
Network Working Group H. Birkholz
Internet-Draft Fraunhofer SIT
Intended status: Standards Track C. Vigano
Expires: August 30, 2018 Universitaet Bremen
 C. Bormann
 Universitaet Bremen TZI
 February 26, 2018

 Concise data definition language (CDDL): a notational convention to
 express CBOR data structures
 draft-ietf-cbor-cddl-02

Abstract

 This document proposes a notational convention to express CBOR data
 structures (RFC 7049). Its main goal is to provide an easy and
 unambiguous way to express structures for protocol messages and data
 formats that use CBOR.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 30, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Birkholz, et al. Expires August 30, 2018 [Page 1]

Internet-Draft CDDL February 2018

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements notation 4
 1.2. Terminology . 4
 2. The Style of Data Structure Specification 4
 2.1. Groups and Composition in CDDL 6
 2.1.1. Usage . 8
 2.1.2. Syntax . 8
 2.2. Types . 9
 2.2.1. Values . 9
 2.2.2. Choices . 9
 2.2.3. Representation Types 11
 2.2.4. Root type . 11
 3. Syntax . 12
 3.1. General conventions 12
 3.2. Occurrence . 13
 3.3. Predefined names for types 14
 3.4. Arrays . 15
 3.5. Maps . 15
 3.5.1. Structs . 16
 3.5.2. Tables . 19
 3.5.3. Cuts in Maps . 19
 3.6. Tags . 20
 3.7. Unwrapping . 21
 3.8. Controls . 22
 3.8.1. Control operator .size 22
 3.8.2. Control operator .bits 23
 3.8.3. Control operator .regexp 24
 3.8.4. Control operators .cbor and .cborseq 25
 3.8.5. Control operators .within and .and 25
 3.8.6. Control operators .lt, .le, .gt, .ge, .eq, .ne, and
 .default . 26
 3.9. Socket/Plug . 27
 3.10. Generics . 28
 3.11. Operator Precedence 28
 4. Making Use of CDDL . 30
 4.1. As a guide to a human user 30
 4.2. For automated checking of CBOR data structure 30
 4.3. For data analysis tools 31
 5. Security considerations 31
 6. IANA considerations . 31
 7. References . 32
 7.1. Normative References 32

Birkholz, et al. Expires August 30, 2018 [Page 2]

Internet-Draft CDDL February 2018

 7.2. Informative References 32
 Appendix A. (Not used.) . 33
 Appendix B. ABNF grammar . 33
 Appendix C. Matching rules 36
 Appendix D. (Not used.) . 40
 Appendix E. Standard Prelude 40
 E.1. Use with JSON . 42
 Appendix F. The CDDL tool 44
 Appendix G. Extended Diagnostic Notation 44
 G.1. White space in byte string notation 45
 G.2. Text in byte string notation 45
 G.3. Embedded CBOR and CBOR sequences in byte strings 45
 G.4. Concatenated Strings 46
 G.5. Hexadecimal, octal, and binary numbers 46
 G.6. Comments . 47
 Appendix H. Examples . 47
 H.1. RFC 7071 . 48
 H.1.1. Examples from JSON Content Rules 52
 Acknowledgements . 54
 Authors’ Addresses . 55

1. Introduction

 In this document, a notational convention to express CBOR [RFC7049]
 data structures is defined.

 The main goal for the convention is to provide a unified notation
 that can be used when defining protocols that use CBOR. We term the
 convention "Concise data definition language", or CDDL.

 The CBOR notational convention has the following goals:

 (G1) Provide an unambiguous description of the overall structure of
 a CBOR data structure.

 (G2) Flexibility to express the freedoms of choice in the CBOR data
 format.

 (G3) Possibility to restrict format choices where appropriate
 [_format].

 (G4) Able to express common CBOR datatypes and structures.

 (G5) Human and machine readable and processable.

 (G6) Automatic checking of data format compliance.

Birkholz, et al. Expires August 30, 2018 [Page 3]

Internet-Draft CDDL February 2018

 (G7) Extraction of specific elements from CBOR data for further
 processing.

 Not an explicit goal per se, but a convenient side effect of the JSON
 generic data model being a subset of the CBOR generic data model, is
 the fact that CDDL can also be used for describing JSON data
 structures (see Appendix E.1).

 This document has the following structure:

 The syntax of CDDL is defined in Section 3. Examples of CDDL and
 related CBOR data items ("instances") are defined in Appendix H.
 Section 4 discusses usage of CDDL. Examples are provided early in
 the text to better illustrate concept definitions. A formal
 definition of CDDL using ABNF grammar is provided in Appendix B.
 Finally, a prelude of standard CDDL definitions available in every
 CBOR specification is listed in Appendix E.

1.1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119, BCP 14 [RFC2119].

1.2. Terminology

 New terms are introduced in _cursive_. CDDL text in the running text
 is in "typewriter".

2. The Style of Data Structure Specification

 CDDL focuses on styles of specification that are in use in the
 community employing the data model as pioneered by JSON and now
 refined in CBOR.

 There are a number of more or less atomic elements of a CBOR data
 model, such as numbers, simple values (false, true, nil), text and
 byte strings; CDDL does not focus on specifying their structure.
 CDDL of course also allows adding a CBOR tag to a data item.

 The more important components of a data structure definition language
 are the data types used for composition: arrays and maps in CBOR
 (called arrays and objects in JSON). While these are only two
 representation formats, they are used to specify four loosely
 distinguishable styles of composition:

Birkholz, et al. Expires August 30, 2018 [Page 4]

Internet-Draft CDDL February 2018

 o A _vector_, an array of elements that are mostly of the same
 semantics. The set of signatures associated with a signed data
 item is a typical application of a vector.

 o A _record_, an array the elements of which have different,
 positionally defined semantics, as detailed in the data structure
 definition. A 2D point, specified as an array of an x coordinate
 (which comes first) and a y coordinate (coming second) is an
 example of a record, as is the pair of exponent (first) and
 mantissa (second) in a CBOR decimal fraction.

 o A _table_, a map from a domain of map keys to a domain of map
 values, that are mostly of the same semantics. A set of language
 tags, each mapped to a text string translated to that specific
 language, is an example of a table. The key domain is usually not
 limited to a specific set by the specification, but open for the
 application, e.g., in a table mapping IP addresses to MAC
 addresses, the specification does not attempt to foresee all
 possible IP addresses.

 o A _struct_, a map from a domain of map keys as defined by the
 specification to a domain of map values the semantics of each of
 which is bound to a specific map key. This is what many people
 have in mind when they think about JSON objects; CBOR adds the
 ability to use map keys that are not just text strings. Structs
 can be used to solve similar problems as records; the use of
 explicit map keys facilitates optionality and extensibility.

 Two important concepts provide the foundation for CDDL:

 1. Instead of defining all four types of composition in CDDL
 separately, or even defining one kind for arrays (vectors and
 records) and one kind for maps (tables and structs), there is
 only one kind of composition in CDDL: the _group_ (Section 2.1).

 2. The other important concept is that of a _type_. The entire CDDL
 specification defines a type (the one defined by its first
 rule), which formally is the set of CBOR data items that are
 acceptable as "instances" for this specification. CDDL
 predefines a number of basic types such as "uint" (unsigned
 integer) or "tstr" (text string), often making use of a simple
 formal notation for CBOR data items. Each value that can be
 expressed as a CBOR data item also is a type in its own right,
 e.g. "1". A type can be built as a _choice_ of other types,
 e.g., an "int" is either a "uint" or a "nint" (negative integer).
 Finally, a type can be built as an array or a map from a group.

Birkholz, et al. Expires August 30, 2018 [Page 5]

Internet-Draft CDDL February 2018

 The rest of this section introduces a number of basic concepts of
 CDDL, and section Section 3 defines additional syntax. Appendix C
 gives a concise summary of the semantics of CDDL.

2.1. Groups and Composition in CDDL

 CDDL Groups are lists of name/value pairs (group _entries_).

 In an array context, only the value of the entry is represented; the
 name is annotation only (and can be left off if not needed). In a
 map context, the names become the map keys ("member keys").

 In an array context, the sequence of elements in the group is
 important, as it is the information that allows associating actual
 array elements with entries in the group. In a map context, the
 sequence of entries in a group is not relevant (but there is still a
 need to write down group entries in a sequence).

 A simple example of using a group right in a map definition is:

 person = {
 age: int,
 name: tstr,
 employer: tstr,
 }

 Figure 1: Using a group in a map

 The three entries of the group are written between the curly braces
 that create the map: Here, "age", "name", and "employer" are the
 names that turn into the map key text strings, and "int" and "tstr"
 (text string) are the types of the map values under these keys.

