBD

 Profile: coap_pubsub_app

 Description: COSE_Key object

 References: [RFC8152], [[This document]]

9. References

9.1. Normative References

 [I-D.ietf-ace-key-groupcomm]
 Palombini, F. and M. Tiloca, "Key Provisioning for Group
 Communication using ACE", draft-ietf-ace-key-groupcomm-03
 (work in progress), November 2019.

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-25
 (work in progress), October 2019.

 [I-D.ietf-core-coap-pubsub]
 Koster, M., Keranen, A., and J. Jimenez, "Publish-
 Subscribe Broker for the Constrained Application Protocol
 (CoAP)", draft-ietf-core-coap-pubsub-09 (work in
 progress), September 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Palombini Expires May 7, 2020 [Page 16]

Internet-Draft coap-pubsub-profile November 2019

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

9.2. Informative References

 [I-D.ietf-ace-actors]
 Gerdes, S., Seitz, L., Selander, G., and C. Bormann, "An
 architecture for authorization in constrained
 environments", draft-ietf-ace-actors-07 (work in
 progress), October 2018.

 [I-D.ietf-ace-dtls-authorize]
 Gerdes, S., Bergmann, O., Bormann, C., Selander, G., and
 L. Seitz, "Datagram Transport Layer Security (DTLS)
 Profile for Authentication and Authorization for
 Constrained Environments (ACE)", draft-ietf-ace-dtls-
 authorize-08 (work in progress), April 2019.

 [I-D.ietf-ace-oscore-profile]
 Palombini, F., Seitz, L., Selander, G., and M. Gunnarsson,
 "OSCORE profile of the Authentication and Authorization
 for Constrained Environments Framework", draft-ietf-ace-
 oscore-profile-08 (work in progress), July 2019.

Appendix A. Requirements on Application Profiles

 This section lists the specifications on this profile based on the
 requirements defined in Appendix A of [I-D.ietf-ace-key-groupcomm]

 o REQ1: Specify the encoding and value of the identifier of group or
 topic of ’scope’: see Section 3.1).

 o REQ2: Specify the encoding and value of roles of ’scope’: see
 Section 3.1).

 o REQ3: Optionally, specify the acceptable values for ’sign_alg’:
 TODO

 o REQ4: Optionally, specify the acceptable values for
 ’sign_parameters’: TODO

 o REQ5: Optionally, specify the acceptable values for
 ’sign_key_parameters’: TODO

Palombini Expires May 7, 2020 [Page 17]

Internet-Draft coap-pubsub-profile November 2019

 o REQ6: Optionally, specify the acceptable values for ’pub_key_enc’:
 TODO

 o REQ7: Specify the exact format of the ’key’ value: COSE_Key, see
 Section 3.1.

 o REQ8: Specify the acceptable values of ’kty’ : "COSE_Key", see
 Section 3.1.

 o REQ9: Specity the format of the identifiers of group members: TODO

 o REQ10: Optionally, specify the format and content of
 ’group_policies’ entries: not defined

 o REQ11: Specify the communication protocol the members of the group
 must use: CoAP pub/sub.

 o REQ12: Specify the security protocol the group members must use to
 protect their communication. This must provide encryption,
 integrity and replay protection: Object Security of Content using
 COSE, see Section 6.1.

 o REQ13: Specify and register the application profile identifier :
 "coap_pubsub_app", see Section 8.1.

 o REQ14: Optionally, specify the encoding of public keys, of
 ’client_cred’, and of ’pub_keys’ if COSE_Keys are not used: NA.

 o REQ15: Specify policies at the KDC to handle id that are not
 included in get_pub_keys: TODO

 o REQ16: Specify the format and content of ’group_policies’: TODO

 o REQ17: Specify the format of newly-generated individual keying
 material for group members, or of the information to derive it,
 and corresponding CBOR label : not defined

 o REQ18: Specify how the communication is secured between Client and
 KDC. Optionally, specify tranport profile of ACE
 [I-D.ietf-ace-oauth-authz] to use between Client and KDC: pre-set,
 as KDC is AS.

 o OPT1: Optionally, specify the encoding of public keys, of
 ’client_cred’, and of ’pub_keys’ if COSE_Keys are not used: NA

 o OPT2: Optionally, specify the negotiation of parameter values for
 signature algorithm and signature keys, if ’sign_info’ and
 ’pub_key_enc’ are not used: NA

Palombini Expires May 7, 2020 [Page 18]

Internet-Draft coap-pubsub-profile November 2019

 o OPT3: Optionally, specify the format and content of
 ’mgt_key_material’: not defined

 o OPT4: Optionally, specify policies that instruct clients to retain
 unsuccessfully decrypted messages and for how long, so that they
 can be decrypted after getting updated keying material: not
 defined

Acknowledgments

 The author wishes to thank Ari Keraenen, John Mattsson, Ludwig Seitz,
 Goeran Selander, Jim Schaad and Marco Tiloca for the useful
 discussion and reviews that helped shape this document.

Author’s Address

 Francesca Palombini
 Ericsson

 Email: francesca.palombini@ericsson.com

Palombini Expires May 7, 2020 [Page 19]

ACE Working Group F. Palombini
Internet-Draft Ericsson AB
Intended status: Standards Track M. Tiloca
Expires: April 25, 2019 RISE AB
 October 22, 2018

 Key Provisioning for Group Communication using ACE
 draft-palombini-ace-key-groupcomm-02

Abstract

 This document defines message formats and procedures for requesting
 and distributing group keying material using the ACE framework, to
 protect communications between group members.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Palombini & Tiloca Expires April 25, 2019 [Page 1]

Internet-Draft Key Provisioning for Group Communication October 2018

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. Overview . 3
 3. Authorization to Join a Group 5
 3.1. Authorization Request 6
 3.2. Authorization Response 7
 3.3. Token Post . 8
 4. Key Distribution . 8
 4.1. Key Distribution Request 9
 4.2. Key Distribution Response 10
 5. Removal of a Node from the Group 12
 5.1. Expired Authorization 12
 5.2. Request to Leave the Group 12
 6. Retrieval of Updated Keying Material 13
 6.1. Key Re-Distribution Request 13
 6.2. Key Re-Distribution Response 13
 7. Retrieval of Public Keys for Group Members 13
 7.1. Public Key Request 14
 7.2. Public Key Response 14
 8. Security Considerations 15
 9. IANA Considerations . 15
 10. References . 15
 10.1. Normative References 15
 10.2. Informative References 16
 Acknowledgments . 17
 Authors’ Addresses . 17

1. Introduction

 This document expands the ACE framework [I-D.ietf-ace-oauth-authz] to
 define the format of messages used to request, distribute and renew
 the keying material in a group communication scenario, e.g. based on
 multicast [RFC7390] or on publishing-subscribing
 [I-D.ietf-core-coap-pubsub].

 Profiles that use group communication can build on this document to
 specify the selection of the message parameters defined in this
 document to use and their values. Known applications that can
 benefit from this document would be, for example, profiles addressing
 group communication based on multicast [RFC7390] or publishing/
 subscribing [I-D.ietf-core-coap-pubsub] in ACE.

 If the application requires backward and forward security, updated
 keying material is generated and distributed to the group members
 (rekeying), when membership changes. A key management scheme
 performs the actual distribution of the updated keying material to

Palombini & Tiloca Expires April 25, 2019 [Page 2]

Internet-Draft Key Provisioning for Group Communication October 2018

 the group. In particular, the key management scheme rekeys the
 current group members when a new node joins the group, and the
 remaining group members when a node leaves the group. This document
 provides a message format for group rekeying that allows to fulfill
 these requirements. Rekeying mechanisms can be based on [RFC2093],
 [RFC2094] and [RFC2627].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. These
 words may also appear in this document in lowercase, absent their
 normative meanings.

 Readers are expected to be familiar with the terms and concepts
 described in [I-D.ietf-ace-oauth-authz] and [RFC8152], such as
 Authorization Server (AS) and Resource Server (RS).

2. Overview

 +------------+ +-----------+
 | AS | | KDC |
 | | .-------->| |
 +------------+ / +-----------+
 ^ /
 | /
 v / +-----------+
 +------------+ / +------------+ |+-----------+
 | Client |<-’ | Dispatcher | ||+-----------+
 | |<-------->| (RS) |<------->|| Group |
 +------------+ +------------+ +| members |
 +-----------+

 Figure 1: Key Distribution Participants

 The following participants (see Figure 1) take part in the
 authorization and key distribution.

 o Client (C): node that wants to join the group communication. It
 can request write and/or read rights.

 o Authorization Server (AS): same as AS in the ACE Framework; it
 enforces access policies, and knows if a node is allowed to join
 the group with write and/or read rights.

 o Key Distribution Center (KDC): maintains the keying material to
 protect group communications, and provides it to Clients

Palombini & Tiloca Expires April 25, 2019 [Page 3]

Internet-Draft Key Provisioning for Group Communication October 2018

 authorized to join the group. During the first part of the
 exchange (Section 3), it takes the role of the RS in the ACE
 Framework. During the second part (Section 4), which is not based
 on the ACE Framework, it distributes the keying material. In
 addition, it provides the latest keying material to group members
 when requested. If required by the application, the KDC renews
 and re-distributes the keying material in the group when
 membership changes.

 o Dispatcher: entity through which the Clients communicate with the
 group and which distributes messages to the group members.
 Examples of dispatchers are: the Broker node in a pub-sub setting;
 a relayer node for group communication that delivers group
 messages as multiple unicast messages to all group members; an
 implicit entity as in a multicast communication setting, where
 messages are transmitted to a multicast IP address and delivered
 on the transport channel.

 This document specifies the message flows and formats for:

 o Authorizing a new node to join the group (Section 3), and
 providing it with the group keying material to communicate with
 the other group members (Section 4).

 o Removing of a current member from the group (Section 5).

 o Retrieving keying material as a current group member (Section 6
 and Section 7).

 o Renewing and re-distributing the group keying material (rekeying)
 upon a membership change in the group (Section 4.2 and Section 5).

 Figure 2 provides a high level overview of the message flow for a
 node joining a group communication setting.

Palombini & Tiloca Expires April 25, 2019 [Page 4]

Internet-Draft Key Provisioning for Group Communication October 2018

 C AS KDC Dispatcher Group
 | | | | Member
			\	
Authorization Request				Defined
----------------------------->				in the ACE
				framework
Authorization Response				
<-----------------------------				
--------- Token Post ---------------->		/		
---- Key Distribution Request ------->				
<--- Key Distribution Response ------	--- Group Rekeying ----->			
<================== Protected communication ===	================>			

 Figure 2: Message Flow Upon New Node’s Joining

 The exchange of Authorization Request and Authorization Response
 between Client and AS MUST be secured, as specified by the ACE
 profile used between Client and KDC.

 The exchange of Key Distribution Request and Key Distribution
 Response between Client and KDC MUST be secured, as a result of the
 ACE profile used between Client and KDC.

 All further communications between the Client and the KDC MUST be
 secured, for instance with the same security mechanism used for the
 Key Distribution exchange.

 All further communications between a Client and the other group
 members MUST be secured using the keying material provided in
 Section 4.

3. Authorization to Join a Group

 This section describes in detail the format of messages exchanged by
 the participants when a node requests access to a group. The first
 part of the exchange is based on ACE [I-D.ietf-ace-oauth-authz].

 As defined in [I-D.ietf-ace-oauth-authz], the Client requests from
 the AS an authorization to join the group through the KDC (see
 Section 3.1). If the request is approved and authorization is
 granted, the AS provides the Client with a proof-of-possession access
 token and parameters to securely communicate with the KDC (see

Palombini & Tiloca Expires April 25, 2019 [Page 5]

Internet-Draft Key Provisioning for Group Communication October 2018

 Section 3.2). Communications between the Client and the AS MUST be
 secured, and depends on the profile of ACE used.

 Figure 3 gives an overview of the exchange described above.

