
ALTO WG K. Gao
Internet-Draft Tsinghua University
Intended status: Standards Track X. Wang
Expires: September 3, 2018 Tongji University
 Q. Xiang
 Tongji/Yale University
 C. Gu
 Tongji University
 Y. Yang
 Yale University
 G. Chen
 Huawei
 March 2, 2018

 Compressing ALTO Path Vectors
 draft-gao-alto-routing-state-abstraction-08.txt

Abstract

 The path vector extension [I-D.ietf-alto-path-vector] has extended
 the base ALTO protocol [RFC7285] with the ability to represent a more
 detailed view of the network which contains not only end-to-end costs
 but also information about shared bottlenecks.

 However, the view computed by straw man algorithms can contain
 redundant information and result in unnecessary communication
 overhead. The situation gets even worse when certain ALTO extensions
 are enabled, for example, the incremental update extension
 [I-D.ietf-alto-incr-update-sse] which continuously pushes data
 changes to ALTO clients. Redundant information can trigger
 unnecessary updates.

 In this document, several algorithms are described which can
 effectively reduce the redundancy in the network view while still
 providing the same information as in the original path vectors.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Gao, et al. Expires September 3, 2018 [Page 1]

Internet-Draft Compressing Path Vectors March 2018

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 3, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Changes Since Version -03, -04, -05, -06 and -07 4
 3. Terminology . 4
 4. Compressing Path Vectors 4
 4.1. Equivalent Aggregation 5
 4.2. Redundant Network Elements 6
 4.3. Equivalent Decomposition 7
 5. Compression Algorithms 8
 5.1. Equivalent Aggregation 9
 5.2. Redundant Network Element Identification 11
 5.3. Equivalent Decomposition 13
 5.4. Execution Order . 16
 6. Encoding/Decoding Path Vectors 16
 6.1. Decoding Path Vectors 17
 6.2. Encoding Path Vectors 20
 6.3. Compatibility . 23
 7. Security Considerations 23
 8. IANA Considerations . 23
 9. Acknowledgments . 23

Gao, et al. Expires September 3, 2018 [Page 2]

Internet-Draft Compressing Path Vectors March 2018

 10. References . 23
 10.1. Normative References 23
 10.2. Informative References 23
 Authors’ Addresses . 24

1. Introduction

 The path vector extension [I-D.ietf-alto-path-vector] has extended
 the base ALTO protocol [RFC7285] with the ability to present more
 complex network views than the simple abstraction used by Cost Map or
 Endpoint Cost Service. ALTO clients can query more sophisticated
 information such as shared bottlenecks, and schedule their flows
 properly to avoid congestion and to better utilize network resources.

 Meanwhile, the extension itself does not specify how an ALTO server
 should respond to a path-vector query. A straw man approach, as in
 the context of Software Defined Networking (SDN) where network
 providers have a global view, can compute the path vectors by
 retrieving the paths for all requested flows and returning the links
 on those paths as abstract network elements. However, this approach
 has several drawbacks:

 o The resultant network view may lead to privacy leaks. Since the
 paths constitute a sub-graph of the global network topology, they
 may contain sensitive information without further processing.

 o The resultant network view may contain redundant information. The
 path vector information is primarily used to avoid network
 bottlenecks. Thus, if a link cannot become the bottleneck, as
 demonstrated in Section 4, it is considered as redundant.
 Redundant links not only increase the communication overhead of
 the path vector extension, but also trigger false-positive data
 change events when the incremental update extension
 [I-D.ietf-alto-incr-update-sse] is activated.

 To overcome these limitations, this document describes equivalent
 transformation algorithms that identify redundant abstract network
 elements and reduce them as much as possible. The algorithm can be
 integrated with any implementation of the path vector extension as a
 post-processing step. As the name suggests, this algorithm conducts
 equivalent transformations on the original path vectors, removes
 redundant information and obtains a more compact view.

 This document is a supplement to the path vector extension and can be
 optionally turned on and off without affecting the correctness of
 responses. A crucial part of the equivalent transformation algorithm
 is how to find redundant abstract network elements. By tuning the
 redundancy check algorithm, one can make different trade-off

Gao, et al. Expires September 3, 2018 [Page 3]

Internet-Draft Compressing Path Vectors March 2018

 decisions between efficiency and privacy. A reference implementation
 of redundancy check algorithm is also described in this document.

 This document is organized as follows. Section 4 gives a concrete
 example to demonstrate the importance of compressing path vectors.
 The compression algorithms are specified in Section 5 and Section 6
 discusses how one can use these algorithms on existing path vector
 responses. Finally, Section 7 and Section 8 discuss security and
 IANA considerations.

2. Changes Since Version -03, -04, -05, -06 and -07

 In early versions of this draft, a lot of contents are shared with
 the path vector draft. From version -04, the authors have adjusted
 the structure and target this document as a supplement of the path
 vector extension with

 o practical compression algorithms which can effectively reduce the
 leaked information and the communication overhead; and

 o detailed instructions on how an original path vector response can
 be processed by these algorithms.

 The -06 version fixed some minor issues in -04 and -05. The -07
 version has focused on improving the clarity of the algorithms with
 more examples. The -08 version has improved the overall quality of
 the draft, especially the clarity of the algorithms using simpler
 symbols.