 A group by itself (without creating a map around it) can be placed in
 (round) parentheses, and given a name by using it in a rule:

 pii = (
 age: int,
 name: tstr,
 employer: tstr,
)

 Figure 2: A basic group

 This separate, named group definition allows us to rephrase Figure 1
 as:

Birkholz, et al. Expires August 30, 2018 [Page 6]

Internet-Draft CDDL February 2018

 person = {
 pii
 }

 Figure 3: Using a group by name

 Note that the (curly) braces signify the creation of a map; the
 groups themselves are neutral as to whether they will be used in a
 map or an array.

 As shown in Figure 1, the parentheses for groups are optional when
 there is some other set of brackets present. Note that they can
 still be used, leading to the not so realistic, but perfectly valid
 example:

 person = {(
 age: int,
 name: tstr,
 employer: tstr,
)}

 Groups can be used to factor out common parts of structs, e.g.,
 instead of writing copy/paste style specifications such as in
 Figure 4, one can factor out the common subgroup, choose a name for
 it, and write only the specific parts into the individual maps
 (Figure 5).

 person = {
 age: int,
 name: tstr,
 employer: tstr,
 }

 dog = {
 age: int,
 name: tstr,
 leash-length: float,
 }

 Figure 4: Maps with copy/paste

Birkholz, et al. Expires August 30, 2018 [Page 7]

Internet-Draft CDDL February 2018

 person = {
 identity,
 employer: tstr,
 }

 dog = {
 identity,
 leash-length: float,
 }

 identity = (
 age: int,
 name: tstr,
)

 Figure 5: Using a group for factorization

 Note that the lists inside the braces in the above definitions
 constitute (anonymous) groups, while "identity" is a named group.

2.1.1. Usage

 Groups are the instrument used in composing data structures with
 CDDL. It is a matter of style in defining those structures whether
 to define groups (anonymously) right in their contexts or whether to
 define them in a separate rule and to reference them with their
 respective name (possibly more than once).

 With this, one is allowed to define all small parts of their data
 structures and compose bigger protocol units with those or to have
 only one big protocol data unit that has all definitions ad hoc where
 needed.

2.1.2. Syntax

 The composition syntax intends to be concise and easy to read:

 o The start of a group can be marked by ’(’

 o The end of a group can be marked by ’)’

 o Definitions of entries inside of a group are noted as follows:
 keytype => valuetype, (read "keytype maps to valuetype"). The
 comma is actually optional (not just in the final entry), but it
 is considered good style to set it. The double arrow can be
 replaced by a colon in the common case of directly using a text
 string or integer literal as a key (see Section 3.5.1).

Birkholz, et al. Expires August 30, 2018 [Page 8]

Internet-Draft CDDL February 2018

 An entry consists of a _keytype_ and a _valuetype_:

 o _keytype_ is either an atom used as the actual key or a type in
 general. The latter case may be needed when using groups in a
 table context, where the actual keys are of lesser importance than
 the key types, e.g in contexts verifying incoming data.

 o _valuetype_ is a type, which could be derived from the major types
 defined in [RFC7049], could be a convenience valuetype defined in
 this document (Appendix E) or the name of a type defined in the
 specification.

 A group definition can also contain choices between groups, see
 Section 2.2.2.

2.2. Types

2.2.1. Values

 Values such as numbers and strings can be used in place of a type.
 (For instance, this is a very common thing to do for a keytype,
 common enough that CDDL provides additional convenience syntax for
 this.)

2.2.2. Choices

 Many places that allow a type also allow a choice between types,
 delimited by a "/" (slash). The entire choice construct can be put
 into parentheses if this is required to make the construction
 unambiguous (please see Appendix B for the details).

 Choices of values can be used to express enumerations:

 attire = "bow tie" / "necktie" / "Internet attire"
 protocol = 6 / 17

 Similarly as for types, CDDL also allows choices between groups,
 delimited by a "//" (double slash).

Birkholz, et al. Expires August 30, 2018 [Page 9]

Internet-Draft CDDL February 2018

 address = { delivery }

 delivery = (
 street: tstr, ? number: uint, city //
 po-box: uint, city //
 per-pickup: true)

 city = (
 name: tstr, zip-code: uint
)

 Both for type choices and for group choices, additional alternatives
 can be added to a rule later in separate rules by using "/=" and
 "//=", respectively, instead of "=":

 attire /= "swimwear"

 delivery //= (
 lat: float, long: float, drone-type: tstr
)

 It is not an error if a name is first used with a "/=" or "//="
 (there is no need to "create it" with "=").

2.2.2.1. Ranges

 Instead of naming all the values that make up a choice, CDDL allows
 building a _range_ out of two values that are in an ordering
 relationship. A range can be inclusive of both ends given (denoted
 by joining two values by ".."), or include the first and exclude the
 second (denoted by instead using "...").

 device-address = byte
 max-byte = 255
 byte = 0..max-byte ; inclusive range
 first-non-byte = 256
 byte1 = 0...first-non-byte ; byte1 is equivalent to byte

 CDDL currently only allows ranges between numbers [_range].

2.2.2.2. Turning a group into a choice

 Some choices are built out of large numbers of values, often
 integers, each of which is best given a semantic name in the
 specification. Instead of naming each of these integers and then
 accumulating these into a choice, CDDL allows building a choice from
 a group by prefixing it with a "&" character:

Birkholz, et al. Expires August 30, 2018 [Page 10]

Internet-Draft CDDL February 2018

 terminal-color = &basecolors
 basecolors = (
 black: 0, red: 1, green: 2, yellow: 3,
 blue: 4, magenta: 5, cyan: 6, white: 7,
)
 extended-color = &(
 basecolors,
 orange: 8, pink: 9, purple: 10, brown: 11,
)

 As with the use of groups in arrays (Section 3.4), the membernames
 have only documentary value (in particular, they might be used by a
 tool when displaying integers that are taken from that choice).

2.2.3. Representation Types

 CDDL allows the specification of a data item type by referring to the
 CBOR representation (major and minor numbers). How this is used
 should be evident from the prelude (Appendix E).

 It may be necessary to make use of representation types outside the
 prelude, e.g., a specification could start by making use of an
 existing tag in a more specific way, or define a new tag not defined
 in the prelude:

 my_breakfast = #6.55799(breakfast) ; cbor-any is too general!
 breakfast = cereal / porridge
 cereal = #6.998(tstr)
 porridge = #6.999([liquid, solid])
 liquid = milk / water
 milk = 0
 water = 1
 solid = tstr

2.2.4. Root type

 There is no special syntax to identify the root of a CDDL data
 structure definition: that role is simply taken by the first rule
 defined in the file.

 This is motivated by the usual top-down approach for defining data
 structures, decomposing a big data structure unit into smaller parts;
 however, except for the root type, there is no need to strictly
 follow this sequence.

 (Note that there is no way to use a group as a root - it must be a
 type. Using a group as the root might be employed as a way to
 specify a CBOR sequence in a future version of this specification;

Birkholz, et al. Expires August 30, 2018 [Page 11]

Internet-Draft CDDL February 2018

 this would act as if that group is used in an array and the data
 items in that fictional array form the members of the CBOR sequence.)

3. Syntax

 In this section, the overall syntax of CDDL is shown, alongside some
 examples just illustrating syntax. (The definition will not attempt
 to be overly formal; refer to Appendix B for the details.)

3.1. General conventions

 The basic syntax is inspired by ABNF [RFC5234], with

 o rules, whether they define groups or types, are defined with a
 name, followed by an equals sign "=" and the actual definition
 according to the respective syntactic rules of that definition.

 o A name can consist of any of the characters from the set {’A’,
 ..., ’Z’, ’a’, ..., ’z’, ’0’, ..., ’9’, ’_’, ’-’, ’@’, ’.’, ’$’},
 starting with an alphabetic character (including ’@’, ’_’, ’$’)
 and ending in one or a digit.

 * Names are case sensitive.

 * It is preferred style to start a name with a lower case letter.

 * The hyphen is preferred over the underscore (except in a
 "bareword" (Section 3.5.1), where the semantics may actually
 require an underscore).

 * The period may be useful for larger specifications, to express
 some module structure (as in "tcp.throughput" vs.
 "udp.throughput").

 * A number of names are predefined in the CDDL prelude, as listed
 in Appendix E.

 * Rule names (types or groups) do not appear in the actual CBOR
 encoding, but names used as "barewords" in member keys do.

 o Comments are started by a ’;’ (semicolon) character and finish at
 the end of a line (LF or CRLF).

 o outside strings, whitespace (spaces, newlines, and comments) is
 used to separate syntactic elements for readability (and to
 separate identifiers or numbers that follow each other); it is
 otherwise completely optional.