 Client AS KDC
 | | |
 |---- Authorization Request: POST /token ------>| |
 | | |
 |<--- Authorization Response: 2.01 (Created) ---| |
 | | |
 |----- POST Token: POST /authz-info --------------->|
 | |

 Figure 3: Message Flow of Join Authorization

3.1. Authorization Request

 The Authorization Request sent from the Client to the AS is as
 defined in Section 5.6.1 of [I-D.ietf-ace-oauth-authz] and MUST
 contain the following parameters:

 o ’grant_type’, with value "client_credentials".

 Additionally, the Authorization Request MAY contain the following
 parameters, which, if included, MUST have the corresponding values:

 o ’scope’, with value the identifier of the specific group or topic
 the Client wishes to access, and optionally the role(s) the Client
 wishes to take. This value is a CBOR array encoded as a byte
 string, which contains:

 * As first element, the identifier of the specific group or
 topic.

 * Optionally, as second element, the role (or CBOR array of
 roles) the Client wishes to take in the group.

 The encoding of the group or topic identifier and of the role
 identifiers is application specific.

 o ’req_aud’, as defined in Section 3.1 of
 [I-D.ietf-ace-oauth-params], with value an identifier of the KDC.

 o ’req_cnf’, as defined in Section 3.1 of
 [I-D.ietf-ace-oauth-params], optionally containing the public key
 or the certificate of the Client, if it wishes to communicate that
 to the AS.

Palombini & Tiloca Expires April 25, 2019 [Page 6]

Internet-Draft Key Provisioning for Group Communication October 2018

 o Other additional parameters as defined in
 [I-D.ietf-ace-oauth-authz], if necessary.

3.2. Authorization Response

 The Authorization Response sent from the AS to the Client is as
 defined in Section 5.6.2 of [I-D.ietf-ace-oauth-authz] and MUST
 contain the following parameters:

 o ’access_token’, containing the proof-of-possession access token.

 o ’cnf’ if symmetric keys are used, not present if asymmetric keys
 are used. This parameter is defined in Section 3.2 of
 [I-D.ietf-ace-oauth-params] and contains the symmetric proof-of-
 possession key that the Client is supposed to use with the KDC.

 o ’rs_cnf’ if asymmetric keys are used, not present if symmetric
 keys are used. This parameter is as defined in Section 3.2 of
 [I-D.ietf-ace-oauth-params] and contains information about the
 public key of the KDC.

 o ’exp’, contains the lifetime in seconds of the access token. This
 parameter MAY be omitted if the application defines how the
 expiration time is communicated to the Client via other means, or
 if it establishes a default value.

 Additionally, the Authorization Response MAY contain the following
 parameters, which, if included, MUST have the corresponding values:

 o ’scope’, which mirrors the ’scope’ parameter in the Authorization
 Request (see Section 3.1). Its value is a CBOR array encoded as a
 byte string, containing:

 * As first element, the identifier of the specific group or topic
 the Client is authorized to access.

 * Optionally, as second element, the role (or CBOR array of
 roles) the Client is authorized to take in the group.

 The encoding of the group or topic identifier and of the role
 identifiers is application specific.

 o Other additional parameters as defined in
 [I-D.ietf-ace-oauth-authz], if necessary.

 The access token MUST contain all the parameters defined above
 (including the same ’scope’ as in this message, if present, or the

Palombini & Tiloca Expires April 25, 2019 [Page 7]

Internet-Draft Key Provisioning for Group Communication October 2018

 ’scope’ of the Authorization Request otherwise), and additionally
 other optional parameters the profile requires.

 When receiving an Authorization Request from a Client that was
 previously authorized, and which still owns a valid non expired
 access token, the AS can simply reply with an Authorization Response
 including a new access token.

3.3. Token Post

 The Client sends a CoAP POST request including the access token to
 the KDC, as specified in section 5.8.1 of [I-D.ietf-ace-oauth-authz].
 If the specific ACE profile defines it, the Client MAY use a
 different endpoint than /authz-info at the KDC to post the access
 token to. After successful verification, the Client is authorized to
 receive the group keying material from the KDC and join the group.

 Note that this step could be merged with the following message from
 the Client to the KDC, namely Key Distribution Request.

4. Key Distribution

 This section defines how the keying material used for group
 communication is distributed from the KDC to the Client, when joining
 the group as a new member.

 If not previously established, the Client and the KDC MUST first
 establish a pairwise secure communication channel using ACE. The
 exchange of Key Distribution Request-Response MUST occur over that
 secure channel. The Client and the KDC MAY use that same secure
 channel to protect further pairwise communications, that MUST be
 secured.

 During this exchange, the Client sends a request to the AS,
 specifying the group it wishes to join (see Section 4.1). Then, the
 KDC verifies the access token and that the Client is authorized to
 join that group; if so, it provides the Client with the keying
 material to securely communicate with the member of the group (see
 Section 4.2).

 Figure 4 gives an overview of the exchange described above.

Palombini & Tiloca Expires April 25, 2019 [Page 8]

Internet-Draft Key Provisioning for Group Communication October 2018

 Client KDC
 | |
 |---- Key Distribution Request: POST /group-id --->|
 | |
 |<--- Key Distribution Response: 2.01 (Created) ---|
 | |

 Figure 4: Message Flow of Key Distribution to a New Group Member

 The same set of message can also be used for the following cases,
 when the Client is already a group member:

 o The Client wishes to (re-)get the current keying material, for
 cases such as expiration, loss or suspected mismatch, due to e.g.
 reboot or missed group rekeying. This is further discussed in
 Section 6.

 o The Client wishes to (re-)get the public keys of other group
 members, e.g. if it is aware of new nodes joining the group after
 itself. This is further discussed in Section 7.

 Additionally, the format of the payload of the Key Distribution
 Response (Section 4.2) can be reused for messages sent by the KDC to
 distribute updated group keying material, in case of a new node
 joining the group or of a current member leaving the group. The key
 management scheme used to send such messages could rely on, e.g.,
 multicast in case of a new node joining or unicast in case of a node
 leaving the group.

 Note that proof-of-possession to bind the access token to the Client
 is performed by using the proof-of-possession key bound to the access
 token for establishing secure communication between the Client and
 the KDC.

4.1. Key Distribution Request

 The Client sends a Key Distribution request to the KDC. This
 corresponds to a CoAP POST request to the endpoint in the KDC
 associated to the group to join. The endpoint in the KDC is
 associated to the ’scope’ value of the Authorization Request/
 Response. The payload of this request is a CBOR Map which MAY
 contain the following fields, which, if included, MUST have the
 corresponding values:

 o ’scope’, with value the specific resource that the Client is
 authorized to access (i.e. group or topic identifier) and role(s),
 encoded as in Section 3.1.

Palombini & Tiloca Expires April 25, 2019 [Page 9]

Internet-Draft Key Provisioning for Group Communication October 2018

 o ’get_pub_keys’, if the Client wishes to receive the public keys of
 the other nodes in the group from the KDC. The value is an empty
 CBOR Array. This parameter may be present if the KDC stores the
 public keys of the nodes in the group and distributes them to the
 Client; it is useless to have here if the set of public keys of
 the members of the group is known in another way, e.g. it was
 provided by the AS.

 o ’client_cred’, with value the public key or certificate of the
 Client. If the KDC is managing (collecting from/distributing to
 the Client) the public keys of the group members, this field
 contains the public key of the Client.

 o ’pub_keys_repos’, can be present if a certificate is present in
 the ’client_cred’ field, with value a list of public key
 repositories storing the certificate of the Client.

4.2. Key Distribution Response

 The KDC verifies the access token and, if verification succeeds,
 sends a Key Distribution success Response to the Client. This
 corresponds to a 2.01 Created message. The payload of this response
 is a CBOR Map which MUST contain the following fields:

 o ’key’, used to send the keying material to the Client, as a
 COSE_Key ([RFC8152]) containing the following parameters:

 * ’kty’, as defined in [RFC8152].

 * ’k’, as defined in [RFC8152].

 * ’exp’ (optionally), as defined below. This parameter is
 RECOMMENDED to be included in the COSE_Key. If omitted, the
 authorization server SHOULD provide the expiration time via
 other means or document the default value.

 * ’alg’ (optionally), as defined in [RFC8152].

 * ’kid’ (optionally), as defined in [RFC8152].

 * ’base iv’ (optionally), as defined in [RFC8152].

 * ’clientID’ (optionally), as defined in
 [I-D.ietf-ace-oscore-profile].

 * ’serverID’ (optionally), as defined in
 [I-D.ietf-ace-oscore-profile].

Palombini & Tiloca Expires April 25, 2019 [Page 10]

Internet-Draft Key Provisioning for Group Communication October 2018

 * ’kdf’ (optionally), as defined in
 [I-D.ietf-ace-oscore-profile].

 * ’slt’ (optionally), as defined in
 [I-D.ietf-ace-oscore-profile].

 * ’cs_alg’ (optionally), containing the algorithm value to
 countersign the message, taken from Table 5 and 6 of [RFC8152].

 The parameter ’exp’ identifies the expiration time in seconds after
 which the COSE_Key is not valid anymore for secure communication in
 the group. A summary of ’exp’ can be found in Figure 5.

 +------+-------+----------------+------------+-----------------+
 | Name | Label | CBOR Type | Value | Description |
 | | | | Registry | |
 +------+-------+----------------+------------+-----------------+
 | exp | TBD | Integer or | COSE Key | Expiration time |
 | | | floating-point | Common | in seconds |
 | | | number | Parameters | |
 +------+-------+----------------+------------+-----------------+

 Figure 5: COSE Key Common Header Parameter ’exp’

 Optionally, the Key Distribution Response MAY contain the following
 parameters, which, if included, MUST have the corresponding values:

 o ’pub_keys’, may only be present if ’get_pub_keys’ was present in
 the Key Distribution Request; this parameter is a COSE_KeySet (see
 [RFC8152]), which contains the public keys of all the members of
 the group.

 o ’group_policies’, with value a list of parameters indicating how
 the group handles specific management aspects. This includes, for
 instance, approaches to achieve synchronization of sequence
 numbers among group members. The exact format of this parameter
 is specific to the profile.

 o ’mgt_key_material’, with value the administrative keying material
 to participate in the group rekeying performed by the KDC. The
 exact format and content depend on the specific rekeying scheme
 used in the group, which may be specified in the profile.

 Specific profiles need to specify how exactly the keying material is
 used to protect the group communication.

 If the application requires backward security, the KDC SHALL generate
 new group keying material and securely distribute it to all the

Palombini & Tiloca Expires April 25, 2019 [Page 11]

Internet-Draft Key Provisioning for Group Communication October 2018

 current group members, using the message format defined in this
 section. Application profiles may define alternative message
 formats.

 TBD: define for verification failure

5. Removal of a Node from the Group

 This section describes at a high level how a node can be removed from
 the group.

 If the application requires forward security, the KDC SHALL generate
 new group keying material and securely distribute it to all the
 current group members but the leaving node, using the message format
 defined in Section 4.2. Application profiles may define alternative
 message formats.

5.1. Expired Authorization

 If the node is not authorized anymore, the AS can directly
 communicate that to the KDC. Alternatively, the access token might
 have expired. If Token introspection is provided by the AS, the KDC
 can use it as per Section 5.7 of [I-D.ietf-ace-oauth-authz], in order
 to verify that the access token is still valid.

 Either case, once aware that a node is not authorized anymore, the
 KDC has to remove the unauthorized node from the list of group
 members, if the KDC keeps track of that.

5.2. Request to Leave the Group

 A node can actively request to leave the group. In this case, the
 Client can send a request formatted as follows to the KDC, to abandon
 the group.

 TBD: Format of the message to leave the group

 The KDC should then remove the leaving node from the list of group
 members, if the KDC keeps track of that.

 Note that, after having left the group, a node may wish to join it
 again. Then, as long as the node is still authorized to join the
 group, i.e. it has a still valid access token, it can re-request to
 join the group directly to the KDC without needing to retrieve a new
 access token from the AS. This means that the KDC needs to keep
 track of nodes with valid access tokens, before deleting all
 information about the leaving node.

Palombini & Tiloca Expires April 25, 2019 [Page 12]

Internet-Draft Key Provisioning for Group Communication October 2018

6. Retrieval of Updated Keying Material

 A node stops using the group keying material upon its expiration,
 according to the ’exp’ parameter specified in the retained COSE Key.
 Then, if it wants to continue participating in the group
 communication, the node has to request new updated keying material to
 the KDC.