3. Terminology

 This document uses the same terms as in [I-D.ietf-alto-path-vector].

4. Compressing Path Vectors

 We use the example shown in Figure 1 to demonstrate the importance of
 compressing path vectors. The network has 6 switches (sw1 to sw6)
 forming a dumbbell topology where switches sw1/sw3 provide access on
 the left hand side, s2/s4 provide access on the right hand side, and
 sw5/sw6 form the backbone. End hosts eh1 to eh4 are connected to
 access switches sw1 to sw4 respectively. Assume that the bandwidth
 of each link is 100 Mbps, and that the network is abstracted with 4
 PIDs each representing a host at one access switch.

Gao, et al. Expires September 3, 2018 [Page 4]

Internet-Draft Compressing Path Vectors March 2018

 PID1 +-----+ +-----+ PID2
 eh1__| |_ ____| |__eh2
 | sw1 | \ +------+ +------+ / | sw2 |
 +-----+ \ | | | |/ +-----+
 _| sw5 +---------+ sw6 |
 PID3 +-----+ / | | | |\ +-----+ PID4
 eh3__| |__/ +------+ +------+ ____| |__eh4
 | sw3 | | sw4 |
 +-----+ +-----+

 Figure 1: Raw Network Topology

 +--------+---------------+
 | Link | Description |
 +--------+---------------+
 | link1 | sw1 <==> sw5 |
 | link2 | sw2 <==> sw6 |
 | link3 | sw3 <==> sw5 |
 | link4 | sw4 <==> sw6 |
 | link5 | sw5 <==> sw6 |
 +--------+---------------+

 Table 1: Description of the Links

 Three cases are identified when path vectors can be further
 compressed and an example is provided for each case.

4.1. Equivalent Aggregation

 Consider an application which schedules the traffic consisting of two
 flows, eh1 -> eh2 and eh3 -> eh4. The application can query the path
 vectors and a straw man implementation will return all 5 links
 (abstract network elements) as shown in Figure 2.

 path vectors:
 eh1: [eh2: [ane:l1, ane:l5, ane:l2]]
 eh3: [eh4: [ane:l3, ane:l5, ane:l4]]

 abstract network element property map:
 ane:l1 : 100 Mbps
 ane:l2 : 100 Mbps
 ane:l3 : 100 Mbps
 ane:l4 : 100 Mbps
 ane:l5 : 100 Mbps

 Figure 2: Path Vectors Returned by a Straw Man Implementation

Gao, et al. Expires September 3, 2018 [Page 5]

Internet-Draft Compressing Path Vectors March 2018

 The resultant path vectors represent the following linear constraints
 on the available bandwidth for the two flows:

 bw(eh1->eh2) <= 100 Mbps (ane:l1)
 bw(eh1->eh2) <= 100 Mbps (ane:l2)
 bw(eh3->eh4) <= 100 Mbps (ane:l3)
 bw(eh3->eh4) <= 100 Mbps (ane:l4)
 bw(eh1->eh2) + bw(eh3->eh4) <= 100 Mbps (ane:l5)

 Figure 3: Linear Constraints Represented by the Path Vectors

 It can be seen that the constraints of ane:l1 and ane:l2 are exactly
 the same, and so are those of ane:l3 and ane:l4. Intuitively, we can
 replace ane:l1 and ane:l2 with a new abstract network element ane:1,
 and similarly replace ane:l3 and ane:l4 with ane:2. The new path
 vectors are shown in Figure 4.

 path vectors:
 eh1: [eh2: [ane:1, ane:l5]]
 eh3: [eh4: [ane:2, ane:l5]]

 abstract network element property map:
 ane:1 : 100 Mbps
 ane:2 : 100 Mbps
 ane:l5 : 100 Mbps

 Figure 4: Path Vectors after Merging ane:l1/ane:l2 and ane:l3/ane:l4

4.2. Redundant Network Elements

 Consider the same case as in Section 4.1. Taking a deeper look at
 Figure 3, one can conclude that constraints of ane:1 (ane:l1/ane:l2)
 and ane:2 (ane:l3/ane:l4) can be implicitly derived from that of
 ane:l5. Thus, these constraints are considered _redundant_ and the
 path vectors in Figure 4 can be further reduced. We replace ane:l5
 with a new ane:3 and the new path vectors are shown in Figure 5.

 path vectors:
 eh1: [eh2: [ane:3]]
 eh3: [eh4: [ane:3]]

 abstract network element property map:
 ane:3 : 100 Mbps

 Figure 5: Path Vectors after Removing Redundant Elements

 It is clear that the new path vectors (Figure 5) are much more
 compact than the original path vectors (Figure 2) but they contain

Gao, et al. Expires September 3, 2018 [Page 6]

Internet-Draft Compressing Path Vectors March 2018

 just as much information. Meanwhile, the application can hardly
 infer anything about the original topology with the compact path
 vectors.