Birkholz, et al. Expires August 30, 2018 [Page 12]

Internet-Draft CDDL February 2018

 o Hexadecimal numbers are preceded by ’0x’ (without quotes, lower
 case x), and are case insensitive. Similarly, binary numbers are
 preceded by ’0b’.

 o Text strings are enclosed by double quotation ’"’ characters.
 They follow the conventions for strings as defined in section 7 of
 [RFC8259]. (ABNF users may want to note that there is no support
 in CDDL for the concept of case insensitivity in text strings; if
 necessary, regular expressions can be used (Section 3.8.3).)

 o Byte strings are enclosed by single quotation "’" characters and
 may be prefixed by "h" or "b64". If unprefixed, the string is
 interpreted as with a text string, except that single quotes must
 be escaped and that the UTF-8 bytes resulting are marked as a byte
 string (major type 2). If prefixed as "h" or "b64", the string is
 interpreted as a sequence of hex digits or a base64(url) string,
 respectively (as with the diagnostic notation in section 6 of
 [RFC7049]; cf. Appendix G.2); any white space present within the
 string (including comments) is ignored in the prefixed case.
 [_strings]

 o CDDL uses UTF-8 [RFC3629] for its encoding.

 Example:

 ; This is a comment
 person = { g }

 g = (
 "name": tstr,
 age: int, ; "age" is a bareword
)

3.2. Occurrence

 An optional _occurrence_ indicator can be given in front of a group
 entry. It is either one of the characters ’?’ (optional), ’*’ (zero
 or more), or ’+’ (one or more), or is of the form n*m, where n and m
 are optional unsigned integers and n is the lower limit (default 0)
 and m is the upper limit (default no limit) of occurrences.

 If no occurrence indicator is specified, the group entry is to occur
 exactly once (as if 1*1 were specified).

 Note that CDDL, outside any directives/annotations that could
 possibly be defined, does not make any prescription as to whether
 arrays or maps use the definite length or indefinite length encoding.
 I.e., there is no correlation between leaving the size of an array

Birkholz, et al. Expires August 30, 2018 [Page 13]

Internet-Draft CDDL February 2018

 "open" in the spec and the fact that it is then interchanged with
 definite or indefinite length.

 Please also note that CDDL can describe flexibility that the data
 model of the target representation does not have. This is rather
 obvious for JSON, but also is relevant for CBOR:

 apartment = {
 kitchen: size,
 * bedroom: size,
 }
 size = float ; in m2

 The previous specification does not mean that CBOR is changed to
 allow to use the key "bedroom" more than once. In other words, due
 to the restrictions imposed by the data model, the third line pretty
 much turns into:

 ? bedroom: size,

 (Occurrence indicators beyond one still are useful in maps for groups
 that allow a variety of keys.)

3.3. Predefined names for types

 CDDL predefines a number of names. This subsection summarizes these
 names, but please see Appendix E for the exact definitions.

 The following keywords for primitive datatypes are defined:

 "bool" Boolean value (major type 7, additional information 20 or
 21).

 "uint" An unsigned integer (major type 0).

 "nint" A negative integer (major type 1).

 "int" An unsigned integer or a negative integer.

 "float16" A number representable as an IEEE 754 half-precision float
 (major type 7, additional information 25).

 "float32" A number representable as an IEEE 754 single-precision
 float (major type 7, additional information 26).

 "float64" A number representable as an IEEE 754 double-precision
 float (major type 7, additional information 27).

Birkholz, et al. Expires August 30, 2018 [Page 14]

Internet-Draft CDDL February 2018

 "float" One of float16, float32, or float64.

 "bstr" or "bytes" A byte string (major type 2).

 "tstr" or "text" Text string (major type 3)

 (Note that there are no predefined names for arrays or maps; these
 are defined with the syntax given below.)

 In addition, a number of types are defined in the prelude that are
 associated with CBOR tags, such as "tdate", "bigint", "regexp" etc.

3.4. Arrays

 Array definitions surround a group with square brackets.

 For each entry, an occurrence indicator as specified in Section 3.2
 is permitted.

 For example:

 unlimited-people = [* person]
 one-or-two-people = [1*2 person]
 at-least-two-people = [2* person]
 person = (
 name: tstr,
 age: uint,
)

 The group "person" is defined in such a way that repeating it in the
 array each time generates alternating names and ages, so these are
 four valid values for a data item of type "unlimited-people":

 ["roundlet", 1047, "psychurgy", 2204, "extrarhythmical", 2231]
 []
 ["aluminize", 212, "climograph", 4124]
 ["penintime", 1513, "endocarditis", 4084, "impermeator", 1669,
 "coextension", 865]

3.5. Maps

 The syntax for specifying maps merits special attention, as well as a
 number of optimizations and conveniences, as it is likely to be the
 focal point of many specifications employing CDDL. While the syntax
 does not strictly distinguish struct and table usage of maps, it
 caters specifically to each of them.

Birkholz, et al. Expires August 30, 2018 [Page 15]

Internet-Draft CDDL February 2018

 But first, let’s reiterate a feature of CBOR that it has inherited
 from JSON: The key/value pairs in CBOR maps have no fixed ordering.
 (One could imagine situations where fixing the ordering may be of
 use. For example, a decoder could look for values related with
 integer keys 1, 3 and 7. If the order were fixed and the decoder
 encounters the key 4 without having encountered key 3, it could
 conclude that key 3 is not available without doing more complicated
 bookkeeping. Unfortunately, neither JSON nor CBOR support this, so
 no attempt was made to support this in CDDL either.)

3.5.1. Structs

 The "struct" usage of maps is similar to the way JSON objects are
 used in many JSON applications.

 A map is defined in the same way as defining an array (see
 Section 3.4), except for using curly braces "{}" instead of square
 brackets "[]".

 An occurrence indicator as specified in Section 3.2 is permitted for
 each group entry.

 The following is an example of a structure:

 Geography = [
 city : tstr,
 gpsCoordinates : GpsCoordinates,
]

 GpsCoordinates = {
 longitude : uint, ; multiplied by 10^7
 latitude : uint, ; multiplied by 10^7
 }

 When encoding, the Geography structure is encoded using a CBOR array
 with two entries (the keys for the group entries are ignored),
 whereas the GpsCoordinates are encoded as a CBOR map with two key/
 value pairs.

 Types used in a structure can be defined in separate rules or just in
 place (potentially placed inside parentheses, such as for choices).
 E.g.:

 located-samples = {
 sample-point: int,
 samples: [+ float],
 }

Birkholz, et al. Expires August 30, 2018 [Page 16]

Internet-Draft CDDL February 2018

 where "located-samples" is the datatype to be used when referring to
 the struct, and "sample-point" and "samples" are the keys to be used.
 This is actually a complete example: an identifier that is followed
 by a colon can be directly used as the text string for a member key
 (we speak of a "bareword" member key), as can a double-quoted string
 or a number. (When other types, in particular multi-valued ones, are
 used as keytypes, they are followed by a double arrow, see below.)

 If a text string key does not match the syntax for an identifier (or
 if the specifier just happens to prefer using double quotes), the
 text string syntax can also be used in the member key position,
 followed by a colon. The above example could therefore have been
 written with quoted strings in the member key positions. More
 generally, all the types defined can be used in a keytype position by
 following them with a double arrow. A string also is a (single-
 valued) type, so another form for this example is:

 located-samples = {
 "sample-point" => int,
 "samples" => [+ float],
 }

 See Section 3.5.3 below for how the colon shortcut described here
 also adds some implied semantics.

 A better way to demonstrate the double-arrow use may be:

 located-samples = {
 sample-point: int,
 samples: [+ float],
 * equipment-type => equipment-tolerances,
 }
 equipment-type = [name: tstr, manufacturer: tstr]
 equipment-tolerances = [+ [float, float]]

 The example below defines a struct with optional entries: display
 name (as a text string), the name components first name and family
 name (as a map of text strings), and age information (as an unsigned
 integer).

Birkholz, et al. Expires August 30, 2018 [Page 17]

Internet-Draft CDDL February 2018

 PersonalData = {
 ? displayName: tstr,
 NameComponents,
 ? age: uint,
 }

 NameComponents = (
 ? firstName: tstr,
 ? familyName: tstr,
)

 Note that the group definition for NameComponents does not generate
 another map; instead, all four keys are directly in the struct built
 by PersonalData.