 The Client may perform the same request to the KDC also upon
 receiving messages from other group members without being able to
 correctly decrypt them. This may be due to a previous update of the
 group keying material (rekeying) triggered by the KDC, that the
 Client was not able to receive or decrypt.

 Note that policies can be set up so that the Client sends a request
 to the KDC only after a given number of unsuccessfully decrypted
 incoming messages.

6.1. Key Re-Distribution Request

 To request a re-distribution of keying material, the Client sends a
 shortened Key Distribution Request to the KDC (Section 4.1),
 formatted as follows. The payload MUST contain only the following
 field:

 o ’scope’, which contains only the identifier of the specific group
 or topic, encoded as in Section 3.1. That is, the role field is
 not present.

6.2. Key Re-Distribution Response

 The KDC receiving a Key Re-Distribution Request MUST check that it is
 storing a valid access token from that client for that scope.

 TODO: defines error response if it does not have it / is not valid.

 The KDC replies to the Client with a Key Distribution Response
 containing the ’key’ parameter, and optionally ’group_policies’ and
 ’mgt_key_material’, as specified in Section 4.2. Note that this
 response might simply re-provide the same keying material currently
 owned by the Client, if it has not been renewed.

7. Retrieval of Public Keys for Group Members

 In case the KDC maintains the public keys of group members, a node in
 the group can contact the KDC to request public keys of either all
 group members or a specified subset, using the messages defined
 below.

Palombini & Tiloca Expires April 25, 2019 [Page 13]

Internet-Draft Key Provisioning for Group Communication October 2018

 Figure 6 gives an overview of the exchange described above.

 Client KDC
 | |
 |---- Public Key Request: POST /group-id --->|
 | |
 |<--- Public Key Response: 2.01 (Created) ---|
 | |

 Figure 6: Message Flow of Public Key Request-Response

 Note that these messages can be combined with the Key Re-Distribution
 messages in Section 6, to request at the same time the keying
 material and the public keys. In this case, either a new endpoint at
 the KDC may be used, or additional information needs to be sent in
 the request payload, to distinguish these combined messages from the
 Public Key messages described below, since they would be identical
 otherwise.

7.1. Public Key Request

 To request public keys, the Client sends a shortened Key Distribution
 Request to the KDC (Section 4.1), formatted as follows. The payload
 of this request MUST contain the following fields:

 o ’get_pub_keys’, which has as value a CBOR array including either:

 * no elements, i.e. an empty array, in order to request the
 public key of all current group members; or

 * N elements, each of which is the identifier of a group member,
 in order to request the public key of the specified nodes.

 o ’scope’, which contains only the identifier of the specific group
 or topic, encoded as in Section 3.1. That is, the role field is
 not present.

7.2. Public Key Response

 The KDC replies to the Client with a Key Distribution Response
 containing only the ’pub_keys’ parameter, as specified in
 Section 4.2. The payload of this response contains the following
 field:

 o ’pub_keys’, which contains either:

Palombini & Tiloca Expires April 25, 2019 [Page 14]

Internet-Draft Key Provisioning for Group Communication October 2018

 * the public keys of all the members of the group, if the
 ’get_pub_keys’ parameter of the Public Key request was an empty
 array; or

 * the public keys of the group members with the identifiers
 specified in the ’get_pub_keys’ parameter of the Public Key
 request.

 The KDC ignores possible identifiers included in the ’get_pub_keys’
 parameter of the Public Key request if they are not associated to any
 current group member.

8. Security Considerations

 The KDC must renew the group keying material upon its expiration.

 The KDC should renew the keying material upon group membership
 change, and should provide it to the current group members through
 the rekeying scheme used in the group.

9. IANA Considerations

 The following registration is required for the COSE Key Common
 Parameter Registry specified in Section 16.5 of [RFC8152]:

 o Name: exp

 o Label: TBD

 o CBOR Type: Integer or floating-point number

 o Value Registry: COSE Key Common Parameters

 o Description: Identifies the expiration time in seconds of the COSE
 Key

 o Reference: [[this specification]]

10. References

10.1. Normative References

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-16
 (work in progress), October 2018.

Palombini & Tiloca Expires April 25, 2019 [Page 15]

Internet-Draft Key Provisioning for Group Communication October 2018

 [I-D.ietf-ace-oauth-params]
 Seitz, L., "Additional OAuth Parameters for Authorization
 in Constrained Environments (ACE)", draft-ietf-ace-oauth-
 params-00 (work in progress), September 2018.

 [I-D.ietf-ace-oscore-profile]
 Palombini, F., Seitz, L., Selander, G., and M. Gunnarsson,
 "OSCORE profile of the Authentication and Authorization
 for Constrained Environments Framework", draft-ietf-ace-
 oscore-profile-04 (work in progress), October 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

10.2. Informative References

 [I-D.ietf-core-coap-pubsub]
 Koster, M., Keranen, A., and J. Jimenez, "Publish-
 Subscribe Broker for the Constrained Application Protocol
 (CoAP)", draft-ietf-core-coap-pubsub-05 (work in
 progress), July 2018.

 [RFC2093] Harney, H. and C. Muckenhirn, "Group Key Management
 Protocol (GKMP) Specification", RFC 2093,
 DOI 10.17487/RFC2093, July 1997,
 <https://www.rfc-editor.org/info/rfc2093>.

 [RFC2094] Harney, H. and C. Muckenhirn, "Group Key Management
 Protocol (GKMP) Architecture", RFC 2094,
 DOI 10.17487/RFC2094, July 1997,
 <https://www.rfc-editor.org/info/rfc2094>.

 [RFC2627] Wallner, D., Harder, E., and R. Agee, "Key Management for
 Multicast: Issues and Architectures", RFC 2627,
 DOI 10.17487/RFC2627, June 1999,
 <https://www.rfc-editor.org/info/rfc2627>.

 [RFC7390] Rahman, A., Ed. and E. Dijk, Ed., "Group Communication for
 the Constrained Application Protocol (CoAP)", RFC 7390,
 DOI 10.17487/RFC7390, October 2014,
 <https://www.rfc-editor.org/info/rfc7390>.

Palombini & Tiloca Expires April 25, 2019 [Page 16]

Internet-Draft Key Provisioning for Group Communication October 2018

Acknowledgments

 The following individuals were helpful in shaping this document: Ben
 Kaduk, John Mattsson, Jim Schaad, Ludwig Seitz, Goeran Selander and
 Peter van der Stok.

 The work on this document has been partly supported by the EIT-
 Digital High Impact Initiative ACTIVE.

Authors’ Addresses

 Francesca Palombini
 Ericsson AB
 Torshamnsgatan 23
 Kista SE-16440 Stockholm
 Sweden

 Email: francesca.palombini@ericsson.com

 Marco Tiloca
 RISE AB
 Isafjordsgatan 22
 Kista SE-16440 Stockholm
 Sweden

 Email: marco.tiloca@ri.se

Palombini & Tiloca Expires April 25, 2019 [Page 17]

ACE Working Group G. Selander
Internet-Draft Ericsson AB
Intended status: Standards Track S. Raza
Expires: 6 May 2021 RISE
 M. Furuhed
 Nexus
 M. Vucinic
 T. Claeys
 INRIA
 2 November 2020

 Protecting EST Payloads with OSCORE
 draft-selander-ace-coap-est-oscore-04

Abstract

 This document specifies public-key certificate enrollment procedures
 protected with lightweight application-layer security protocols
 suitable for Internet of Things (IoT) deployments. The protocols
 leverage payload formats defined in Enrollment over Secure Transport
 (EST) and existing IoT standards including the Constrained
 Application Protocol (CoAP), Concise Binary Object Representation
 (CBOR) and the CBOR Object Signing and Encryption (COSE) format.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 6 May 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Selander, et al. Expires 6 May 2021 [Page 1]

Internet-Draft EST-oscore November 2020

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Operational Differences with EST-coaps 4
 2. Terminology . 5
 3. Authentication . 5
 3.1. EDHOC . 6
 3.2. Certificate-based Authentication 6
 3.3. Channel Binding . 6
 3.4. Optimizations . 7
 3.5. RPK-based Trust Anchors 7
 4. Protocol Design and Layering 8
 4.1. Discovery and URI . 8
 4.2. Distribution of RPKs 8
 4.3. Mandatory/optional EST Functions 9
 4.4. Payload formats . 9
 4.5. Message Bindings . 11
 4.6. CoAP response codes 11
 4.7. Message fragmentation 11
 4.8. Delayed Responses . 11
 5. HTTP-CoAP Proxy . 12
 6. Security Considerations 12
 7. Privacy Considerations 12
 8. IANA Considerations . 13
 9. Acknowledgments . 13
 10. References . 13
 10.1. Normative References 13
 10.2. Informative References 14
 Appendix A. Other Authentication Methods 16
 A.1. TTP Assisted Authentication 16
 A.2. PSK Based Authentication 18
 Appendix B. CBOR Encoding of EST Payloads 18
 B.1. Distribution of CA Certificates (/crts) 18
 B.2. Enrollment/Re-enrollment of Clients (/sen, /sren) 19
 B.2.1. CBOR Certificate Request Examples 20
 B.2.2. ASN.1 Certificate Request Examples 20
 Authors’ Addresses . 21

Selander, et al. Expires 6 May 2021 [Page 2]

Internet-Draft EST-oscore November 2020

1. Introduction

 One of the challenges with deploying a Public Key Infrastructure
 (PKI) for the Internet of Things (IoT) is certificate enrollment,
 because existing enrollment protocols are not optimized for
 constrained environments [RFC7228].

 One optimization of certificate enrollment targeting IoT deployments
 is specified in EST-coaps ([I-D.ietf-ace-coap-est]), which defines a
 version of Enrollment over Secure Transport [RFC7030] for
 transporting EST payloads over CoAP [RFC7252] and DTLS [RFC6347],
 instead of secured HTTP.

 This document describes a method for protecting EST payloads over
 CoAP or HTTP with OSCORE [RFC8613]. OSCORE specifies an extension to
 CoAP which protects the application layer message and can be applied
 independently of how CoAP messages are transported. OSCORE can also
 be applied to CoAP-mappable HTTP which enables end-to-end security
 for mixed CoAP and HTTP transfer of application layer data. Hence
 EST payloads can be protected end-to-end independent of underlying
 transport and through proxies translating between between CoAP and
 HTTP.

 OSCORE is designed for constrained environments, building on IoT
 standards such as CoAP, CBOR [RFC7049] and COSE [RFC8152], and has in
 particular gained traction in settings where message sizes and the
 number of exchanged messages needs to be kept at a minimum, such as
 6TiSCH [I-D.ietf-6tisch-minimal-security], or for securing multicast
 CoAP messages [I-D.ietf-core-oscore-groupcomm]. Where OSCORE is
 implemented and used for communication security, the reuse of OSCORE
 for other purposes, such as enrollment, reduces the code footprint.

 In order to protect certificate enrollment with OSCORE, the necessary
 keying material (notably, the OSCORE Master Secret, see [RFC8613])
 needs to be established between EST-oscore client and EST-oscore
 server. For this purpose we assume the use of the lightweight
 authenticated key exchange protocol EDHOC [I-D.ietf-lake-edhoc].
 Other methods for key establishment are described in Appendix A.

 Other ways to optimize the performance of certificate enrollment and
 certificate based authentication described in this draft include the
 use of:

 * Compact representations of X.509 certificates (see
 [I-D.mattsson-cose-cbor-cert-compress])

 * Certificates by reference (see [I-D.ietf-cose-x509])

Selander, et al. Expires 6 May 2021 [Page 3]

Internet-Draft EST-oscore November 2020

 * Compact representations of EST payloads (see Appendix B)

1.1. Operational Differences with EST-coaps

 The protection of EST payloads defined in this document builds on
 EST-coaps [I-D.ietf-ace-coap-est] but transport layer security is
 replaced, or complemented, by protection of the transfer- and
 application layer data (i.e., CoAP message fields and payload). This
 specification deviates from EST-coaps in the following respects:

 * The DTLS record layer is replaced, or complemented, with OSCORE.