4.3. Equivalent Decomposition

 However, it is not always possible to directly remove all redundant
 network elements. For example, consider the case when both bandwidth
 and routingcost are requested, and the values are as shown in
 Figure 6. Note that we have changed the bandwidth for ane:l5 for
 demonstration purpose.

 path vectors:
 eh1: [eh2: [ane:l1, ane:l5, ane:l2]]
 eh3: [eh4: [ane:l3, ane:l5, ane:l4]]

 abstract network element property map:
 ane:l1 : 100 Mbps, 1
 ane:l2 : 100 Mbps, 2
 ane:l3 : 100 Mbps, 1
 ane:l4 : 100 Mbps, 1
 ane:l5 : 200 Mbps, 1

 Figure 6: Path Vectors Returned by a Straw Man Implementation

 bw(eh1->eh2) <= 100 Mbps (ane:l1)
 bw(eh1->eh2) <= 100 Mbps (ane:l2)
 bw(eh3->eh4) <= 100 Mbps (ane:l3)
 bw(eh3->eh4) <= 100 Mbps (ane:l4)
 bw(eh1->eh2) + bw(eh3->eh4) <= 200 Mbps (ane:l5)

 Figure 7: Bandwidth Constraints in the Original Path Vectors

 rc(eh1->eh2) = rc(ane:l1) + rc(ane:l2) + rc(ane:l5) = 4
 rc(eh3->eh4) = rc(ane:l3) + rc(ane:l4) + rc(ane:l5) = 3

 Figure 8: Routingcost Information in the Original Path Vectors

 Figure 7 and Figure 8 demonstrate the bandwidth and routingcost
 information one can obtain from the original path vector. Again,
 ane:l1/ane:l2 and ane:l3/ane:l4 can still be aggregated in a similar
 way as in Figure 4 by setting the routingcost of ane:1 and ane:2 to 3
 and 2 respectively. However, we cannot remove the redundant network
 element (ane:l5 in this case) directly because the resultant path
 vectors (Figure 9) would not provide the same routingcost information
 as in the original path vector.

Gao, et al. Expires September 3, 2018 [Page 7]

Internet-Draft Compressing Path Vectors March 2018

 path vectors:
 eh1: [eh2: [ane:1]]
 eh3: [eh4: [ane:2]]

 abstract network element property map:
 ane:1 : 100 Mbps, 3
 ane:2 : 100 Mbps, 2

 Figure 9: Path Vectors after Removing Redundant Network Element

 A further observation is that since the bandwidth constraint of
 ane:l5 is redundant, it can be equally represented as two abstract
 network elements ane:a5 and ane:b5, as shown in Figure 10.

 path vectors:
 eh1: [eh2: [ane:1, ane:a5]]
 eh3: [eh4: [ane:2, ane:b5]]

 abstract network element property map:
 ane:1 : 100 Mbps, 3
 ane:2 : 100 Mbps, 2
 ane:a5 : 200 Mbps, 1
 ane:b5 : 200 Mbps, 1

 Figure 10: Path Vectors after Decomposing ane:l5

 Since ane:1/ane:a5 and ane:2/ane:b5 can be aggregated as ane:3 and
 ane:4 respectively, the final path vectors only contain two network
 elements, as shown in Figure 11.

 path vectors:
 eh1: [eh2: [ane:1]]
 eh3: [eh4: [ane:2]]

 abstract network element property map:
 ane:1 : 100 Mbps, 4
 ane:2 : 100 Mbps, 3

 Figure 11: Path Vectors after Merging ane:1/ane:a5 and ane:2/ane:b5

 One can verify that this path vector response has just the same
 information as in Figure 6 but contains much less contents.

5. Compression Algorithms

 To provide a guideline on how path vectors MIGHT be compressed, this
 section describes the details of the algorithms for the three
 aforementioned cases:

Gao, et al. Expires September 3, 2018 [Page 8]

Internet-Draft Compressing Path Vectors March 2018

 1. Equivalent aggregation (EQUIV_AGGR), which compresses the
 original path vectors by aggregating the network elements with
 the same set of pairs as shown in Section 4.1;

 2. Identification of redundant constraints (IS_REDUNDANT), which
 compresses the original path vectors by removing the network
 elements that provide only redundant information as shown in
 Section 4.2;

 3. Equivalent decomposition (EQUIV_DECOMP), which compresses the
 original path vectors by decomposing redundant network elements
 to obtain the same end-to-end routing metrics as shown in
 Section 4.3.

5.1. Equivalent Aggregation

5.1.1. Parameters and Variables

 The equivalent aggregation algorithm takes 3 parameters: the set of
 network elements "V", the set of relevant host pairs "P" and the set
 of metrics "M".

 Set of network elements V: The set of network elements consists of
 all the network elements that exists in the original path vectors.
 The "i"-th network element in "V" is denoted as "v_i".

 Set of relevant host pairs P: The "i"-th element in "P" is denoted
 as "p_i". It represents the set of (src, dst) pairs whose paths
 traverse "v_i" in the original path vectors.

 Set of metrics M: The "i-th" element in "M" is denoted as "m_i". It
 represents the set of metrics associated with network element
 "v_i".

 The output of the equivalent aggregation algorithm is a new set of
 network elements "V’", a new set of relevant host pairs "P’" and a
 new set of metrics "M’", i.e., "V’, P’, M’ = EQUIV_AGGR(V, P, M)".