 In this example, all key/value pairs are optional from the
 perspective of CDDL. With no occurrence indicator, an entry is
 mandatory.

 If the addition of more entries not specified by the current
 specification is desired, one can add this possibility explicitly:

 PersonalData = {
 ? displayName: tstr,
 NameComponents,
 ? age: uint,
 * tstr => any
 }

 NameComponents = (
 ? firstName: tstr,
 ? familyName: tstr,
)

 Figure 6: Personal Data: Example for extensibility

 The cddl tool (Appendix F) generated as one acceptable instance for
 this specification:

 {"familyName": "agust", "antiforeignism": "pretzel",
 "springbuck": "illuminatingly", "exuviae": "ephemeris",
 "kilometrage": "frogfish"}

 (See Section 3.9 for one way to explicitly identify an extension
 point.)

Birkholz, et al. Expires August 30, 2018 [Page 18]

Internet-Draft CDDL February 2018

3.5.2. Tables

 A table can be specified by defining a map with entries where the
 keytype is not single-valued, e.g.:

 square-roots = {* x => y}
 x = int
 y = float

 Here, the key in each key/value pair has datatype x (defined as int),
 and the value has datatype y (defined as float).

 If the specification does not need to restrict one of x or y (i.e.,
 the application is free to choose per entry), it can be replaced by
 the predefined name "any".

 As another example, the following could be used as a conversion table
 converting from an integer or float to a string:

 tostring = {* mynumber => tstr}
 mynumber = int / float

3.5.3. Cuts in Maps

 The extensibility idiom discussed above for structs has one problem:

 extensible-map-example = {
 ? "optional-key" => int,
 * tstr => any
 }

 In this example, there is one optional key "optional-key", which,
 when present, maps to an integer. There is also a wild card for any
 future additions.

 Unfortunately, the data item

 { "optional-key": "nonsense" }

 does match this specification: While the first entry of the group
 does not match, the second one (the wildcard) does. This may be very
 well desirable (e.g., if a future extension is to be allowed to
 extend the type of "optional-key"), but in many cases isn’t.

 In anticipation of a more general potential feature called "cuts",
 CDDL allows inserting a cut "^" into the definition of the map entry:

Birkholz, et al. Expires August 30, 2018 [Page 19]

Internet-Draft CDDL February 2018

 extensible-map-example = {
 ? "optional-key" ^ => int,
 * tstr => any
 }

 A cut in this position means that once the map key matches the entry
 carrying the cut, other potential matches for the key that occur in
 later entries in the group of the map are no longer allowed. (This
 rule applies independent of whether the value matches, too.) So the
 example above no longer matches the version modified with a cut.

 Since the desire for this kind of exclusive matching is so frequent,
 the ":" shortcut is actually defined to include the cut semantics.
 So the preceding example (including the cut) can be written more
 simply as:

 extensible-map-example = {
 ? "optional-key": int,
 * tstr => any
 }

 or even shorter, using a bareword for the key:

 extensible-map-example = {
 ? optional-key: int,
 * tstr => any
 }

3.6. Tags

 A type can make use of a CBOR tag (major type 6) by using the
 representation type notation, giving #6.nnn(type) where nnn is an
 unsigned integer giving the tag number and "type" is the type of the
 data item being tagged.

 For example, the following line from the CDDL prelude (Appendix E)
 defines "biguint" as a type name for a positive bignum N:

 biguint = #6.2(bstr)

 The tags defined by [RFC7049] are included in the prelude.
 Additional tags since registered need to be added to a CDDL
 specification as needed; e.g., a binary UUID tag could be referenced
 as "buuid" in a specification after defining

 buuid = #6.37(bstr)

 In the following example, usage of the tag 32 for URIs is optional:

Birkholz, et al. Expires August 30, 2018 [Page 20]

Internet-Draft CDDL February 2018

 my_uri = #6.32(tstr) / tstr

3.7. Unwrapping

 The group that is used to define a map or an array can often be
 reused in the definition of another map or array. Similarly, a type
 defined as a tag carries an internal data item that one would like to
 refer to. In these cases, it is expedient to simply use the name of
 the map, array, or tag type as a handle for the group or type defined
 inside it.

 The "unwrap" operator (written by preceding a name by a tilde
 character "˜") can be used to strip the type defined for a name by
 one layer, exposing the underlying group (for maps and arrays) or
 type (for tags).

 For example, an application might want to define a basic and an
 advanced header. Without unwrapping, this might be done as follows:

 basic-header-group = (
 field1: int,
 field2: text,
)

 basic-header = { basic-header-group }

 advanced-header = {
 basic-header-group,
 field3: bytes,
 field4: number, ; as in the tagged type "time"
 }

 Unwrapping simplifies this to:

 basic-header = {
 field1: int,
 field2: text,
 }

 advanced-header = {
 ˜basic-header,
 field3: bytes,
 field4: ˜time,
 }

 (Note that leaving out the first unwrap operator in the latter
 example would lead to nesting the basic-header in its own map inside
 the advanced-header, while, with the unwrapped basic-header, the

Birkholz, et al. Expires August 30, 2018 [Page 21]

Internet-Draft CDDL February 2018

 definition of the group inside basic-header is essentially repeated
 inside advanced-header, leading to a single map. This can be used
 for various applications often solved by inheritance in programming
 languages. The effect of unwrapping can also be described as
 "threading in" the group or type inside the referenced type, which
 suggested the thread-like "˜" character.)

3.8. Controls

 A _control_ allows to relate a _target_ type with a _controller_ type
 via a _control operator_.

 The syntax for a control type is "target .control-operator
 controller", where control operators are special identifiers prefixed
 by a dot. (Note that _target_ or _controller_ might need to be
 parenthesized.)

 A number of control operators are defined at his point. Note that
 the CDDL tool does not currently support combining multiple controls
 on a single target.

3.8.1. Control operator .size

 A ".size" control controls the size of the target in bytes by the
 control type. Examples:

 full-address = [[+ label], ip4, ip6]
 ip4 = bstr .size 4
 ip6 = bstr .size 16
 label = bstr .size (1..63)

 Figure 7: Control for size in bytes

 When applied to an unsigned integer, the ".size" control restricts
 the range of that integer by giving a maximum number of bytes that
 should be needed in a computer representation of that unsigned
 integer. In other words, "uint .size N" is equivalent to
 "0...BYTES_N", where BYTES_N == 256**N.

 audio_sample = uint .size 3 ; 24-bit, equivalent to 0..16777215

 Figure 8: Control for integer size in bytes

 Note that, as with value restrictions in CDDL, this control is not a
 representation constraint; a number that fits into fewer bytes can
 still be represented in that form, and an inefficient implementation
 could use a longer form (unless that is restricted by some format

Birkholz, et al. Expires August 30, 2018 [Page 22]

Internet-Draft CDDL February 2018

 constraints outside of CDDL, such as the rules in Section 3.9 of
 [RFC7049]).

3.8.2. Control operator .bits

 A ".bits" control on a byte string indicates that, in the target,
 only the bits numbered by a number in the control type are allowed to
 be set. (Bits are counted the usual way, bit number "n" being set in
 "str" meaning that "(str[n >> 3] & (1 << (n & 7))) != 0".)
 [_bitsendian]

 Similarly, a ".bits" control on an unsigned integer "i" indicates
 that for all unsigned integers "n" where "(i & (1 << n)) != 0", "n"
 must be in the control type.

 tcpflagbytes = bstr .bits flags
 flags = &(
 fin: 8,
 syn: 9,
 rst: 10,
 psh: 11,
 ack: 12,
 urg: 13,
 ece: 14,
 cwr: 15,
 ns: 0,
) / (4..7) ; data offset bits

 rwxbits = uint .bits rwx
 rwx = &(r: 2, w: 1, x: 0)

 Figure 9: Control for what bits can be set

 The CDDL tool generates the following ten example instances for
 "tcpflagbytes":

 h’906d’ h’01fc’ h’8145’ h’01b7’ h’013d’ h’409f’ h’018e’ h’c05f’
 h’01fa’ h’01fe’

 These examples do not illustrate that the above CDDL specification
 does not explicitly specify a size of two bytes: A valid all clear
 instance of flag bytes could be "h’’" or "h’00’" or even "h’000000’"
 as well.