 * The DTLS handshake is replaced, or complemented, with the
 lightweight authenticated key exchange protocol EDHOC
 [I-D.ietf-lake-edhoc], and makes use of the following features:

 - Authentication based on certificates is complemented with
 authentication based on raw public keys.

 - Authentication based on signature keys is complemented with
 authentication based on static Diffie-Hellman keys, for
 certificates/raw public keys.

 - Authentication based on certificate by value is complemented
 with authentication based on certificate/raw public keys by
 reference.

 * One new EST function, /rpks, is defined for installation of
 compact explicit TAs in the EST client.

 * The EST payloads protected by OSCORE can be proxied between
 constrained networks supporting CoAP/CoAPs and non-constrained
 networks supporting HTTP/HTTPs with a CoAP-HTTP proxy protection
 without any security processing in the proxy (see Section 5). The
 concept "Registrar" and its required trust relation with EST
 server as described in Section 6 of [I-D.ietf-ace-coap-est] is
 therefore redundant.

 So, while the same authentication scheme (Diffie-Hellman key exchange
 authenticated with transported certificates) and the same EST
 payloads as EST-coaps also apply to EST-oscore, the latter specifies
 other authentication schemes and a new matching EST function. The
 reason for these deviations is that a significant overhead can be
 removed in terms of message sizes and round trips by using a
 different handshake, public key type or transported credential, and
 those are independent of the actual enrollment procedure.

Selander, et al. Expires 6 May 2021 [Page 4]

Internet-Draft EST-oscore November 2020

 Appendix A discusses yet other authentication and secure
 communication methods.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. These
 words may also appear in this document in lowercase, absent their
 normative meanings.

 This document uses terminology from [I-D.ietf-ace-coap-est] which in
 turn is based on [RFC7030] and, in turn, on [RFC5272].

 The term "Trust Anchor" follows the terminology of [RFC6024]: "A
 trust anchor represents an authoritative entity via a public key and
 associated data. The public key is used to verify digital
 signatures, and the associated data is used to constrain the types of
 information for which the trust anchor is authoritative." One
 example of specifying more compact alternatives to X.509 certificates
 for exchanging trust anchor information is provided by the
 TrustAnchorInfo structure of [RFC5914], the mandatory parts of which
 essentially is the SubjectPublicKeyInfo structure [RFC5280], i.e., an
 algorithm identifier followed by a public key.

3. Authentication

 This specification replaces the DTLS handshake in EST-coaps with the
 lightweight authenticated key exchange protocol EDHOC
 [I-D.ietf-lake-edhoc]. During initial enrollment the EST-oscore
 client and server run EDHOC [I-D.ietf-lake-edhoc] to authenticate and
 establish the OSCORE security context with which the EST payloads are
 protected.

 EST-oscore clients and servers MUST perform mutual authentication.
 The EST server and EST client are responsible for ensuring that an
 acceptable cipher suite is negotiated. The client MUST authenticate
 the server before accepting any server response. The server MUST
 authenticate the client and provide relevant information to the CA
 for decision about issuing a certificate.

Selander, et al. Expires 6 May 2021 [Page 5]

Internet-Draft EST-oscore November 2020

3.1. EDHOC

 EDHOC supports authentication with certificates/raw public keys
 (referred to as "credentials"), and the credentials may either be
 transported in the protocol, or referenced. This is determined by
 the identifier of the credential of the endpoint, ID_CRED_x for x=
 Initiator/Responder, which is transported in an EDHOC message. This
 identifier may be the credential itself (in which case the credential
 is transported), or a pointer such as a URI to the credential (e.g.,
 x5t, see [I-D.ietf-cose-x509]) or some other identifier which enables
 the receiving endpoint to retrieve the credential.

3.2. Certificate-based Authentication

 EST-oscore, like EST-coaps, supports certificate-based authentication
 between EST client and server. In this case the client MUST be
 configured with an Implicit or Explicit Trust Anchor (TA) [RFC7030]
 database, enabling the client to authenticate the server. During the
 initial enrollment the client SHOULD populate its Explicit TA
 database and use it for subsequent authentications.

 The EST client certificate SHOULD conform to [RFC7925]. The EST
 client and/or EST server certificate MAY be a (natively signed) CBOR
 certificate [I-D.mattsson-cose-cbor-cert-compress].

3.3. Channel Binding

 The [RFC5272] specification describes proof-of-possession as the
 ability of a client to prove its possession of a private key which is
 linked to a certified public key. In case of signature key, a proof-
 of-possession is generated by the client when it signs the PKCS#10
 Request during the enrollment phase. Connection-based proof-of-
 possession is OPTIONAL for EST-oscore clients and servers.

 When desired the client can use the EDHOC-Exporter API to extract
 channel-binding information and provide a connection-based proof-of
 possession. Channel-binding information is obtained as follows

 edhoc-unique = EDHOC-Exporter("EDHOC Unique", length),

 where length equals the desired length of the edhoc-unique byte
 string. The client then adds the edhoc-unique byte string as a
 challengePassword (see Section 5.4.1 of [RFC2985]) in the attributes
 section of the PKCS#10 Request to prove to the server that the
 authenticated EDHOC client is in possession of the private key
 associated with the certification request, and signed the
 certification request after the EDHOC session was established.

Selander, et al. Expires 6 May 2021 [Page 6]

Internet-Draft EST-oscore November 2020

3.4. Optimizations

 * The last message of the EDHOC protocol, message_3, MAY be combined
 with an OSCORE request, enabling authenticated Diffie-Hellman key
 exchange and a protected CoAP request/response (which may contain
 an enrolment request and response) in two round trips
 [I-D.palombini-core-oscore-edhoc].

 * The certificates MAY be compressed, e.g. using the CBOR encoding
 defined in [I-D.mattsson-cose-cbor-cert-compress].

 * The certificate MAY be referenced instead of transported
 [I-D.ietf-cose-x509]. The EST-oscore server MAY use information
 in the credential identifier field of the EDHOC message
 (ID_CRED_x) to access the EST-oscore client certificate, e.g., in
 a directory or database provided by the issuer. In this case the
 certificate may not need to be transported over a constrained link
 between EST client and server.

 * Conversely, the response to the PKCS#10 request MAY be a reference
 to the enrolled certificate rather than the certificate itself.
 The EST-oscore server MAY in the enrolment response to the EST-
 oscore client include a pointer to a directory or database where
 the certificate can be retrieved.

3.5. RPK-based Trust Anchors

 A trust anchor is commonly a self-signed certificate of the CA public
 key. In order to reduce transport overhead, the trust anchor could
 be just the CA public key and associated data (see Section 2), e.g.,
 the SubjectPublicKeyInfo, or a public key certificate without the
 signature. In either case they can be compactly encoded, e.g. using
 CBOR encoding [I-D.mattsson-cose-cbor-cert-compress]. A client MAY
 request an unsigned trust anchors using the /rpks function (see
 Section 4.2).

 Client authentication can be performed with long-lived RPKs installed
 by the manufacturer. Re-enrollment requests can be authenticated
 through a valid certificate issued previously by the EST-oscore
 server or by using the key material available in the Implicit TA
 database.

 TODO: Sanity check this. Review the use of Implicit TA vs. Explicit
 TA.

Selander, et al. Expires 6 May 2021 [Page 7]

Internet-Draft EST-oscore November 2020

4. Protocol Design and Layering

 EST-oscore uses CoAP [RFC7252] and Block-Wise [RFC7959] to transfer
 EST messages in the same way as [I-D.ietf-ace-coap-est]. Instead of
 DTLS record layer, OSCORE [RFC8613] is used to protect the EST
 payloads. Figure 1 below shows the layered EST-oscore architecture.

 +--+
 | EST request/response messages |
 +--+
 | CoAP with OSCORE | HTTP with OSCORE |
 +--+
 | UDP | DTLS/UDP | TCP | TLS/TCP |
 +--+

 Figure 1: EST protected with OSCORE.

 EST-oscore follows much of the EST-coaps and EST design.

4.1. Discovery and URI

 The discovery of EST resources and the definition of the short EST-
 coaps URI paths specified in Section 5.1 of [I-D.ietf-ace-coap-est],
 as well as the new Resource Type defined in Section 9.1 of
 [I-D.ietf-ace-coap-est] apply to EST-oscore. Support for OSCORE is
 indicated by the "osc" attribute defined in Section 9 of [RFC8613],
 for example:

 REQ: GET /.well-known/core?rt=ace.est.sen

 RES: 2.05 Content
 </est>; rt="ace.est";osc

4.2. Distribution of RPKs

 The EST client can request a copy of the current CA public keys.

 TODO: Map relevant parts of section 4.1 of RFC 7030 and other EST
 function related content from RFC7030 and EST-coaps.

 RATIONALE: EST-coaps provides the /crts operation. A successful
 request from the client to this resource will be answered with a bag
 of certificates which is subsequently installed in the Explicit TA.
 Motivated by the specification of more compact trust anchors (see
 Section 2) we define here the new EST function /rpks which returns a
 set of RPKs to be installed in the Explicit TA database.

Selander, et al. Expires 6 May 2021 [Page 8]

Internet-Draft EST-oscore November 2020

4.3. Mandatory/optional EST Functions

 The EST-oscore specification has the same set of required-to-
 implement functions as EST-coaps. The content of Table 1 is adapted
 from Section 5.2 in [I-D.ietf-ace-coap-est] and uses the updated URI
 paths (see Section 4.1).

 +===============+===========================+
 | EST functions | EST-oscore implementation |
 +===============+===========================+
 | /crts | MUST |
 +---------------+---------------------------+
 | /sen | MUST |
 +---------------+---------------------------+
 | /sren | MUST |
 +---------------+---------------------------+
 | /skg | OPTIONAL |
 +---------------+---------------------------+
 | /skc | OPTIONAL |
 +---------------+---------------------------+
 | /att | OPTIONAL |
 +---------------+---------------------------+

 Table 1: Mandatory and optional EST-
 oscore functions

 TODO: Add /rpks OPTIONAL

4.4. Payload formats

 Similar to EST-coaps, EST-oscore allows transport of the ASN.1
 structure of a given Media-Type in binary format. In addition, EST-
 oscore uses the same CoAP Content-Format Options to transport EST
 requests and responses . Table 2 summarizes the information from
 Section 5.3 in [I-D.ietf-ace-coap-est].

Selander, et al. Expires 6 May 2021 [Page 9]

Internet-Draft EST-oscore November 2020

 +=======+===================================+=======+
 | URI | Content-Format | #IANA |
 +=======+===================================+=======+
 | /crts | N/A (req) | - |
 +-------+-----------------------------------+-------+
 | | application/pkix-cert (res) | 287 |
 +-------+-----------------------------------+-------+
 | | application/pkcs-7-mime;smime- | 281 |
 | | type=certs-only (res) | |
 +-------+-----------------------------------+-------+
 | /sen | application/pkcs10 (req) | 286 |
 +-------+-----------------------------------+-------+
 | | application/pkix-cert (res) | 287 |
 +-------+-----------------------------------+-------+
 | | application/pkcs-7-mime;smime- | 281 |
 | | type=certs-only (res) | |
 +-------+-----------------------------------+-------+
 | /sren | application/pkcs10 (req) | 286 |
 +-------+-----------------------------------+-------+
 | | application/pkix-cert (res) | 287 |
 +-------+-----------------------------------+-------+
 | | application/pkcs-7-mime;smime- | 281 |
 | | type=certs-only (res) | |
 +-------+-----------------------------------+-------+
 | /skg | application/pkcs10 (req) | 286 |
 +-------+-----------------------------------+-------+
 | | application/multipart-core (res) | 62 |
 +-------+-----------------------------------+-------+
 | /skc | application/pkcs10 (req) | 286 |
 +-------+-----------------------------------+-------+
 | | application/multipart-core (res) | 62 |
 +-------+-----------------------------------+-------+
 | /att | N/A (req) | - |
 +-------+-----------------------------------+-------+
 | | application/csrattrs (res) | 285 |
 +-------+-----------------------------------+-------+

 Table 2: EST functions and there associated
 Media-Type and IANA numbers

 NOTE: CBOR is becoming a de facto encoding scheme in IoT settings.
 There is already work in progress on CBOR encoding of X.509
 certificates [I-D.mattsson-cose-cbor-cert-compress], and this can be
 extended to other EST messages, see Appendix B.