5.1.2. Algorithm Description

 1. Set "V’", "P’", "M’" to empty sets. Set "k" to 0. Go to step 2.

 2. If "V" is empty, go to step 6. Otherwise, go to step 3.

 3. Select an arbitrary element "v_i" from "V", remove "v_i" from "V"
 and go to step 4.

Gao, et al. Expires September 3, 2018 [Page 9]

Internet-Draft Compressing Path Vectors March 2018

 4. For any element "v_j" in "V", if "p_i = p_j", remove "v_j" from
 "V" and update "m_i" with "m_j", i.e., "m_i = UPDATE(m_i, m_j)"
 (which will be explained later). Go to step 5.

 5. Increment "k" by 1, let "v’_k = v_i", "p’_k = p_i" and "m’_k =
 m_i". Go to step 2.

 6. Return "V’", "P’", and "M’"

 The process of update "m_i" with "m_j" depends on the metric types.
 For example, for routingcost and hopcount, the update is numerical
 addition, while for bandwidth, the update is calculating the minimum.
 The UPDATE function for some common metrics are listed in Table 2.

 +--------------+------------------------+------------+
 | metric | UPDATE(x, y) | default |
 +--------------+------------------------+------------+
 | hopcount | x + y | 0 |
 | routingcost | x + y | 0 |
 | bandwidth | min(x, y) | +infinity |
 | loss rate | 1 - (1 - x) * (1 - y) | 0 |
 +--------------+------------------------+------------+

 Table 2: UPDATE Function of Different Metrics

5.1.3. Example

 Consider the path vectors in Figure 2 which can be represented as:

 V = { ane:l1, ane:l2, ane:l3, ane:l4, ane:l5 }

 p_1 = { eh1->eh2 }
 p_2 = { eh1->eh2 }
 p_3 = { eh3->eh4 }
 p_4 = { eh3->eh4 }
 p_5 = { eh1->eh2, eh3->eh4 }

 m_1 = 100 Mbps
 m_2 = 100 Mbps
 m_3 = 100 Mbps
 m_4 = 100 Mbps
 m_5 = 100 Mbps

 As "p_1 = p_2" and "p_3 = p_4", the resultant attributes after the
 aggregation become:

Gao, et al. Expires September 3, 2018 [Page 10]

Internet-Draft Compressing Path Vectors March 2018

 V’ = { ane:1, ane:2, ane:l5 }

 p’_1 = { eh1->eh2 } = p_1 = p_2
 p’_2 = { eh3->eh4 } = p_3 = p_4
 p’_3 = { eh1->eh2, eh3->eh4 } = p_5

 m’_1 = 100 Mbps = UPDATE(m_1, m_2)
 m’_2 = 100 Mbps = UPDATE(m_3, m_4)
 m’_3 = 100 Mbps = m_5

5.2. Redundant Network Element Identification

5.2.1. Parameters and Variables

 The redundant network element identification algorithm is based on
 the algorithm introduced by Telgen [TELGEN83]. It takes 3
 parameters: the set of network elements "V", the set of relevant host
 pairs "P" and the set of available bandwidth values "B".

 "V", "v_i", "P" and "p_i" are defined the same way as in
 Section 5.1.1.

 Set of available bandwidth values B: The "i"-th element in "B" is
 denoted as "b_i". It represents the available bandwidth for
 network element "v_i".

 The output of the IS_REDUNDANT function is a set of indices "R",
 which represents the indices of network elements whose bandwidth
 constraints are redundant, i.e., "R = IS_REDUNDANT(V, P, B)".

 In addition to the parameters and output values, the algorithm also
 maintains the following variables:

 Set of host pairs H: The "i"-th element of "H" is denoted as "h_i".
 It represents a (src, dst) pair ever appeared in the path vector
 query. "H" is the union of all "p_i" in "P".

 Set of bandwidth constraints C: The "i"-th element of "C" is denoted
 as "c_i". It represents a linear bandwidth constraint on the
 flows between the end host pairs. The constraint "c_i" has the
 form of "a_i x <= b_i" where "a_i" is a row vector of 0-1
 coefficients derived from "p_i", "x" is a column vector
 representing the bandwidth of all the host pairs, and "b_i" is the
 available bandwidth of "v_i".

Gao, et al. Expires September 3, 2018 [Page 11]

Internet-Draft Compressing Path Vectors March 2018

5.2.2. Algorithm Description

 1. The first step is to convert a network element to its bandwidth
 constraint "c_i". The bound "b_i" is directly obtained as the
 available bandwidth and the coefficients "a_i" are computed as:

 1 if h_j in p_i
 a_ij =
 0 otherwise.

 Set "R" to an empty set. Go to step 2.

 2. For each "i", solve the following linear programming problem:

 y_i = max a_i x
 subject to:
 a_j x <= b_j, j = 1..|V|, i <> j

 Go to step 3.

 3. For each "i", if "y_i <= b_i", "c_i" is redundant and we say
 "v_i" is redundant, "R = UNION(R, {i})". Go to step 4.

 4. Return "R".

5.2.3. Example

 Consider the path vectors in Figure 4 such that the input to the
 IS_REDUNDANT algorithm is as follows.