Birkholz, et al. Expires August 30, 2018 [Page 23]

Internet-Draft CDDL February 2018

3.8.3. Control operator .regexp

 A ".regexp" control indicates that the text string given as a target
 needs to match the XSD regular expression given as a value in the
 control type. XSD regular expressions are defined in Appendix F of
 [W3C.REC-xmlschema-2-20041028].

 nai = tstr .regexp "[A-Za-z0-9]+@[A-Za-z0-9]+(\\.[A-Za-z0-9]+)+"

 Figure 10: Control with an XSD regexp

 The CDDL tool proposes:

 "N1@CH57HF.4Znqe0.dYJRN.igjf"

3.8.3.1. Usage considerations

 Note that XSD regular expressions do not support the usual \x or \u
 escapes for hexadecimal expression of bytes or unicode code points.
 However, in CDDL the XSD regular expressions are contained in text
 strings, the literal notation for which provides \u escapes; this
 should suffice for most applications that use regular expressions for
 text strings. (Note that this also means that there is one level of
 string escaping before the XSD escaping rules are applied.)

 XSD regular expressions support character class subtraction, a
 feature often not found in regular expression libraries;
 specification writers may want to use this feature sparingly.
 Similar considerations apply to Unicode character classes; where
 these are used, the specification SHOULD identify which Unicode
 versions are addressed.

 Other surprises for infrequent users of XSD regular expressions may
 include:

 o No direct support for case insensitivity. While case
 insensitivity has gone mostly out of fashion in protocol design,
 it is sometimes needed and then needs to be expressed manually as
 in "[Cc][Aa][Ss][Ee]".

 o The support for popular character classes such as \w and \d is
 based on Unicode character properties, which is often not what is
 desired in an ASCII-based protocol and thus might lead to
 surprises. (\s and \S do have their more conventional meanings,
 and "." matches any character but the line ending characters \r or
 \n.)

Birkholz, et al. Expires August 30, 2018 [Page 24]

Internet-Draft CDDL February 2018

3.8.3.2. Discussion

 There are many flavors of regular expression in use in the
 programming community. For instance, perl-compatible regular
 expressions (PCRE) are widely used and probably are more useful than
 XSD regular expressions. However, there is no normative reference
 for PCRE that could be used in the present document. Instead, we opt
 for XSD regular expressions for now. There is precedent for that
 choice in the IETF, e.g., in YANG [RFC7950].

 Note that CDDL uses controls as its main extension point. This
 creates the opportunity to add further regular expression formats in
 addition to the one referenced here if desired. As an example, a
 control ".pcre" is defined in [I-D.bormann-cbor-cddl-freezer].

3.8.4. Control operators .cbor and .cborseq

 A ".cbor" control on a byte string indicates that the byte string
 carries a CBOR encoded data item. Decoded, the data item matches the
 type given as the right-hand side argument (type1 in the following
 example).

 "bytes .cbor type1"

 Similarly, a ".cborseq" control on a byte string indicates that the
 byte string carries a sequence of CBOR encoded data items. When the
 data items are taken as an array, the array matches the type given as
 the right-hand side argument (type2 in the following example).

 "bytes .cborseq type2"

 (The conversion of the encoded sequence to an array can be effected
 for instance by wrapping the byte string between the two bytes 0x9f
 and 0xff and decoding the wrapped byte string as a CBOR encoded data
 item.)

3.8.5. Control operators .within and .and

 A ".and" control on a type indicates that the data item matches both
 that left hand side type and the type given as the right hand side.
 (Formally, the resulting type is the intersection of the two types
 given.)

 "type1 .and type2"

 A variant of the ".and" control is the ".within" control, which
 expresses an additional intent: the left hand side type is meant to
 be a subset of the right-hand-side type.

Birkholz, et al. Expires August 30, 2018 [Page 25]

Internet-Draft CDDL February 2018

 "type1 .within type2"

 While both forms have the identical formal semantics (intersection),
 the intention of the ".within" form is that the right hand side gives
 guidance to the types allowed on the left hand side, which typically
 is a socket (Section 3.9):

 message = $message .within message-structure
 message-structure = [message_type, *message_option]
 message_type = 0..255
 message_option = any

 $message /= [3, dough: text, topping: [* text]]
 $message /= [4, noodles: text, sauce: text, parmesan: bool]

 For ".within", a tool might flag an error if type1 allows data items
 that are not allowed by type2. In contrast, for ".and", there is no
 expectation that type1 already is a subset of type2.

3.8.6. Control operators .lt, .le, .gt, .ge, .eq, .ne, and .default

 The controls .lt, .le, .gt, .ge, .eq, .ne specify a constraint on the
 left hand side type to be a value less than, less than or equal,
 equal to, not equal to, greather than, or greater than or equal to a
 value given as a (single-valued) right hand side type. In the
 present specification, the first four controls (.lt, .le, .gt, .ge)
 are defined only for numeric types, as these have a natural ordering
 relationship.

 speed = number .ge 0 ; unit: m/s

 A variant of the ".ne" control is the ".default" control, which
 expresses an additional intent: the value specified by the right-
 hand-side type is intended as a default value for the left hand side
 type given, and the implied .ne control is there to prevent this
 value from being sent over the wire. This control is only meaningful
 when the controld type is used in an optional context; otherwise
 there would be no way to express the default value.

 timer = {
 time: uint,
 ? displayed-step: (number .gt 0) .default 1
 }

Birkholz, et al. Expires August 30, 2018 [Page 26]

Internet-Draft CDDL February 2018

3.9. Socket/Plug

 Both for type choices and group choices, a mechanism is defined that
 facilitates starting out with empty choices and assembling them
 later, potentially in separate files that are concatenated to build
 the full specification.

 Per convention, CDDL extension points are marked with a leading
 dollar sign (types) or two leading dollar signs (groups). Tools
 honor that convention by not raising an error if such a type or group
 is not defined at all; the symbol is then taken to be an empty type
 choice (group choice), i.e., no choice is available.

 tcp-header = {seq: uint, ack: uint, * $$tcp-option}

 ; later, in a different file

 $$tcp-option //= (
 sack: [+(left: uint, right: uint)]
)

 ; and, maybe in another file

 $$tcp-option //= (
 sack-permitted: true
)

 Names that start with a single "$" are "type sockets", names with a
 double "$$" are "group sockets". It is not an error if there is no
 definition for a socket at all; this then means there is no way to
 satisfy the rule (i.e., the choice is empty).

 All definitions (plugs) for socket names must be augmentations, i.e.,
 they must be using "/=" and "//=", respectively.

 To pick up the example illustrated in Figure 6, the socket/plug
 mechanism could be used as shown in Figure 11:

Birkholz, et al. Expires August 30, 2018 [Page 27]

Internet-Draft CDDL February 2018

 PersonalData = {
 ? displayName: tstr,
 NameComponents,
 ? age: uint,
 * $$personaldata-extensions
 }

 NameComponents = (
 ? firstName: tstr,
 ? familyName: tstr,
)

 ; The above already works as is.
 ; But then, we can add later:

 $$personaldata-extensions //= (
 favorite-salsa: tstr,
)

 ; and again, somewhere else:

 $$personaldata-extensions //= (
 shoesize: uint,
)

 Figure 11: Personal Data example: Using socket/plug extensibility

3.10. Generics

 Using angle brackets, the left hand side of a rule can add formal
 parameters after the name being defined, as in:

 messages = message<"reboot", "now"> / message<"sleep", 1..100>
 message<t, v> = {type: t, value: v}

 When using a generic rule, the formal parameters are bound to the
 actual arguments supplied (also using angle brackets), within the
 scope of the generic rule (as if there were a rule of the form
 parameter = argument).

 (There are some limitations to nesting of generics in Appendix F at
 this time.)

3.11. Operator Precedence

 As with any language that has multiple syntactic features such as
 prefix and infix operators, CDDL has operators that bind more tightly
 than others. This is becoming more complicated than, say, in ABNF,

Birkholz, et al. Expires August 30, 2018 [Page 28]

Internet-Draft CDDL February 2018

 as CDDL has both types and groups, with operators that are specific
 to these concepts. Type operators (such as "/" for type choice)
 operate on types, while group operators (such as "//" for group
 choice) operate on groups. Types can simply be used in groups, but
 groups need to be bracketed (as arrays or maps) to become types. So,
 type operators naturally bind closer than group operators.

 For instance, in

 t = [group1]
 group1 = (a / b // c / d)
 a = 1 b = 2 c = 3 d = 4

 group1 is a group choice between the type choice of a and b and the
 type choice of c and d. This becomes more relevant once member keys
 and/or occurrences are added in:

 t = {group2}
 group2 = (? ab: a / b // cd: c / d)
 a = 1 b = 2 c = 3 d = 4

 is a group choice between the optional member "ab" of type a or b and
 the member "cd" of type c or d. Note that the optionality is
 attached to the first choice ("ab"), not to the second choice.