Selander, et al. Expires 6 May 2021 [Page 10]

Internet-Draft EST-oscore November 2020

4.5. Message Bindings

 The EST-oscore message characteristics are identical to those
 specified in Section 5.4 of [I-D.ietf-ace-coap-est]. It is
 RECOMMENDED that

 * The EST-oscore endpoints support delayed responses

 * The endpoints supports the following CoAP options: OSCORE, Uri-
 Host, Uri-Path, Uri-Port, Content-Format, Block1, Block2, and
 Accept.

 * The EST URLs based on https:// are translated to coap://, but with
 mandatory use of the CoAP OSCORE option.

4.6. CoAP response codes

 See Section 5.5 in [I-D.ietf-ace-coap-est].

4.7. Message fragmentation

 The EDHOC key exchange is optimized for message overhead, in
 particular the use of static DH keys instead of signature keys for
 authentication (e.g., method 3 of [I-D.ietf-lake-edhoc]). Together
 with various measures listed in this document such as CBOR payloads
 (Appendix B), CBOR certificates
 [I-D.mattsson-cose-cbor-cert-compress], certificates by reference
 (Section 3.4), and trust anchors without signature (Section 3.5), a
 significant reduction of message sizes can be achieved.

 Nevertheless, depending on application, the protocol messages may
 become larger than available frame size resulting in fragmentation
 and, in resource constrained networks such as IEEE 802.15.4 where
 throughput is limited, fragment loss can trigger costly
 retransmissions.

 It is RECOMMENDED to prevent IP fragmentation, since it involves an
 error-prone datagram reconstitution. To limit the size of the CoAP
 payload, this specification mandates the implementation of CoAP
 option Block1 and Block2 fragmentation mechanism [RFC7959] as
 described in Section 5.6 of [I-D.ietf-ace-coap-est].

4.8. Delayed Responses

 See Section 5.7 in [I-D.ietf-ace-coap-est].

Selander, et al. Expires 6 May 2021 [Page 11]

Internet-Draft EST-oscore November 2020

5. HTTP-CoAP Proxy

 As noted in Section 6 of [I-D.ietf-ace-coap-est], in real-world
 deployments, the EST server will not always reside within the CoAP
 boundary. The EST-server can exist outside the constrained network
 in a non-constrained network that supports HTTP but not CoAP, thus
 requiring an intermediary CoAP-to-HTTP proxy.

 Since OSCORE is applicable to CoAP-mappable HTTP (see Section 11 of
 [RFC8613]) the EST payloads can be protected end-to-end between EST
 client and EST server independent of transport protocol or potential
 transport layer security which may need to be terminated in the
 proxy, see Figure 2. Therefore the concept "Registrar" and its
 required trust relation with EST server as described in Section 6 of
 [I-D.ietf-ace-coap-est] is redundant.

 The mappings between CoAP and HTTP referred to in Section 9.1 of
 [I-D.ietf-ace-coap-est] apply, and additional mappings resulting from
 the use of OSCORE are specified in Section 11 of [RFC8613].

 OSCORE provides end-to-end security between EST Server and EST
 Client. The use of TLS and DTLS is optional.

 Constrained-Node Network
 .---------. .----------------------------.
 | CA | |.--------------------------.|
 ’---------’ || ||
 | || ||
 .------. HTTP .-----------------. CoAP .-----------. ||
 | EST |<------->| CoAP-to-HTTP |<-------->| EST Client| ||
 |Server| (TLS) | Proxy | (DTLS) ’-----------’ ||
 ’------’ ’-----------------’ ||
 || ||
 <--> ||
 OSCORE || ||
 |’--------------------------’|
 ’----------------------------’

 Figure 2: CoAP-to-HTTP proxy at the CoAP boundary.

6. Security Considerations

 TBD

7. Privacy Considerations

 TBD

Selander, et al. Expires 6 May 2021 [Page 12]

Internet-Draft EST-oscore November 2020

8. IANA Considerations

9. Acknowledgments

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016,
 <https://www.rfc-editor.org/info/rfc7925>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

 [I-D.ietf-lake-edhoc]
 Selander, G., Mattsson, J., and F. Palombini, "Ephemeral
 Diffie-Hellman Over COSE (EDHOC)", Work in Progress,
 Internet-Draft, draft-ietf-lake-edhoc-01, 2 August 2020,
 <http://www.ietf.org/internet-drafts/draft-ietf-lake-
 edhoc-01.txt>.

Selander, et al. Expires 6 May 2021 [Page 13]

Internet-Draft EST-oscore November 2020

 [I-D.ietf-ace-coap-est]
 Stok, P., Kampanakis, P., Richardson, M., and S. Raza,
 "EST over secure CoAP (EST-coaps)", Work in Progress,
 Internet-Draft, draft-ietf-ace-coap-est-18, 6 January
 2020, <http://www.ietf.org/internet-drafts/draft-ietf-ace-
 coap-est-18.txt>.

10.2. Informative References

 [RFC2985] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
 Classes and Attribute Types Version 2.0", RFC 2985,
 DOI 10.17487/RFC2985, November 2000,
 <https://www.rfc-editor.org/info/rfc2985>.

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 DOI 10.17487/RFC2986, November 2000,
 <https://www.rfc-editor.org/info/rfc2986>.

 [RFC5272] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
 <https://www.rfc-editor.org/info/rfc5272>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5914] Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor
 Format", RFC 5914, DOI 10.17487/RFC5914, June 2010,
 <https://www.rfc-editor.org/info/rfc5914>.

 [RFC6024] Reddy, R. and C. Wallace, "Trust Anchor Management
 Requirements", RFC 6024, DOI 10.17487/RFC6024, October
 2010, <https://www.rfc-editor.org/info/rfc6024>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

Selander, et al. Expires 6 May 2021 [Page 14]

Internet-Draft EST-oscore November 2020

 [RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [I-D.ietf-6tisch-minimal-security]
 Vucinic, M., Simon, J., Pister, K., and M. Richardson,
 "Constrained Join Protocol (CoJP) for 6TiSCH", Work in
 Progress, Internet-Draft, draft-ietf-6tisch-minimal-
 security-15, 10 December 2019, <http://www.ietf.org/
 internet-drafts/draft-ietf-6tisch-minimal-security-
 15.txt>.

 [I-D.ietf-ace-oscore-profile]
 Palombini, F., Seitz, L., Selander, G., and M. Gunnarsson,
 "OSCORE Profile of the Authentication and Authorization
 for Constrained Environments Framework", Work in Progress,
 Internet-Draft, draft-ietf-ace-oscore-profile-13, 27
 October 2020, <http://www.ietf.org/internet-drafts/draft-
 ietf-ace-oscore-profile-13.txt>.

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", Work in Progress, Internet-Draft,
 draft-ietf-ace-oauth-authz-35, 24 June 2020,
 <http://www.ietf.org/internet-drafts/draft-ietf-ace-oauth-
 authz-35.txt>.

 [I-D.ietf-core-oscore-groupcomm]
 Tiloca, M., Selander, G., Palombini, F., and J. Park,
 "Group OSCORE - Secure Group Communication for CoAP", Work
 in Progress, Internet-Draft, draft-ietf-core-oscore-
 groupcomm-09, 23 June 2020, <http://www.ietf.org/internet-
 drafts/draft-ietf-core-oscore-groupcomm-09.txt>.

 [I-D.ietf-cose-x509]
 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Header parameters for carrying and referencing X.509
 certificates", Work in Progress, Internet-Draft, draft-
 ietf-cose-x509-07, 17 September 2020,
 <http://www.ietf.org/internet-drafts/draft-ietf-cose-
 x509-07.txt>.

Selander, et al. Expires 6 May 2021 [Page 15]

Internet-Draft EST-oscore November 2020

 [I-D.mattsson-cose-cbor-cert-compress]
 Raza, S., Hoglund, J., Selander, G., Mattsson, J., and M.
 Furuhed, "CBOR Profile of X.509 Certificates", Work in
 Progress, Internet-Draft, draft-mattsson-cose-cbor-cert-
 compress-01, 13 July 2020, <http://www.ietf.org/internet-
 drafts/draft-mattsson-cose-cbor-cert-compress-01.txt>.

 [I-D.palombini-core-oscore-edhoc]
 Palombini, F., Tiloca, M., Hoeglund, R., Hristozov, S.,
 and G. Selander, "Combining EDHOC and OSCORE", Work in
 Progress, Internet-Draft, draft-palombini-core-oscore-
 edhoc-00, 13 July 2020, <http://www.ietf.org/internet-
 drafts/draft-palombini-core-oscore-edhoc-00.txt>.

Appendix A. Other Authentication Methods

 In order to protect certificate enrollment with OSCORE, the necessary
 keying material (notably, the OSCORE Master Secret, see [RFC8613])
 needs to be established between EST-oscore client and EST-oscore
 server. In this appendix we analyse alternatives to EDHOC, which was
 assumed in the body of this specification.

A.1. TTP Assisted Authentication

 Trusted third party (TTP) based provisioning, such as the OSCORE
 profile of ACE [I-D.ietf-ace-oscore-profile] assumes existing
 security associations between the client and the TTP, and between the
 server and the TTP. This setup allows for reduced message overhead
 and round trips compared to the full-fledged EDHOC key exchange.
 Following the ACE terminology the TTP plays the role of the
 Authorization Server (AS), the EST-oscore client corresponds to the
 ACE client and the EST-oscore server is the ACE Resource Server (RS).

Selander, et al. Expires 6 May 2021 [Page 16]

Internet-Draft EST-oscore November 2020

 +------------+ +------------+
 | | | |
 | | ---(A)- Token Request ------> | Trusted |
 | | | Third |
 | | <--(B)- Access Token ------- | Party (AS) |
 | | | |
 | | +------------+
 | EST-oscore | | ^
 | Client | (F) (E)
 |(ACE Client)| V |
 | | +------------+
 | | | |
 | | -(C)- Token + EST Request --> | EST-oscore |
 | | | server (RS)|
 | | <--(D)--- EST response ------ | |
 | | | |
 +------------+ +------------+

 Figure 3: Accessing EST services using a TTP for authenticated key
 establishment and authorization.

 During initial enrollment the EST-oscore client uses its existing
 security association with the TTP, which replaces the Implicit TA
 database, to establish an authenticated secure channel. The
 [I-D.ietf-ace-oscore-profile] ACE profile RECOMMENDS the use of
 OSCORE between client and TTP (AS), but TLS or DTLS MAY be used
 additionally or instead. The client requests an access token at the
 TTP corresponding the EST service it wants to access. If the client
 request was invalid, or not authorized according to the local EST
 policy, the AS returns an error response as described in
 Section 5.6.3 of [I-D.ietf-ace-oauth-authz]. In its responses the
 TTP (AS) SHOULD signal that the use of OSCORE is REQUIRED for a
 specific access token as indicated in section 4.3 of
 [I-D.ietf-ace-oscore-profile]. This means that the EST-oscore client
 MUST use OSCORE towards all EST-oscore servers (RS) for which this
 access token is valid, and follow Section 4.3 in
 [I-D.ietf-ace-oscore-profile] to derive the security context to run
 OSCORE. The ACE OSCORE profile RECOMMENDS the use of CBOR web token
 (CWT) as specified in [RFC8392]. The TTP (AS) MUST also provision an
 OSCORE security context to the EST-oscore client and EST-oscore
 server (RS), which is then used to secure the subsequent messages
 between the client and the server. The details on how to transfer
 the OSCORE contexts are described in section 3.2 of
 [I-D.ietf-ace-oscore-profile].