 V = { ane:1, ane:2, ane:l5 }

 p_1 = { eh1->eh2 }
 p_2 = { eh3->eh4 }
 p_3 = { eh1->eh2, eh3->eh4 }

 b_1 = 100 Mbps
 b_2 = 100 Mbps
 b_3 = 100 Mbps

 With that information, one can follow the algorithm and get:

Gao, et al. Expires September 3, 2018 [Page 12]

Internet-Draft Compressing Path Vectors March 2018

 c_1: x1 <= 100
 c_2: x2 <= 100
 c_3: x1 + x2 <= 100

 y_1 = 100 Mbps <= b_1
 y_2 = 100 Mbps <= b_2
 y_3 = 200 Mbps > b_3

 R = IS_REDUNDANT(V, P, B) = { 1, 2 }

5.3. Equivalent Decomposition

5.3.1. Parameters and Variables

 The equivalent decomposition algorithm takes 4 parameters: the set of
 network elements "V", the set of relevant host pairs "P", the set of
 metrics "M" and the set of redundant network elements "R".

 "V", "P" and "M" are as defined as in Section 5.1.1. If the "j"-th
 metric is bandwidth, we can construct the set of available bandwidth
 values "B" as "b_i = m_ij" and "R" is the output of the redundant
 network element identification procedure, i.e. "R = IS_REDUNDANT(V,
 P, B)". Otherwise, if bandwidth is not included in the metrics, "R"
 is {1, ..., |V|}.

 The output of the function EQUIV_DECOMP is a new set of network
 elements "V’", a new set of relevant host pairs "P’", and a new set
 of metrics "M’", i.e., "V’, P’, M’ = EQUIV_DECOMP(V, P, M, R)".

5.3.2. Algorithm Description

 1. Set "V’", "P’", "M’" to empty sets. Set "k" to 0. Go to step 2.

 2. For each "i" such that "i" in "R", go to step 3. After
 processing each "i", go to step 7.

 3. For each "j" such that "j <> i", go to step 4. After processing
 each "j", go to step 6.

 4. If "p_j" is a subset of "p_i", go to step 5. Otherwise go to
 step 3.

 5. Let "p_i = p_i \ p_j" and "m_j = UPDATE(m_j, m_i)". Go to step
 3.

 6. If "p_i" is not empty, increment "k" by 1 and let "v’_k = v_i",
 "p’_k = p_i" and "m’_k = m_i". Go to step 2.

Gao, et al. Expires September 3, 2018 [Page 13]

Internet-Draft Compressing Path Vectors March 2018

 7. For each "i" such that "i" is not in "R", go to step 8. After
 processing each "i", go to step 9.

 8. Increment "k" by 1 and let "v’_k = v_i", "p’_k = p_i", "m’_k =
 m_i". Go to step 7.

 9. Return "V’", "P’" and "M’".

5.3.3. Example

 Consider the case in Section 4.3. Before the decomposition, the
 input to the algorithm is as follows:

 V = { ane:1, ane:2, ane:l5 }

 p_1 = { eh1->eh2 }
 p_2 = { eh3->eh4 }
 p_3 = { eh1->eh2, eh3->eh4 }

 m_1 = { bw: 100 Mbps, rc: 3 }
 m_2 = { bw: 100 Mbps, rc: 2 }
 m_3 = { bw: 200 Mbps, rc: 1 }

 R = { 3 }

 Since there is only one element in "R", "v_i = ane:l5".

 After the first iteration of steps 3-5 with "v_j = ane:1":

 V = { ane:1, ane:2, ane:l5 }

 p_1 = { eh1->eh2 }
 p_2 = { eh3->eh4 }
 p_3 = { eh3->eh4 }

 m_1 = { bw: 100 Mbps, rc: 4 }
 m_2 = { bw: 100 Mbps, rc: 2 }
 m_3 = { bw: 200 Mbps, rc: 1 }

 V’ = { }
 k = 0

 After the second iteration of steps 3-5 with "v_j = ane:2":

Gao, et al. Expires September 3, 2018 [Page 14]

Internet-Draft Compressing Path Vectors March 2018

 V = { ane:1, ane:2, ane:l5 }

 p_1 = { eh1->eh2 }
 p_2 = { eh3->eh4 }
 p_3 = { }

 m_1 = { bw: 100 Mbps, rc: 4 }
 m_2 = { bw: 100 Mbps, rc: 3 }
 m_3 = { bw: 200 Mbps, rc: 1 }

 V’ = { }
 k = 0

 After step 6, since "p_3" is now empty, it just goes back to step 2.
 At step 2, since all indices in "R" has been processed, it goes to
 step 7.

 After the first iteration of steps 7-8 with "i = 1":

 V = { ane:1, ane:2, ane:l5 }

 p_1 = { eh1->eh2 }
 p_2 = { eh3->eh4 }
 p_3 = { }

 m_1 = { bw: 100 Mbps, rc: 4 }
 m_2 = { bw: 100 Mbps, rc: 3 }
 m_3 = { bw: 200 Mbps, rc: 1 }

 V’ = { ane:1 }
 k = 1

 p’_1 = { eh1->eh2 } = p_1

 m’_1 = { bw: 100 Mbps, rc: 4 } = m_1

 After the second iteration of steps 7-8 with "i = 2":

Gao, et al. Expires September 3, 2018 [Page 15]