 Similarly, in

 t = [group3]
 group3 = (+ a / b / c)
 a = 1 b = 2 c = 3

 group3 is a repetition of a type choice between a, b, and c [unflex];
 if just a is to be repeatable, a group choice is needed to focus the
 occurrence:

 t = [group4]
 group4 = (+ a // b / c)
 a = 1 b = 2 c = 3

 group4 is a group choice between a repeatable a and a single b or c.

 In general, as with many other languages with operator precedence
 rules, it is best not to rely on them, but to insert parentheses for
 readability:

 t = [group4a]
 group4a = ((+ a) // (b / c))
 a = 1 b = 2 c = 3

Birkholz, et al. Expires August 30, 2018 [Page 29]

Internet-Draft CDDL February 2018

 The operator precedences, in sequence of loose to tight binding, are
 defined in Appendix B and summarized in Table 1. (Arities given are
 1 for unary prefix operators and 2 for binary infix operators.)

 +----------+----+---------------------------+------+
 | Operator | Ar | Operates on | Prec |
 +----------+----+---------------------------+------+
 | = | 2 | name = type, name = group | 1 |
 | /= | 2 | name /= type | 1 |
 | //= | 2 | name //= group | 1 |
 | // | 2 | group // group | 2 |
 | , | 2 | group, group | 3 |
 | * | 1 | * group | 4 |
 | N*M | 1 | N*M group | 4 |
 | + | 1 | + group | 4 |
 | ? | 1 | ? group | 4 |
 | => | 2 | type => type | 5 |
 | : | 2 | name: type | 5 |
 | / | 2 | type / type | 6 |
 | & | 1 | &group | 6 |
 | .. | 2 | type..type | 7 |
 | ... | 2 | type...type | 7 |
 | .anno | 2 | type .anno type | 7 |
 +----------+----+---------------------------+------+

 Table 1: Summary of operator precedences

4. Making Use of CDDL

 In this section, we discuss several potential ways to employ CDDL.

4.1. As a guide to a human user

 CDDL can be used to efficiently define the layout of CBOR data, such
 that a human implementer can easily see how data is supposed to be
 encoded.

 Since CDDL maps parts of the CBOR data to human readable names, tools
 could be built that use CDDL to provide a human friendly
 representation of the CBOR data, and allow them to edit such data
 while remaining compliant to its CDDL definition.

4.2. For automated checking of CBOR data structure

 CDDL has been specified such that a machine can handle the CDDL
 definition and related CBOR data (and, thus, also JSON data). For
 example, a machine could use CDDL to check whether or not CBOR data
 is compliant to its definition.

Birkholz, et al. Expires August 30, 2018 [Page 30]

Internet-Draft CDDL February 2018

 The need for thoroughness of such compliance checking depends on the
 application. For example, an application may decide not to check the
 data structure at all, and use the CDDL definition solely as a means
 to indicate the structure of the data to the programmer.

 On the other end, the application may also implement a checking
 mechanism that goes as far as checking that all mandatory map members
 are available.

 The matter in how far the data description must be enforced by an
 application is left to the designers and implementers of that
 application, keeping in mind related security considerations.

 In no case the intention is that a CDDL tool would be "writing code"
 for an implementation.

4.3. For data analysis tools

 In the long run, it can be expected that more and more data will be
 stored using the CBOR data format.

 Where there is data, there is data analysis and the need to process
 such data automatically. CDDL can be used for such automated data
 processing, allowing tools to verify data, clean it, and extract
 particular parts of interest from it.

 Since CBOR is designed with constrained devices in mind, a likely use
 of it would be small sensors. An interesting use would thus be
 automated analysis of sensor data.

5. Security considerations

 This document presents a content rules language for expressing CBOR
 data structures. As such, it does not bring any security issues on
 itself, although specification of protocols that use CBOR naturally
 need security analysis when defined.

 Topics that could be considered in a security considerations section
 that uses CDDL to define CBOR structures include the following:

 o Where could the language maybe cause confusion in a way that will
 enable security issues?

6. IANA considerations

 This document does not require any IANA registrations.

Birkholz, et al. Expires August 30, 2018 [Page 31]

Internet-Draft CDDL February 2018

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [W3C.REC-xmlschema-2-20041028]
 Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium Recommendation
 REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

7.2. Informative References

 [I-D.bormann-cbor-cddl-freezer]
 Bormann, C., "A feature freezer for the Concise Data
 Definition Language (CDDL)", draft-bormann-cbor-cddl-
 freezer-00 (work in progress), January 2018.

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

Birkholz, et al. Expires August 30, 2018 [Page 32]

Internet-Draft CDDL February 2018

 [I-D.ietf-core-senml]
 Jennings, C., Shelby, Z., Arkko, J., Keranen, A., and C.
 Bormann, "Media Types for Sensor Measurement Lists
 (SenML)", draft-ietf-core-senml-12 (work in progress),
 December 2017.

 [I-D.newton-json-content-rules]
 Newton, A. and P. Cordell, "A Language for Rules
 Describing JSON Content", draft-newton-json-content-
 rules-09 (work in progress), September 2017.

 [RELAXNG] ISO/IEC, "Information technology -- Document Schema
 Definition Language (DSDL) -- Part 2: Regular-grammar-
 based validation -- RELAX NG", ISO/IEC 19757-2, December
 2008.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC7071] Borenstein, N. and M. Kucherawy, "A Media Type for
 Reputation Interchange", RFC 7071, DOI 10.17487/RFC7071,
 November 2013, <https://www.rfc-editor.org/info/rfc7071>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8007] Murray, R. and B. Niven-Jenkins, "Content Delivery Network
 Interconnection (CDNI) Control Interface / Triggers",
 RFC 8007, DOI 10.17487/RFC8007, December 2016,
 <https://www.rfc-editor.org/info/rfc8007>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

7.3. URIs

 [1] https://github.com/cabo/cbor-diag

Appendix A. (Not used.)

Appendix B. ABNF grammar

 The following is a formal definition of the CDDL syntax in Augmented
 Backus-Naur Form (ABNF, [RFC5234]). [_abnftodo]

Birkholz, et al. Expires August 30, 2018 [Page 33]

Internet-Draft CDDL February 2018

 cddl = S 1*rule
 rule = typename [genericparm] S assign S type S
 / groupname [genericparm] S assign S grpent S

 typename = id
 groupname = id

 assign = "=" / "/=" / "//="

 genericparm = "<" S id S *("," S id S) ">"
 genericarg = "<" S type1 S *("," S type1 S) ">"

 type = type1 S *("/" S type1 S)

 type1 = type2 [S (rangeop / ctlop) S type2]

 type2 = value
 / typename [genericarg]
 / "(" type ")"
 / "˜" S groupname [genericarg]
 / "#" "6" ["." uint] "(" S type S ")" ; note no space!
 / "#" DIGIT ["." uint] ; major/ai
 / "#" ; any
 / "{" S group S "}"
 / "[" S group S "]"
 / "&" S "(" S group S ")"
 / "&" S groupname [genericarg]

 rangeop = "..." / ".."

 ctlop = "." id

 group = grpchoice S *("//" S grpchoice S)

 grpchoice = *grpent

 grpent = [occur S] [memberkey S] type optcom
 / [occur S] groupname [genericarg] optcom ; preempted by above
 / [occur S] "(" S group S ")" optcom

 memberkey = type1 S ["^" S] "=>"
 / bareword S ":"
 / value S ":"

 bareword = id

 optcom = S ["," S]

Birkholz, et al. Expires August 30, 2018 [Page 34]

Internet-Draft CDDL February 2018

 occur = [uint] "*" [uint]
 / "+"
 / "?"

 uint = ["0x" / "0b"] "0"
 / DIGIT1 *DIGIT
 / "0x" 1*HEXDIG
 / "0b" 1*BINDIG

 value = number
 / text
 / bytes

 int = ["-"] uint

 ; This is a float if it has fraction or exponent; int otherwise
 number = hexfloat / (int ["." fraction] ["e" exponent])
 hexfloat = "0x" 1*HEXDIG ["." 1*HEXDIG] "p" exponent
 fraction = 1*DIGIT
 exponent = ["+"/"-"] 1*DIGIT

 text = %x22 *SCHAR %x22
 SCHAR = %x20-21 / %x23-5B / %x5D-10FFFD / SESC
 SESC = "\" %x20-10FFFD

 bytes = [bsqual] %x27 *BCHAR %x27
 BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF
 bsqual = %x68 ; "h"
 / %x62.36.34 ; "b64"

 id = EALPHA *(*("-" / ".") (EALPHA / DIGIT))
 ALPHA = %x41-5A / %x61-7A
 EALPHA = %x41-5A / %x61-7A / "@" / "_" / "$"
 DIGIT = %x30-39
 DIGIT1 = %x31-39
 HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
 BINDIG = %x30-31