 Once the client has retrieved the access token it follows the steps
 in [I-D.ietf-ace-oscore-profile] to install the OSCORE security
 context and presents the token to the EST-oscore server. The EST-

Selander, et al. Expires 6 May 2021 [Page 17]

Internet-Draft EST-oscore November 2020

 oscore server installs the corresponding OSCORE context and can
 either verify the validity of the token locally or request a token
 introspection at the TTP. In either case EST policy decisions, e.g.,
 which client can request enrollment or reenrollment, can be
 implemented at the TTP. Finally the EST-oscore client receives a
 response from the EST-oscore server.

A.2. PSK Based Authentication

 Another method to bootstrap EST services requires a pre-shared OSCORE
 security context between the EST-oscore client and EST-oscore server.
 Authentication using the Implicit TA is no longer required since the
 shared security context authenticates both parties. The EST-oscore
 client and EST-oscore server need access to the same OSCORE Master
 Secret as well as the OSCORE identifiers (Sender ID and Recipient ID)
 from which an OSCORE security context can be derived, see [RFC8613].
 Some optional parameters may be provisioned if different from the
 default value:

 * an ID context distinguishing between different OSCORE security
 contexts to use,

 * an AEAD algorithm,

 * an HKDF algorithm,

 * a master salt, and

 * a replay window size.

Appendix B. CBOR Encoding of EST Payloads

 Current EST based specifications transport messages using the ASN.1
 data type declaration. It would be favorable to use a more compact
 representation better suitable for constrained device
 implementations. In this appendix we list CBOR encodings of requests
 and responses of the mandatory EST functions (see Section 4.3).

B.1. Distribution of CA Certificates (/crts)

 The EST client can request a copy of the current CA certificates. In
 EST-coaps and EST-oscore this is done using a GET request to /crts
 (with empty payload). The response contains a chain of certificates
 used to establish an Explicit Trust Anchor database for subsequent
 authentication of the EST server.

Selander, et al. Expires 6 May 2021 [Page 18]

Internet-Draft EST-oscore November 2020

 CBOR encoding of X.509 certificates is specified in
 [I-D.mattsson-cose-cbor-cert-compress]. CBOR encoding of certificate
 chains is specified below. This allows for certificates encoded
 using the CBOR certificate format, or as binary X.509 data wrapped as
 a CBOR byte string.

 CDDL:

 certificate chain = (
 + certificate : bstr
)
 certificate = x509_certificate / cbor_certificate

B.2. Enrollment/Re-enrollment of Clients (/sen, /sren)

 Existing EST standards specify the enrollment request to be a PKCS#10
 formated message [RFC2986]. The essential information fields for the
 CA to verify are the following:

 * Information about the subject, here condensed to the subject
 common name,

 * subject public key, and

 * signature made by the subject private key.

 CDDL:

 certificate request = (
 subject_common_name : bstr,
 public_key : bstr
 signature : bstr,
 ? (signature_alg : int, public_key_info : int)
)

 The response to the enrollment request is the subject certificate,
 for which CBOR encoding is specified in
 [I-D.mattsson-cose-cbor-cert-compress].

 The same message content in request and response applies to re-
 enrollment.

 TODO: PKCS#10 allows inclusion of attributes, which can be used to
 specify extension requests, see Section 5.4.2 of [RFC2985]. CBOR
 encoding of the challengePassword attribute needs to be defined (see
 Section 3.3). What other attributes are relevant?

Selander, et al. Expires 6 May 2021 [Page 19]

Internet-Draft EST-oscore November 2020

B.2.1. CBOR Certificate Request Examples

 Here is an example of CBOR encoding of certificate request as defined
 in the previous section.

 114 bytes:

 (h’0123456789ABCDF0’,
 h’61eb80d2abf7d7e4139c86b87e42466f1b4220d3f7ff9d6a1ae298fb9adbb464’,
 h’30440220064348b9e52ee0da9f9884d8dd41248c49804ab923330e208a168172dca
 e1 27a02206a06c05957f1db8c4e207437b9ab7739cb857aa6dd9486627b8961606a2
 b68ae’)

 In the example above the signature is generated on an ASN.1 data
 structure. To validate this, the receiver needs to reconstruct the
 original data structure. Alternatively, in native mode, the
 signature is generated on the profiled data structure, in which case
 the overall overhead is further reduced.

B.2.2. ASN.1 Certificate Request Examples

 A corresponding certificate request of the previous section using
 ASN.1 is shown in Figure 4.

 SEQUENCE {
 SEQUENCE {
 INTEGER 0
 SEQUENCE {
 SET {
 SEQUENCE {
 OBJECT IDENTIFIER commonName (2 5 4 3)
 UTF8String ’01-23-45-67-89-AB-CD-F0’
 }
 }
 }
 SEQUENCE {
 SEQUENCE {
 OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
 OBJECT IDENTIFIER prime256v1 (1 2 840 10045 3 1 7)
 }
 BIT STRING
 (65 byte public key)
 }
 SEQUENCE {
 OBJECT IDENTIFIER ecdsaWithSHA256 (1 2 840 10045 4 3 2)
 }
 BIT STRING
 (64 byte signature)

Selander, et al. Expires 6 May 2021 [Page 20]

Internet-Draft EST-oscore November 2020

 Figure 4: ASN.1 Structure.

 In Base64, 375 bytes:

 -----BEGIN CERTIFICATE REQUEST-----
 MIHcMIGEAgEAMCIxIDAeBgNVBAMMFzAxLTIzLTQ1LTY3LTg5LUFCLUNELUYwMFkw
 EwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEYeuA0qv31+QTnIa4fkJGbxtCINP3/51q
 GuKY+5rbtGSeZn3l8rVbU0jVEBWvKhAd98JeqgsuauGHRNWt2FqJ1aAAMAoGCCqG
 SM49BAMCA0cAMEQCIAZDSLnlLuDan5iE2N1BJIxJgEq5IzMOIIoWgXLcrhJ6AiBq
 BsBZV/HbjE4gdDe5q3c5y4V6pt2UhmJ7iWFgaitorg==
 -----END CERTIFICATE REQUEST-----

 In hex, 221 bytes:

 3081dc30818402010030223120301e06035504030c1730312d32332d34352d36
 372d38392d41422d43442d46303059301306072a8648ce3d020106082a8648ce
 3d0301070342000461eb80d2abf7d7e4139c86b87e42466f1b4220d3f7ff9d6a
 1ae298fb9adbb4649e667de5f2b55b5348d51015af2a101df7c25eaa0b2e6ae1
 8744d5add85a89d5a000300a06082a8648ce3d04030203470030440220064348
 b9e52ee0da9f9884d8dd41248c49804ab923330e208a168172dcae127a02206a
 06c05957f1db8c4e207437b9ab7739cb857aa6dd9486627b8961606a2b68ae

Authors’ Addresses

 Goeran Selander
 Ericsson AB

 Email: goran.selander@ericsson.com

 Shahid Raza
 RISE

 Email: shahid.raza@ri.se

 Martin Furuhed
 Nexus

 Email: martin.furuhed@nexusgroup.com

 Malisa Vucinic
 INRIA

 Email: malisa.vucinic@inria.fr

Selander, et al. Expires 6 May 2021 [Page 21]

Internet-Draft EST-oscore November 2020

 Timothy Claeys
 INRIA

 Email: timothy.claeys@inria.fr

Selander, et al. Expires 6 May 2021 [Page 22]

ACE Working Group M. Tiloca
Internet-Draft RISE AB
Intended status: Standards Track J. Park
Expires: April 25, 2019 Universitaet Duisburg-Essen
 F. Palombini
 Ericsson AB
 October 22, 2018

 Key Management for OSCORE Groups in ACE
 draft-tiloca-ace-oscoap-joining-05

Abstract

 This document describes a method to request and provision keying
 material in group communication scenarios where communications are
 based on CoAP and secured with Object Security for Constrained
 RESTful Environments (OSCORE). The proposed method delegates the
 authentication and authorization of new client nodes that join an
 OSCORE group through a Group Manager server. This approach builds on
 the ACE framework for Authentication and Authorization, and leverages
 protocol-specific profiles of ACE to achieve communication security,
 proof-of-possession and server authentication.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Tiloca, et al. Expires April 25, 2019 [Page 1]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 1.2. Relation to Other Documents 5
 2. Protocol Overview . 5
 2.1. Overview of the Join Process 7
 2.2. Overview of the Group Rekeying Process 7
 3. Joining Node to Authorization Server 8
 3.1. Authorization Request 8
 3.2. Authorization Response 9
 4. Joining Node to Group Manager 10
 4.1. Join Request . 10
 4.2. Join Response . 10
 5. Leaving of a Group Member 12
 6. Public Keys of Joining Nodes 12
 7. Group Rekeying Process 14
 8. Security Considerations 14
 9. IANA Considerations . 15
 10. References . 15
 10.1. Normative References 15
 10.2. Informative References 16
 Acknowledgments . 17
 Authors’ Addresses . 17

1. Introduction

 Object Security for Constrained RESTful Environments (OSCORE)
 [I-D.ietf-core-object-security] is a method for application-layer
 protection of the Constrained Application Protocol (CoAP) [RFC7252],
 using CBOR Object Signing and Encryption (COSE) [RFC8152] and
 enabling end-to-end security of CoAP payload and options.

 As described in [I-D.ietf-core-oscore-groupcomm], OSCORE may be used
 to protect CoAP group communication over IP multicast [RFC7390].
 This relies on a Group Manager, which is responsible for managing an
 OSCORE group, where members exchange CoAP messages secured with
 OSCORE. The Group Manager can be responsible for multiple groups,
 coordinates the join process of new group members, and is entrusted
 with the distribution and renewal of group keying material.

Tiloca, et al. Expires April 25, 2019 [Page 2]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

 This specification builds on the ACE framework for Authentication and
 Authorization [I-D.ietf-ace-oauth-authz] and defines a method to:

 o Authorize a node to join an OSCORE group, and provide it with the
 group keying material to communicate with other group members.

 o Provide updated keying material to group members upon request.

 o Renew the group keying material and distribute it to the OSCORE
 group (rekeying) upon changes in the group membership.

 A client node joins an OSCORE group through a resource server acting
 as Group Manager for that group. The join process relies on an
 Access Token, which is bound to a proof-of-possession key and
 authorizes the client to access a specific join resource at the Group
 Manager.

 Messages exchanged among the participants follow the formats defined
 in [I-D.palombini-ace-key-groupcomm] for provisioning and renewing
 keying material in group communication scenarios.

 In order to achieve communication security, proof-of-possession and
 server authentication, the client and the Group Manager leverage
 protocol-specific profiles of ACE. These include also possible
 forthcoming profiles that comply with the requirements in Appendix C
 of [I-D.ietf-ace-oauth-authz].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119][RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to be familiar with the terms and concepts
 described in the ACE framework for authentication and authorization
 [I-D.ietf-ace-oauth-authz]. The terminology for entities in the
 considered architecture is defined in OAuth 2.0 [RFC6749]. In
 particular, this includes Client (C), Resource Server (RS), and
 Authorization Server (AS).

 Readers are expected to be familiar with the terms and concepts
 related to the CoAP protocol described in [RFC7252][RFC7390]. Note
 that, unless otherwise indicated, the term "endpoint" is used here
 following its OAuth definition, aimed at denoting resources such as
 /token and /introspect at the AS and /authz-info at the RS. This

Tiloca, et al. Expires April 25, 2019 [Page 3]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

 document does not use the CoAP definition of "endpoint", which is "An
 entity participating in the CoAP protocol".

 Readers are expected to be familiar with the terms and concepts for
 protection and processing of CoAP messages through OSCORE
 [I-D.ietf-core-object-security] also in group communication scenarios
 [I-D.ietf-core-oscore-groupcomm]. These include the concept of Group
 Manager, as the entity responsible for a set of groups where
 communications are secured with OSCORE. In this specification, the
 Group Manager acts as Resource Server.