Internet-Draft Compressing Path Vectors March 2018

 V = { ane:1, ane:2, ane:l5 }

 p_1 = { eh1->eh2 }
 p_2 = { eh3->eh4 }
 p_3 = { }

 m_1 = { bw: 100 Mbps, rc: 4 }
 m_2 = { bw: 100 Mbps, rc: 3 }
 m_3 = { bw: 200 Mbps, rc: 1 }

 V’ = { ane:1, ane:2 }
 k = 2

 p’_1 = { eh1->eh2 }
 p’_2 = { eh3->eh4 } = p_2

 m’_1 = { bw: 100 Mbps, rc: 4 }
 m’_2 = { bw: 100 Mbps, rc: 3 } = m_2

 So the final output of EQUIV_DECOMP is:

 V’ = { ane:1, ane:2 }

 p’_1 = { eh1->eh2 }
 p’_2 = { eh3->eh4 }

 m’_1 = { bw: 100 Mbps, rc: 4 }
 m’_2 = { bw: 100 Mbps, rc: 3 }

5.4. Execution Order

 As the examples demonstrate, the three algorithms MUST be executed in
 the same order as they are introduced, i.e., one MUST conduct
 "EQUIV_AGGR" before "IS_REDUNDANT" or "EQUIV_DECOMP", and conduct
 "IS_REDUNDANT" before "EQUIV_DECOMP". Otherwise, the results of the
 compressed path vectors MAY NOT be correct.

6. Encoding/Decoding Path Vectors

 The three algorithms work mostly with network elements. Existing
 path vectors must be decoded before they can be passed on to the
 algorithms and the compressed results must be encoded as path vectors
 before they are sent to the clients. The decoding and encoding
 processes are specified as below.

Gao, et al. Expires September 3, 2018 [Page 16]

Internet-Draft Compressing Path Vectors March 2018

6.1. Decoding Path Vectors

6.1.1. Parameters and Variables

 The decoding algorithm DECODE takes a path vector response, which
 consists of the path vector part "PV" and the element property part
 "E".

 Path vectors PV: The path vector part has a format of a CostMap
 (EndpointCostMap) where the cost value is a list of abstract
 network element names. We say a PID (endpoint address) "i" is IN
 "PV" if and only if there is an entry "i" in the cost-map
 (endpoint-cost-map), and denote the entry value as "PV[i]".
 Similarly, we say a PID (endpoint address) "j" is IN "PV[i]" if
 and only if there is an entry "j" in the DstCosts of "i", whose
 value is denoted as "PV[i][j]".

 Element property map E: The element property map "E" maps an
 abstract network element name to its properties. We denote "E[n]"
 as the properties of element with name "n" and "E[n][pn]" as the
 value of property "pn".

 The algorithm returns the set of elements "V", the set of relevant
 host pairs "P", the set of metrics "M" and the available bandwidth
 "B", as defined in Section 5.1.1 and Section 5.2.1. The algorithm
 uses a "SET" function which transforms a list into a set, and uses a
 "NAME" function which maps an integer in [1, K] to a unique property
 name where there are K properties in "E".

6.1.2. Algorithm Description

 1. Set "V", "P", "M" and "B" to empty sets. Set "k" to 0. Go to
 step 2.

 2. For each "i IN PV", go to step 3. After processing each "i", go
 to step 8.

 3. For each "j IN PV[i]", go to step 4. After processing each "j",
 go to step 2.

 4. For each "n" in "SET(PV[i][j])", go to step 5. After processing
 each "n", go to step 3.

 5. If "n" is not in "V", go to step 6. Otherwise, go to step 7.

 6. Increment "k" by 1 and let "v_k = n", "p_k = { i->j }". Go to
 step 4.

Gao, et al. Expires September 3, 2018 [Page 17]

Internet-Draft Compressing Path Vectors March 2018

 7. Find the index of "n" in "V" denoted as "a", let "p_a =
 UNION(p_a, {i->j})". Go to step 4.

 8. For each "i" from 1 to |V|, go to step 9. After processing all
 "i", go to step 11.

 9. For each "j" from 1 to K, go to step 10. After processing all
 "j", go back to step 8.

 10. If "NAME(j) = ’availbw’", let "b_i = E[v_i][NAME(j)]". Let
 "m_ij = E[v_i][NAME(j)]".

 11. Return "V", "P", "M" and "B".

6.1.3. Example

 Consider the following example:

 HTTP/1.1 200 OK
 Content-Length: [TBD]
 Content-Type: multipart/related; boundary=example-2

 --example-2
 Content-Type: application/alto-endpointcost+json

 {
 "meta": {
 "cost-types": [
 {"cost-mode": "array", "cost-metric": "ane-path"}
]
 }
 "endpoint-cost-map": {
 "ipv4:192.0.2.2": {
 "ipv4:192.0.2.89": ["ane:L1", "ane:L3", "ane:L4"],
 "ipv4:203.0.113.45": ["ane:L1", "ane:L4", "ane:L5"]
 }
 }
 }

Gao, et al. Expires September 3, 2018 [Page 18]

Internet-Draft Compressing Path Vectors March 2018

 --example-2
 Content-Type: application/alto-propmap+json

 {
 "property-map": {
 "ane:L1": { "availbw": 50 },
 "ane:L3": { "availbw": 48 },
 "ane:L4": { "availbw": 55 },
 "ane:L5": { "availbw": 60 },
 "ane:L7": { "availbw": 35 }
 }
 }

 --example-2--

 After the first iteration of Lines 2-5:

 V = { ane:L1, ane:L3, ane:L4 }

 p_1 = { ipv4:192.0.2.2->ipv4:192.0.2.89 }
 p_2 = { ipv4:192.0.2.2->ipv4:192.0.2.89 }
 p_3 = { ipv4:192.0.2.2->ipv4:192.0.2.89 }.