 S = *WS
 WS = SP / NL
 SP = %x20
 NL = COMMENT / CRLF
 COMMENT = ";" *PCHAR CRLF
 PCHAR = %x20-10FFFD
 CRLF = %x0A / %x0D.0A

 Figure 12: CDDL ABNF

Birkholz, et al. Expires August 30, 2018 [Page 35]

Internet-Draft CDDL February 2018

Appendix C. Matching rules

 In this appendix, we go through the ABNF syntax rules defined in
 Appendix B and briefly describe the matching semantics of each
 syntactic feature. In this context, an instance (data item)
 "matches" a CDDL specification if it is allowed by the CDDL
 specification; this is then broken down to parts of specifications
 (type and group expressions) and parts of instances (data items).

 cddl = S 1*rule

 A CDDL specification is a sequence of one or more rules. Each rule
 gives a name to a right hand side expression, either a CDDL type or a
 CDDL group. Rule names can be used in the rule itself and/or other
 rules (and tools can output warnings if that is not the case). The
 order of the rules is significant only in two cases, including the
 following: The first rule defines the semantics of the entire
 specification; hence, its name may be descriptive only (or may be
 used in itself or other rules as with the other rule names).

 rule = typename [genericparm] S assign S type S
 / groupname [genericparm] S assign S grpent S

 typename = id
 groupname = id

 A rule defines a name for a type expression (production "type") or
 for a group expression (production "grpent"), with the intention that
 the semantics does not change when the name is replaced by its
 (parenthesized if needed) definition.

 assign = "=" / "/=" / "//="

 A plain equals sign defines the rule name as the equivalent of the
 expression to the right. A "/=" or "//=" extends a named type or a
 group by additional choices; a number of these could be replaced by
 collecting all the right hand sides and creating a single rule with a
 type choice or a group choice built from the right hand sides in the
 order of the rules given. (It is not an error to extend a rule name
 that has not yet been defined; this makes the right hand side the
 first entry in the choice being created.) The creation of the type
 choices and group choices from the right hand sides of rules is the
 other case where rule order can be significant.

 genericparm = "<" S id S *("," S id S) ">"
 genericarg = "<" S type1 S *("," S type1 S) ">"

Birkholz, et al. Expires August 30, 2018 [Page 36]

Internet-Draft CDDL February 2018

 Rule names can have generic parameters, which cause temporary
 assignments within the right hand sides to the parameter names from
 the arguments given when citing the rule name.

 type = type1 S *("/" S type1 S)

 A type can be given as a choice between one or more types. The
 choice matches a data item if the data item matches any one of the
 types given in the choice. The choice uses Parse Expression Grammar
 (PEG) semantics: The first choice that matches wins. (As a result,
 the order of rules that contribute to a single rule name can very
 well matter.)

 type1 = type2 [S (rangeop / ctlop) S type2]

 Two types can be combined with a range operator (which see below) or
 a control operator (see Section 3.8).

 type2 = value

 A type can be just a single value (such as 1 or "icecream" or
 h’0815’), which matches only a data item with that specific value (no
 conversions defined),

 / typename [genericarg]

 or be defined by a rule giving a meaning to a name (possibly after
 supplying generic args as required by the generic parameters),

 / "(" type ")"

 or be defined in a parenthesized type expression (parentheses may be
 necessary to override some operator precendence), or

 / "˜" S groupname [genericarg]

 an "unwrapped" group (see Section 3.7), which matches the group
 inside a type defined as a map or an array by wrapping the group, or

 / "#" "6" ["." uint] "(" S type S ")" ; note no space!

 a tagged data item, tagged with the "uint" given and containing the
 type given as the tagged value, or

 / "#" DIGIT ["." uint] ; major/ai

 a data item of a major type (given by the DIGIT), optionally
 constrained to the additional information given by the uint, or

Birkholz, et al. Expires August 30, 2018 [Page 37]

Internet-Draft CDDL February 2018

 / "#" ; any

 any data item, or

 / "{" S group S "}"

 a map expression, which matches a valid CBOR map the key/value pairs
 of which can be ordered in such a way that the resulting sequence
 matches the group expression, or

 / "[" S group S "]"

 an array expression, which matches a CBOR array the elements of
 which, when taken as values and complemented by a wildcard (matches
 anything) key each, match the group, or

 / "&" S "(" S group S ")"
 / "&" S groupname [genericarg]

 an enumeration expression, which matches any a value that is within
 the set of values that the values of the group given can take.

 rangeop = "..." / ".."

 A range operator can be used to join two type expressions that stand
 for either two integer values or two floating point values; it
 matches any value that is between the two values, where the first
 value is always included in the matching set and the second value is
 included for ".." and excluded for "...".

 ctlop = "." id

 A control operator ties a _target_ type to a _controller_ type as
 defined in Section 3.8. Note that control operators are an extension
 point for CDDL; additional documents may want to define additional
 control operators.

 group = grpchoice S *("//" S grpchoice S)

 A group matches any sequence of key/value pairs that matches any of
 the choices given (again using Parse Expression Grammar semantics).

 grpchoice = *grpent

 Each of the component groups is given as a sequence of group entries.
 For a match, the sequence of key/value pairs given needs to match the
 sequence of group entries in the sequence given.

Birkholz, et al. Expires August 30, 2018 [Page 38]

Internet-Draft CDDL February 2018

 grpent = [occur S] [memberkey S] type optcom

 A group entry can be given by a value type, which needs to be matched
 by the value part of a single element, and optionally a memberkey
 type, which needs to be matched by the key part of the element, if
 the memberkey is given. If the memberkey is not given, the entry can
 only be used for matching arrays, not for maps. (See below how that
 is modified by the occurrence indicator.)

 / [occur S] groupname [genericarg] optcom ; preempted by above

 A group entry can be built from a named group, or

 / [occur S] "(" S group S ")" optcom

 from a parenthesized group, again with a possible occurrence
 indicator.

 memberkey = type1 S ["^" S] "=>"
 / bareword S ":"
 / value S ":"

 Key types can be given by a type expression, a bareword (which stands
 for string value created from this bareword), or a value (which
 stands for a type that just contains this value). A key value
 matches its key type if the key value is a member of the key type,
 unless a cut preceding it in the group applies (see Section 3.5.3 how
 map matching is infuenced by the presence of the cuts denoted by "^"
 or ":" in previous entries).

 bareword = id

 A bareword is an alternative way to write a type with a single text
 string value; it can only be used in the syntactic context given
 above.

 optcom = S ["," S]

 (Optional commas do not influence the matching.)

 occur = [uint] "*" [uint]
 / "+"
 / "?"

 An occurrence indicator modifies the group given to its right by
 requiring the group to match the sequence to be matched exactly for a
 certain number of times (see Section 3.2) in sequence, i.e. it acts

Birkholz, et al. Expires August 30, 2018 [Page 39]

Internet-Draft CDDL February 2018

 as a (possibly infinite) group choice that contains choices with the
 group repeated each of the occurrences times.

 The rest of the ABNF describes syntax for value notation that should
 be familiar from programming languages, with the possible exception
 of h’..’ and b64’..’ for byte strings, as well as syntactic elements
 such as comments and line ends.

Appendix D. (Not used.)

Appendix E. Standard Prelude

 The following prelude is automatically added to each CDDL file
 [tdate]. (Note that technically, it is a postlude, as it does not
 disturb the selection of the first rule as the root of the
 definition.)

Birkholz, et al. Expires August 30, 2018 [Page 40]

Internet-Draft CDDL February 2018

 any = #

 uint = #0
 nint = #1
 int = uint / nint

 bstr = #2
 bytes = bstr
 tstr = #3
 text = tstr

 tdate = #6.0(tstr)
 time = #6.1(number)
 number = int / float
 biguint = #6.2(bstr)
 bignint = #6.3(bstr)
 bigint = biguint / bignint
 integer = int / bigint
 unsigned = uint / biguint
 decfrac = #6.4([e10: int, m: integer])
 bigfloat = #6.5([e2: int, m: integer])
 eb64url = #6.21(any)
 eb64legacy = #6.22(any)
 eb16 = #6.23(any)
 encoded-cbor = #6.24(bstr)
 uri = #6.32(tstr)
 b64url = #6.33(tstr)
 b64legacy = #6.34(tstr)
 regexp = #6.35(tstr)
 mime-message = #6.36(tstr)
 cbor-any = #6.55799(any)

 float16 = #7.25
 float32 = #7.26
 float64 = #7.27
 float16-32 = float16 / float32
 float32-64 = float32 / float64
 float = float16-32 / float64

 false = #7.20
 true = #7.21
 bool = false / true
 nil = #7.22
 null = nil
 undefined = #7.23

 Figure 13: CDDL Prelude

Birkholz, et al. Expires August 30, 2018 [Page 41]

Internet-Draft CDDL February 2018

 Note that the prelude is deemed to be fixed. This means, for
 instance, that additional tags beyond [RFC7049], as registered, need
 to be defined in each CDDL file that is using them.