 This document refers also to the following terminology.

 o Joining node: a network node intending to join an OSCORE group,
 where communication is based on CoAP [RFC7390] and secured with
 OSCORE as described in [I-D.ietf-core-oscore-groupcomm].

 o Join process: the process through which a joining node becomes a
 member of an OSCORE group. The join process is enforced and
 assisted by the Group Manager responsible for that group.

 o Join resource: a resource hosted by the Group Manager, associated
 to an OSCORE group under that Group Manager. A join resource is
 identifiable with the Group Identifier (Gid) of the respective
 group. A joining node accesses a join resource to start the join
 process and become a member of that group.

 o Join endpoint: an endpoint at the Group Manager associated to a
 join resource.

 o Requester: member of an OSCORE group that sends request messages
 to other members of the group.

 o Listener: member of an OSCORE group that receives request messages
 from other members of the group. A listener may reply back, by
 sending a response message to the requester which has sent the
 request message.

 o Pure listener: member of a group that is configured as listener
 and never replies back to requesters after receiving request
 messages. This corresponds to the term "silent server" used in
 [I-D.ietf-core-oscore-groupcomm].

 o Group rekeying process: the process through which the Group
 Manager renews the security parameters and group keying material,
 and (re-)distributes them to the OSCORE group members.

Tiloca, et al. Expires April 25, 2019 [Page 4]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

1.2. Relation to Other Documents

 Figure 1 overviews the main documents related to this specification.
 Arrows and asterisk-arrows denote normative references and
 informative refences, respectively.

 +---------------------------------------+
 | |
 +----------------|--------------+ |
 | | | |
 | v v Key Management
 Pub-sub ---> Key Groupcomm ---> ACE Framework <--- for OSCORE Groups
 profile * * [[WG]] [[This document]]
 | * * ^ ^ | |
 | * * * * | |
 | * * * *************** | |
 | ************ * * * | |
 | * * * * +--------------+ |
 ACE | * * * * | |
 -----|-*--------------*--------------*-*-|--------------------|-------
 CoRE | * * * * | |
 v v v * * v v
 CoRE CoRE OSCORE -------------> OSCORE
 Pubsub Groupcomm <*** Groupcomm <************* [[WG]]
 [[WG]] [[RFC7390]] [[WG]]

 Figure 1: Related Documents

2. Protocol Overview

 Group communication for CoAP over IP multicast has been enabled in
 [RFC7390] and can be secured with Object Security for Constrained
 RESTful Environments (OSCORE) [I-D.ietf-core-object-security] as
 described in [I-D.ietf-core-oscore-groupcomm]. A network node joins
 an OSCORE group by interacting with the responsible Group Manager.
 Once registered in the group, the new node can securely exchange
 messages with other group members.

 This specification describes how to use the ACE framework for
 authentication and authorization [I-D.ietf-ace-oauth-authz] to:

 o Enable a node to join an OSCORE group through the Group Manager
 and receive the security parameters and keying material to
 communicate with the other members of the gorup.

 o Enable members of OSCORE groups to retrieve updated group keying
 material from the Group Manager.

Tiloca, et al. Expires April 25, 2019 [Page 5]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

 o Enable the Group Manager to renew the security parameters and
 group keying material, and to (re-)distribute them to the members
 of the OSCORE group (rekeying).

 With reference to the ACE framework and the terminology defined in
 OAuth 2.0 [RFC6749]:

 o The Group Manager acts as Resource Server (RS), and hosts one join
 resource for each OSCORE group it manages. Each join resource is
 exported by a distinct join endpoint. During the join process,
 the Group Manager provides joining nodes with the parameters and
 keying material for taking part to secure communications in the
 OSCORE group. The Group Manager also maintains the group keying
 material and performs the group rekeying process to distribute
 updated keying material to the group members.

 o The joining node acts as Client (C), and requests to join an
 OSCORE group by accessing the related join endpoint at the Group
 Manager.

 o The Authorization Server (AS) authorizes joining nodes to join
 OSCORE groups under their respective Group Manager. Multiple
 Group Managers can be associated to the same AS. The AS MAY
 release Access Tokens for other purposes than joining OSCORE
 groups under registered Group Managers. For example, the AS may
 also release Access Tokens for accessing resources hosted by
 members of OSCORE groups.

 All communications between the involved entities rely on the CoAP
 protocol and MUST be secured.

 In particular, communications between the joining node and the Group
 Manager leverage protocol-specific profiles of ACE to achieve
 communication security, proof-of-possession and server
 authentication. To this end, the AS must signal the specific profile
 to use, consistently with requirements and assumptions defined in the
 ACE framework [I-D.ietf-ace-oauth-authz].

 With reference to the AS, communications between the joining node and
 the AS (/token endpoint) as well as between the Group Manager and the
 AS (/introspect endpoint) can be secured by different means, for
 instance using DTLS [RFC6347] or OSCORE
 [I-D.ietf-core-object-security]. Further details on how the AS
 secures communications (with the joining node and the Group Manager)
 depend on the specifically used profile of ACE, and are out of the
 scope of this specification.

Tiloca, et al. Expires April 25, 2019 [Page 6]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

2.1. Overview of the Join Process

 A node performs the following steps in order to join an OSCORE group.
 Messages exchanged among the participants follow the formats defined
 in [I-D.palombini-ace-key-groupcomm], and are further specified in
 Section 3 and Section 4 of this document. The Group Manager acts as
 the Key Distribution Center (KDC) defined in
 [I-D.palombini-ace-key-groupcomm].

 1. The joining node requests an Access Token from the AS, in order
 to access a join resource on the Group Manager and hence join the
 associated OSCORE group (see Section 3). The joining node will
 start or continue using a secure communication channel with the
 Group Manager, according to the response from the AS.

 2. The joining node transfers authentication and authorization
 information to the Group Manager by posting the obtained Access
 Token (see Section 4). After that, a joining node must have a
 secure communication channel established with the Group Manager,
 before starting to join an OSCORE group under that Group Manager
 (see Section 4). Possible ways to provide a secure communication
 channel are DTLS [RFC6347] and OSCORE
 [I-D.ietf-core-object-security].

 3. The joining node starts the join process to become a member of
 the OSCORE group, by accessing the related join resource hosted
 by the Group Manager (see Section 4).

 4. At the end of the join process, the joining node has received
 from the Group Manager the parameters and keying material to
 securely communicate with the other members of the OSCORE group.

 5. The joining node and the Group Manager maintain the secure
 channel, to support possible future communications.

 All further communications between the joining node and the Group
 Manager MUST be secured, for instance with the same secure channel
 mentioned in step 2.

2.2. Overview of the Group Rekeying Process

 If the application requires backward and forward security, the Group
 Manager MUST generate new security parameters and group keying
 material, and distribute them to the group (rekeying) upon membership
 changes.

 That is, the group is rekeyed when a node joins the group as a new
 member, or after a current member leaves the group. By doing so, a

Tiloca, et al. Expires April 25, 2019 [Page 7]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

 joining node cannot access communications in the group prior its
 joining, while a leaving node cannot access communications in the
 group after its leaving.

 Parameters and keying material include a new Group Identifier (Gid)
 for the group and a new Master Secret for the OSCORE Common Security
 Context of that group (see Section 2 of
 [I-D.ietf-core-oscore-groupcomm]).

 The Group Manager MUST support the Group Rekeying Process described
 in Section 7. Future application profiles may define alternative
 message formats and distribution schemes to perform group rekeying.

3. Joining Node to Authorization Server

 This section describes how the joining node interacts with the AS in
 order to be authorized to join an OSCORE group under a given Group
 Manager. In particular, it considers a joining node that intends to
 contact that Group Manager for the first time.

 The message exchange between the joining node and the AS consists of
 the messages Authorization Request and Authorization Response defined
 in Section 3 of [I-D.palombini-ace-key-groupcomm].

 In case the specific AS associated to the Group Manager is unknown to
 the joining node, the latter can rely on mechanisms like the
 Unauthorized Resource Request message described in Section 5.1.1 of
 [I-D.ietf-ace-oauth-authz] to discover the correct AS to contact.

3.1. Authorization Request

 The joining node contacts the AS, in order to request an Access Token
 for accessing the join resource hosted by the Group Manager and
 associated to the OSCORE group. The Access Token request sent to the
 /token endpoint follows the format of the Authorization Request
 message defined in Section 3.1 of [I-D.palombini-ace-key-groupcomm].
 In particular:

 o The ’scope’ parameter MUST be present and MUST include:

 * in the first element, either the Group Identifier (Gid) of the
 group to join under the Group Manager, or a value from which
 the Group Manager can derive the Gid of the group to join. It
 is up to the application to define how the Group Manager
 possibly performs the derivation of the full Gid. Appendix C of
 [I-D.ietf-core-oscore-groupcomm] provides an example of
 structured Gid, composed of a fixed part, namely Group Prefix,
 and a variable part, namely Group Epoch.

Tiloca, et al. Expires April 25, 2019 [Page 8]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

 * in the second element, the role(s) that the joining node
 intends to have in the group it intends to join. Possible
 values are: "requester"; "listener"; and "pure listener".
 Possible combinations are: ["requester" , "listener"];
 ["requester" , "pure listener"].

 o The ’req_aud’ parameter MUST be present and is set to the
 identifier of the Group Manager.

3.2. Authorization Response

 The AS is responsible for authorizing the joining node to join
 specific OSCORE groups, according to join policies enforced on behalf
 of the respective Group Manager.

 In case of successful authorization, the AS releases an Access Token
 bound to a proof-of-possession key associated to the joining node.

 Then, the AS provides the joining node with the Access Token as part
 of an Access Token response, which follows the format of the
 Authorization Response message defined in Section 3.2 of
 [I-D.palombini-ace-key-groupcomm].

 The ’exp’ parameter MUST be present. Other means for the AS to
 specify the lifetime of Access Tokens are out of the scope of this
 specification.

 The AS must include the ’scope’ parameter in the response when the
 value included in the Access Token differs from the one specified by
 the joining node in the request. In such a case, the second element
 of ’scope’ MUST be present and includes the role(s) that the joining
 node is actually authorized to take in the group, encoded as
 specified in Section 3.1 of this document.

 Also, the ’profile’ parameter indicates the specific profile of ACE
 to use for securing communications between the joining node and the
 Group Manager (see Section 5.6.4.3 of [I-D.ietf-ace-oauth-authz]).

 In particular, if symmetric keys are used, the AS generates a proof-
 of-possession key, binds it to the Access Token, and provides it to
 the joining node in the ’cnf’ parameter of the Access Token response.
 Instead, if asymmetric keys are used, the joining node provides its
 own public key to the AS in the ’req_cnf’ parameter of the Access
 Token request. Then, the AS uses it as proof-of-possession key bound
 to the Access Token, and provides the joining node with the Group
 Manager’s public key in the ’rs_cnf’ parameter of the Access Token
 response.

Tiloca, et al. Expires April 25, 2019 [Page 9]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

4. Joining Node to Group Manager

 First, the joining node posts the Access Token to the /authz-info
 endpoint at the Group Manager, in accordance with the Token post
 defined in Section 3.3 of [I-D.palombini-ace-key-groupcomm]. Then,
 the joining node establishes a secure channel with the Group Manager,
 according to what is specified in the Access Token response and to
 the signalled profile of ACE.

4.1. Join Request

 Once a secure communication channel with the Group Manager has been
 established, the joining node requests to join the OSCORE group, by
 accessing the related join resource at the Group Manager.

 In particular, the joining node sends to the Group Manager a
 confirmable CoAP request, using the method POST and targeting the
 join endpoint associated to that group. This join request follows
 the format and processing of the Key Distribution Request message
 defined in Section 4.1 of [I-D.palombini-ace-key-groupcomm]. In
 particular:

 o The ’get_pub_keys’ parameter is present only if the joining node
 wants to retrieve the public keys of the group members from the
 Group Manager during the join process (see Section 6). Otherwise,
 this parameter MUST NOT be present.

 o The ’client_cred’ parameter, if present, includes the public key
 of the joining node. This parameter MAY be omitted if: i) public
 keys are used as proof-of-possession keys between the joining node
 and the Group Manager; or ii) the joining node is asking to access
 the group exclusively as pure listener; or iii) the Group Manager
 already acquired this information during a previous join process.
 In any other case, this parameter MUST be present.