 After the second iteration of Lines 2-5:

 V = { ane:L1, ane:L3, ane:L4, ane:L5 }

 p_1 = { ipv4:192.0.2.2->ipv4:192.0.2.89,
 ipv4:192.0.2.2->ipv4:203.0.113.45 }
 p_2 = { ipv4:192.0.2.2->ipv4:192.0.2.89,
 ipv4:192.0.2.2->ipv4:203.0.113.45 }
 p_3 = { ipv4:192.0.2.2->ipv4:192.0.2.89 }
 p_4 = { ipv4:192.0.2.2->ipv4:203.0.113.45 }.

 After the first iteration of Lines 6-9 with "i = 1":

 m_1 = [50]

 b_1 = 50

 After all four iterations of Lines 6-9:

Gao, et al. Expires September 3, 2018 [Page 19]

Internet-Draft Compressing Path Vectors March 2018

 m_1 = [50]
 m_2 = [48]
 m_3 = [55]
 m_4 = [60]

 b_1 = 50
 b_2 = 48
 b_3 = 55
 b_4 = 60

 The decoded information can be passed on to "EQUIV_AGGR",
 "IS_REDUNDANT" and "EQUIV_DECOMP" for compression.

6.2. Encoding Path Vectors

6.2.1. Parameters and Variables

 The algorithm ENCODE is the reverse process of DECODE. It takes the
 parameters "V", "P", "M" and constructs the path vector results.

 The parameters are defined as in Section 5.1.1 and Section 5.2.1.

 The algorithm also uses the NAME function in Section 6.1.1 which MUST
 return the same results in a paired ENCODE/DECODE process, and the
 "APPEND(L, e)" function which adds element "e" to list "L".

6.2.2. Algorithm Description

 1. Set "PV={}", "E = {}". Go to step 2.

 2. For each "v_i" in "V", go to step 3. If all "v_i" is processed,
 go to step XX.

 3. For each "a->b" in "p_i", go to step 4. If all such "a->b" is
 processed, go to step 6.

 4. If "a" is not in "PV", let "PV[a] = {}". Go to step 5.

 5. If "b" is not in "PV[a]", let "PV[a][b] = [v_i]". Otherwise, let
 "PV[a][b] = APPEND(PV[a][b], v_i)". Go to step 2.

 6. For each index "k" in [1, K], go to step 7. If all "k" is
 processed, go to step 1.

 7. Set "E[v_i][NAME(k)] = m_ik". Go to step 6.

 8. Return "PV" and "E".

Gao, et al. Expires September 3, 2018 [Page 20]

Internet-Draft Compressing Path Vectors March 2018

6.2.3. Example

 We consider the encoding of the decoded example in Section 6.1.3.

 V = { ane:L1, ane:L3, ane:L4, ane:L5 }

 p_1 = { ipv4:192.0.2.2->ipv4:192.0.2.89,
 ipv4:192.0.2.2->ipv4:203.0.113.45 }
 p_2 = { ipv4:192.0.2.2->ipv4:192.0.2.89,
 ipv4:192.0.2.2->ipv4:203.0.113.45 }
 p_3 = { ipv4:192.0.2.2->ipv4:192.0.2.89 }
 p_4 = { ipv4:192.0.2.2->ipv4:203.0.113.45 }

 m_1 = [50]
 m_2 = [48]
 m_3 = [55]
 m_4 = [60]

 After the first iteration of steps 2-7:

 PV[ipv4:192.0.2.2][ipv4:192.0.2.89] = [ane:L1]
 PV[ipv4:192.0.2.2][ipv4:203.0.113.45] = [ane:L1]

 E[ane:L1]["availbw"] = 50

 After the second iteration:

 PV[ipv4:192.0.2.2][ipv4:192.0.2.89] = [ane:L1, ane:L3]
 PV[ipv4:192.0.2.2][ipv4:203.0.113.45] = [ane:L1, ane:L3]

 E[ane:L1]["availbw"] = 50
 E[ane:L3]["availbw"] = 48

 After the third iteration:

 PV[ipv4:192.0.2.2][ipv4:192.0.2.89] = [ane:L1, ane:L3, ane:L4]
 PV[ipv4:192.0.2.2][ipv4:203.0.113.45] = [ane:L1, ane:L3]

 E[ane:L1]["availbw"] = 50
 E[ane:L3]["availbw"] = 48
 E[ane:L4]["availbw"] = 55

 After the fourth iteration:

Gao, et al. Expires September 3, 2018 [Page 21]

Internet-Draft Compressing Path Vectors March 2018

 PV[ipv4:192.0.2.2][ipv4:192.0.2.89] = [ane:L1, ane:L3, ane:L4]
 PV[ipv4:192.0.2.2][ipv4:203.0.113.45] = [ane:L1, ane:L3, ane:L5]

 E[ane:L1]["availbw"] = 50
 E[ane:L3]["availbw"] = 48
 E[ane:L4]["availbw"] = 55
 E[ane:L5]["availbw"] = 60

 Eventually, one can use the previous information to construct the
 endpoint cost service response.