4.2. Join Response

 The Group Manager processes the request according to
 [I-D.ietf-ace-oauth-authz]. If this yields a positive outcome, the
 Group Manager updates the group membership by registering the joining
 node as a new member of the OSCORE group.

 The Group Manager replies to the joining node providing the updated
 security parameters and keying meterial necessary to participate in
 the group communication. This join response follows the format and
 processing of the Key Distribution success Response message defined
 in Section 4.2 of [I-D.palombini-ace-key-groupcomm]. In particular:

Tiloca, et al. Expires April 25, 2019 [Page 10]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

 o The ’key’ parameter includes what the joining node needs in order
 to set up the OSCORE Security Context as per Section 2 of
 [I-D.ietf-core-oscore-groupcomm]. In particular:

 * The ’kty’ parameter has value "Symmetric".

 * The ’k’ parameter includes the OSCORE Master Secret.

 * The ’exp’ parameter specifies when the OSCORE Security Context
 derived from these parameters expires.

 * The ’alg’ parameter, if present, has as value the AEAD
 algorithm used in the group.

 * The ’kid’ parameter, if present, has as value the identifier of
 the key in the parameter ’k’.

 * The ’base IV’ parameter, if present, has as value the OSCORE
 Common IV.

 * The ’clientID’ parameter, if present, has as value the OSCORE
 Sender ID assigned to the joining node by the Group Manager.
 This parameter is not present if the node joins the group
 exclusively as pure listener, according to what specified in
 the Access Token (see Section 3.2). In any other case, this
 parameter MUST be present.

 * The ’serverID’ parameter MUST be present and has as value the
 Group Identifier (Gid) associated to the group.

 * The ’kdf’ parameter, if present, has as value the KDF algorithm
 used in the group.

 * The ’slt’ parameter, if present, has as value the OSCORE Master
 Salt.

 * The ’cs_alg’ parameter MUST be present and has as value the
 countersignature algorithm used in the group.

 o The ’pub_keys’ parameter is present only if the ’get_pub_keys’
 parameter was present in the join request. If present, this
 parameter includes the public keys of the group members that are
 relevant to the joining node. That is, it includes: i) the public
 keys of the non-pure listeners currently in the group, in case the
 joining node is configured (also) as requester; and ii) the public
 keys of the requesters currently in the group, in case the joining
 node is configured (also) as listener or pure listener.

Tiloca, et al. Expires April 25, 2019 [Page 11]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

 o The ’group_policies’ parameter SHOULD be present and includes a
 list of parameters indicating particular policies enforced in the
 group. For instance, it can indicate the method to achieve
 synchronization of sequence numbers among group members (see
 Appendix E of [I-D.ietf-core-oscore-groupcomm]).

 Finally, the joining node uses the information received in the join
 response to set up the OSCORE Security Context, as described in
 Section 2 of [I-D.ietf-core-oscore-groupcomm]. From then on, the
 joining node can exchange group messages secured with OSCORE as
 described in [I-D.ietf-core-oscore-groupcomm].

 If the application requires backward security, the Group Manager
 SHALL generate updated security parameters and group keying material,
 and provide it to all the current group members (see Section 7).

 When the OSCORE Master Secret expires, as specified by ’exp’ in the
 ’key’ parameter of the join response, the node considers the OSCORE
 Security Context also invalid and to be renewed. Then, the node
 retrieves updated security parameters and keying material, by
 exchanging shortened Join Request and Join Response messages with the
 Group Manager, according to the approach defined in Section 6 of
 [I-D.palombini-ace-key-groupcomm]. Finally, the node uses the
 updated security parameters and keying material to set up the new
 OSCORE Security Context as described in Section 2 of
 [I-D.ietf-core-oscore-groupcomm].

5. Leaving of a Group Member

 A node may be removed from the OSCORE group, due to expired or
 revoked authorization, or after its own request to the Group Manager.

 If the application requires forward security, the Group Manager SHALL
 generate updated security parameters and group keying material, and
 provide it to the remaining group members (see Section 7). The
 leaving node must not be able to acquire the new security parameters
 and group keying material distributed after its leaving.

 Same considerations in Section 5 of [I-D.palombini-ace-key-groupcomm]
 apply here as well, considering the Group Manager acting as KDC. In
 particular, a node requests to leave the OSCORE group as described in
 Section 5.2 of [I-D.palombini-ace-key-groupcomm].

6. Public Keys of Joining Nodes

 Source authentication of OSCORE messages exchanged within the group
 is ensured by means of digital counter signatures (see Sections 2 and
 3 of [I-D.ietf-core-oscore-groupcomm]). Therefore, group members

Tiloca, et al. Expires April 25, 2019 [Page 12]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

 must be able to retrieve each other’s public key from a trusted key
 repository, in order to verify source authenticity of incoming group
 messages.

 As also discussed in [I-D.ietf-core-oscore-groupcomm], the Group
 Manager acts as trusted repository of the public keys of the group
 members, and provides those public keys to group members if requested
 to. Upon joining an OSCORE group, a joining node is thus expected to
 provide its own public key to the Group Manager.

 In particular, four cases can occur when a new node joins a group.

 o The joining node is going to join the group exclusively as pure
 listener. That is, it is not going to send messages to the group,
 and hence to produce signatures with its own private key. In this
 case, the joining node is not required to provide its own public
 key to the Group Manager upon joining the group.

 o The Group Manager already acquired the public key of the joining
 node during a previous join process. In this case, the joining
 node may not provide again its own public key to the Group
 Manager, in order to limit the size of the join request.

 o The joining node and the Group Manager use an asymmetric proof-of-
 possession key to establish a secure communication channel. In
 this case, the Group Manager stores the proof-of-possession key
 conveyed in the Access Token as the public key of the joining
 node.

 o The joining node and the Group Manager use a symmetric proof-of-
 possession key to establish a secure communication channel. In
 this case, upon performing a join process with that Group Manager
 for the first time, the joining node specifies its own public key
 in the ’client_cred’ parameter of the join request targeting the
 join endpoint (see Section 4.1).

 Furthermore, as described in Section 4.1, the joining node may have
 explicitly requested the Group Manager to retrieve the public keys of
 the current group members, i.e. through the ’get_pub_keys’ parameter
 in the join request. In this case, the Group Manager includes also
 such public keys in the ’pub_keys’ parameter of the join response
 (see Section 4.2).

 Later on as a group member, the node may need to retrieve the public
 keys of other group members. The node can do that by exchanging
 shortened Join Request and Join Response messages with the Group
 Manager, according to the approach defined in Section 7 of
 [I-D.palombini-ace-key-groupcomm].

Tiloca, et al. Expires April 25, 2019 [Page 13]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

7. Group Rekeying Process

 In order to rekey the OSCORE group, the Group Manager distributes a
 new Group ID of the group and a new OSCORE Master Secret for that
 group. To this end, the Group Manager MUST support at least the
 following group rekeying scheme. Future application profiles may
 define alternative message formats and distribution schemes.

 The Group Manager uses the same format of the Join Response message
 in Section 4.2. In particular:

 o Only the ’key’ parameter is present.

 o The ’k’ parameter of the ’key’ parameter includes the new OSCORE
 Master Secret.

 o The ’serverID’ parameter of the ’key’ parameter includes the new
 Group ID.

 The Group Manager separately sends a group rekeying message to each
 group member to be rekeyed. Each rekeying message MUST be secured
 with the pairwise secure communication channel between the Group
 Manager and the group member used during the join process.

8. Security Considerations

 The method described in this document leverages the following
 management aspects related to OSCORE groups and discussed in the
 sections of [I-D.ietf-core-oscore-groupcomm] referred below.

 o Management of group keying material (see Section 2.1 of
 [I-D.ietf-core-oscore-groupcomm]). The Group Manager is
 responsible for the renewal and re-distribution of the keying
 material in the groups of its competence (rekeying). According to
 the specific application requirements, this can include rekeying
 the group upon changes in its membership. In particular, renewing
 the keying material is required upon a new node’s joining or a
 current node’s leaving, in case backward security and forward
 security have to be preserved, respectively.

 o Provisioning and retrieval of public keys (see Section 2 of
 [I-D.ietf-core-oscore-groupcomm]). The Group Manager acts as key
 repository of public keys of group members, and provides them upon
 request.

 o Synchronization of sequence numbers (see Section 5 of
 [I-D.ietf-core-oscore-groupcomm]). This concerns how a listener

Tiloca, et al. Expires April 25, 2019 [Page 14]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

 node that has just joined an OSCORE group can synchronize with the
 sequence number of requesters in the same group.

 Before sending the join response, the Group Manager should verify
 that the joining node actually owns the associated private key, for
 instance by performing a proof-of-possession challenge-response,
 whose details are out of the scope of this specification.

 Further security considerations are inherited from
 [I-D.palombini-ace-key-groupcomm], the ACE framework for
 Authentication and Authorization [I-D.ietf-ace-oauth-authz], and the
 specific profile of ACE signalled by the AS, such as
 [I-D.ietf-ace-dtls-authorize] and [I-D.ietf-ace-oscore-profile].

9. IANA Considerations

 This document has no actions for IANA.

10. References

10.1. Normative References

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-16
 (work in progress), October 2018.

 [I-D.ietf-ace-oscore-profile]
 Palombini, F., Seitz, L., Selander, G., and M. Gunnarsson,
 "OSCORE profile of the Authentication and Authorization
 for Constrained Environments Framework", draft-ietf-ace-
 oscore-profile-04 (work in progress), October 2018.

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-15 (work in
 progress), August 2018.

 [I-D.ietf-core-oscore-groupcomm]
 Tiloca, M., Selander, G., Palombini, F., and J. Park,
 "Secure group communication for CoAP", draft-ietf-core-
 oscore-groupcomm-02 (work in progress), June 2018.

Tiloca, et al. Expires April 25, 2019 [Page 15]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

 [I-D.palombini-ace-key-groupcomm]
 Palombini, F. and M. Tiloca, "Key Provisioning for Group
 Communication using ACE", draft-palombini-ace-key-
 groupcomm-02 (work in progress), October 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [I-D.ietf-ace-dtls-authorize]
 Gerdes, S., Bergmann, O., Bormann, C., Selander, G., and
 L. Seitz, "Datagram Transport Layer Security (DTLS)
 Profile for Authentication and Authorization for
 Constrained Environments (ACE)", draft-ietf-ace-dtls-
 authorize-05 (work in progress), October 2018.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7390] Rahman, A., Ed. and E. Dijk, Ed., "Group Communication for
 the Constrained Application Protocol (CoAP)", RFC 7390,
 DOI 10.17487/RFC7390, October 2014,
 <https://www.rfc-editor.org/info/rfc7390>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

Tiloca, et al. Expires April 25, 2019 [Page 16]

Internet-Draft Key Management for OSCORE Groups in ACE October 2018

Acknowledgments

 The authors sincerely thank Santiago Aragon, Stefan Beck, Martin
 Gunnarsson, Jim Schaad, Ludwig Seitz, Goeran Selander and Peter van
 der Stok for their comments and feedback.

 The work on this document has been partly supported by the EIT-
 Digital High Impact Initiative ACTIVE.

Authors’ Addresses

 Marco Tiloca
 RISE AB
 Isafjordsgatan 22
 Kista SE-164 29 Stockholm
 Sweden

 Email: marco.tiloca@ri.se

 Jiye Park
 Universitaet Duisburg-Essen
 Schuetzenbahn 70
 Essen 45127
 Germany

 Email: ji-ye.park@uni-due.de

 Francesca Palombini
 Ericsson AB
 Torshamnsgatan 23
 Kista SE-16440 Stockholm
 Sweden

 Email: francesca.palombini@ericsson.com

Tiloca, et al. Expires April 25, 2019 [Page 17]

	draft-ietf-ace-coap-est-18
	draft-ietf-ace-cwt-proof-of-possession-11
	draft-ietf-ace-dtls-authorize-14
	draft-ietf-ace-oauth-authz-36
	draft-ietf-ace-oscore-profile-13
	draft-palombini-ace-coap-pubsub-profile-06
	draft-palombini-ace-key-groupcomm-02
	draft-selander-ace-coap-est-oscore-04
	draft-tiloca-ace-oscoap-joining-05