 HTTP/1.1 200 OK
 Content-Length: [TBD]
 Content-Type: multipart/related; boundary=example-2

 --example-2
 Content-Type: application/alto-endpointcost+json

 {
 "meta": {
 "cost-types": [
 {"cost-mode": "array", "cost-metric": "ane-path"}
]
 }
 "endpoint-cost-map": {
 "ipv4:192.0.2.2": {
 "ipv4:192.0.2.89": ["ane:L1", "ane:L3", "ane:L4"],
 "ipv4:203.0.113.45": ["ane:L1", "ane:L4", "ane:L5"]
 }
 }
 }

 --example-2
 Content-Type: application/alto-propmap+json

 {
 "property-map": {
 "ane:L1": { "availbw": 50 },
 "ane:L3": { "availbw": 48 },
 "ane:L4": { "availbw": 55 },
 "ane:L5": { "availbw": 60 },
 }
 }

 --example-2--

Gao, et al. Expires September 3, 2018 [Page 22]

Internet-Draft Compressing Path Vectors March 2018

6.3. Compatibility

 When the path vector extension is used with other extensions, such as
 [I-D.ietf-alto-cost-calendar] and [I-D.ietf-alto-multi-cost], the
 decoding and the encoding MUST only apply on the path vector part and
 leave the other attributes as they are.

 Hence, this extension does not change the compatibility between the
 original path vector extension and other extensions.

7. Security Considerations

 This document does not introduce any privacy or security issue on
 ALTO servers not already present in the base ALTO protocol or in the
 path vector extension.

 The algorithms specified in this document can even help protect the
 privacy of network providers by conducting irreversible
 transformations on the original path vector.

8. IANA Considerations

 This document does not define any new media type or introduce any new
 IANA consideration.

9. Acknowledgments

 The authors would like to thank Dr. Qiao Xiang, Mr. Jingxuan Zhang
 (Tongji University), Prof. Jun Bi (Tsinghua University) and
 Dr. Andreas Voellmy (Yale University) for their early engagement and
 discussions.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

10.2. Informative References

 [I-D.ietf-alto-cost-calendar]
 Randriamasy, S., Yang, Y., Wu, Q., Lingli, D., and N.
 Schwan, "ALTO Cost Calendar", draft-ietf-alto-cost-
 calendar-01 (work in progress), February 2017.

Gao, et al. Expires September 3, 2018 [Page 23]

Internet-Draft Compressing Path Vectors March 2018

 [I-D.ietf-alto-incr-update-sse]
 Roome, W. and Y. Yang, "ALTO Incremental Updates Using
 Server-Sent Events (SSE)", draft-ietf-alto-incr-update-
 sse-02 (work in progress), April 2016.

 [I-D.ietf-alto-multi-cost]
 Randriamasy, S., Roome, W., and N. Schwan, "Multi-Cost
 ALTO", draft-ietf-alto-multi-cost-10 (work in progress),
 April 2017.

 [I-D.ietf-alto-path-vector]
 Bernstein, G., Chen, S., Gao, K., Lee, Y., Roome, W.,
 Scharf, M., Yang, Y., and J. Zhang, "ALTO Extension: Path
 Vector Cost Mode", draft-ietf-alto-path-vector-00 (work in
 progress), May 2017.

 [RFC7285] Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
 Previdi, S., Roome, W., Shalunov, S., and R. Woundy,
 "Application-Layer Traffic Optimization (ALTO) Protocol",
 RFC 7285, DOI 10.17487/RFC7285, September 2014,
 <http://www.rfc-editor.org/info/rfc7285>.

 [TELGEN83]
 Telgen, J., "Identifying Redundant Constraints and
 Implicit Equalities in Systems of Linear Constraints",
 Management Science , Volume 29, Issue 10,
 DOI 10.1287/mnsc.29.10.1209, 1983,
 <http://pubsonline.informs.org/doi/abs/10.1287/
 mnsc.29.10.1209>.

Authors’ Addresses

 Kai Gao
 Tsinghua University
 30 Shuangqinglu Street
 Beijing 100084
 China

 Email: gaok12@mails.tsinghua.edu.cn

 Xin (Tony) Wang
 Tongji University
 4800 CaoAn Road
 Shanghai 210000
 China

 Email: xinwang2014@hotmail.com

Gao, et al. Expires September 3, 2018 [Page 24]

Internet-Draft Compressing Path Vectors March 2018

 Qiao Xiang
 Tongji/Yale University
 51 Prospect Street
 New Haven, CT
 USA

 Email: qiao.xiang@cs.yale.edu

 Chen Gu
 Tongji University
 4800 CaoAn Road
 Shanghai 210000
 China

 Email: gc19931011jy@gmail.com

 Y. Richard Yang
 Yale University
 51 Prospect St
 New Haven CT
 USA

 Email: yry@cs.yale.edu

 G. Robert Chen
 Huawei
 Nanjing
 China

 Email: chenguohai@huawei.com

Gao, et al. Expires September 3, 2018 [Page 25]