 A common stumbling point is that the prelude does not define a type
 "string". CBOR has byte strings ("bytes" in the prelude) and text
 strings ("text"), so a type that is simply called "string" would be
 ambiguous.

E.1. Use with JSON

 The JSON generic data model (implicit in [RFC8259]) is a subset of
 the generic data model of CBOR. So one can use CDDL with JSON by
 limiting oneself to what can be represented in JSON. Roughly
 speaking, this means leaving out byte strings, tags, and simple
 values other than "false", "true", and "null", leading to the
 following limited prelude:

 any = #

 uint = #0
 nint = #1
 int = uint / nint

 tstr = #3
 text = tstr

 number = int / float

 float16 = #7.25
 float32 = #7.26
 float64 = #7.27
 float16-32 = float16 / float32
 float32-64 = float32 / float64
 float = float16-32 / float64

 false = #7.20
 true = #7.21
 bool = false / true
 nil = #7.22
 null = nil

 Figure 14: JSON compatible subset of CDDL Prelude

 (The major types given here do not have a direct meaning in JSON, but
 they can be interpreted as CBOR major types translated through
 Section 4 of [RFC7049].)

Birkholz, et al. Expires August 30, 2018 [Page 42]

Internet-Draft CDDL February 2018

 There are a few fine points in using CDDL with JSON. First, JSON
 does not distinguish between integers and floating point numbers;
 there is only one kind of number (which may happen to be integral).
 In this context, specifying a type as "uint", "nint" or "int" then
 becomes a predicate that the number be integral. As an example, this
 means that the following JSON numbers are all matching "uint":

 10 10.0 1e1 1.0e1 100e-1

 (The fact that these are all integers may be surprising to users
 accustomed to the long tradition in programming languages of using
 decimal points or exponents in a number to indicate a floating point
 literal.)

 CDDL distinguishes the various CBOR number types, but there is only
 one number type in JSON. The effect of specifying a floating point
 precision (float16/float32/float64) is only to restrict the set of
 permissible values to those expressible with binary16/binary32/
 binary64; this is unlikely to be very useful when using CDDL for
 specifying JSON data structures.

 Fundamentally, the number system of JSON itself is based on decimal
 numbers and decimal fractions and does not have limits to its
 precision or range. In practice, JSON numbers are often parsed into
 a number type that is called float64 here, creating a number of
 limitations to the generic data model [RFC7493]. In particular, this
 means that integers can only be expressed with interoperable
 exactness when they lie in the range [-(2**53)+1, (2**53)-1] -- a
 smaller range than that covered by CDDL "int".

 JSON applications that want to stay compatible with I-JSON therefore
 may want to define integer types with more limited ranges, such as in
 Figure 15. Note that the types given here are not part of the
 prelude; they need to be copied into the CDDL specification if
 needed.

 ij-uint = 0..9007199254740991
 ij-nint = -9007199254740991..-1
 ij-int = -9007199254740991..9007199254740991

 Figure 15: I-JSON types for CDDL (not part of prelude)

 JSON applications that do not need to stay compatible with I-JSON and
 that actually may need to go beyond the 64-bit unsigned and negative
 integers supported by "int" (= "uint"/"nint") may want to use the
 following additional types from the standard prelude, which are
 expressed in terms of tags but can straightforwardly be mapped into
 JSON (but not I-JSON) numbers:

Birkholz, et al. Expires August 30, 2018 [Page 43]

Internet-Draft CDDL February 2018

 biguint = #6.2(bstr)
 bignint = #6.3(bstr)
 bigint = biguint / bignint
 integer = int / bigint
 unsigned = uint / biguint

 CDDL at this point does not have a way to express the unlimited
 floating point precision that is theoretically possible with JSON; at
 the time of writing, this is rarely used in protocols in practice.

 Note that a data model described in CDDL is always restricted by what
 can be expressed in the serialization; e.g., floating point values
 such as NaN (not a number) and the infinities cannot be represented
 in JSON even if they are allowed in the CDDL generic data model.

Appendix F. The CDDL tool

 A rough CDDL tool is available. For CDDL specifications, it can
 check the syntax, generate one or more instances (expressed in CBOR
 diagnostic notation or in pretty-printed JSON), and validate an
 existing instance against the specification:

 Usage:
 cddl spec.cddl generate [n]
 cddl spec.cddl json-generate [n]
 cddl spec.cddl validate instance.cbor
 cddl spec.cddl validate instance.json

 Figure 16: CDDL tool usage

 Install on a system with a modern Ruby via:

 gem install cddl

 Figure 17: CDDL tool installation

 The accompanying CBOR diagnostic tools (which are automatically
 installed by the above) are described in https://github.com/cabo/
 cbor-diag [1]; they can be used to convert between binary CBOR, a
 pretty-printed form of that, CBOR diagnostic notation, JSON, and
 YAML.

Appendix G. Extended Diagnostic Notation

 Section 6 of [RFC7049] defines a "diagnostic notation" in order to be
 able to converse about CBOR data items without having to resort to
 binary data. Diagnostic notation is based on JSON, with extensions
 for representing CBOR constructs such as binary data and tags.

Birkholz, et al. Expires August 30, 2018 [Page 44]

Internet-Draft CDDL February 2018

 (Standardizing this together with the actual interchange format does
 not serve to create another interchange format, but enables the use
 of a shared diagnostic notation in tools for and documents about
 CBOR.)

 This section discusses a few extensions to the diagnostic notation
 that have turned out to be useful since RFC 7049 was written. We
 refer to the result as extended diagnostic notation (EDN).

G.1. White space in byte string notation

 Examples often benefit from some white space (spaces, line breaks) in
 byte strings. In extended diagnostic notation, white space is
 ignored in prefixed byte strings; for instance, the following are
 equivalent:

 h’48656c6c6f20776f726c64’
 h’48 65 6c 6c 6f 20 77 6f 72 6c 64’
 h’4 86 56c 6c6f
 20776 f726c64’

G.2. Text in byte string notation

 Diagnostic notation notates Byte strings in one of the [RFC4648] base
 encodings,, enclosed in single quotes, prefixed by >h< for base16,
 >b32< for base32, >h32< for base32hex, >b64< for base64 or base64url.
 Quite often, byte strings carry bytes that are meaningfully
 interpreted as UTF-8 text. Extended Diagnostic Notation allows the
 use of single quotes without a prefix to express byte strings with
 UTF-8 text; for instance, the following are equivalent:

 ’hello world’
 h’68656c6c6f20776f726c64’

 The escaping rules of JSON strings are applied equivalently for text-
 based byte strings, e.g., \ stands for a single backslash and ’
 stands for a single quote. White space is included literally, i.e.,
 the previous section does not apply to text-based byte strings.

G.3. Embedded CBOR and CBOR sequences in byte strings

 Where a byte string is to carry an embedded CBOR-encoded item, or
 more generally a sequence of zero or more such items, the diagnostic
 notation for these zero or more CBOR data items, separated by
 commata, can be enclosed in << and >> to notate the byte string
 resulting from encoding the data items and concatenating the result.
 For instance, each pair of columns in the following are equivalent:

Birkholz, et al. Expires August 30, 2018 [Page 45]

Internet-Draft CDDL February 2018

 <<1>> h’01’
 <<1, 2>> h’0102’
 <<"foo", null>> h’63666F6FF6’
 <<>> h’’

G.4. Concatenated Strings

 While the ability to include white space enables line-breaking of
 encoded byte strings, a mechanism is needed to be able to include
 text strings as well as byte strings in direct UTF-8 representation
 into line-based documents (such as RFCs and source code).

 We extend the diagnostic notation by allowing multiple text strings
 or multiple byte strings to be notated separated by white space,
 these are then concatenated into a single text or byte string,
 respectively. Text strings and byte strings do not mix within such a
 concatenation, except that byte string notation can be used inside a
 sequence of concatenated text string notation to encode characters
 that may be better represented in an encoded way. The following four
 values are equivalent:

 "Hello world"
 "Hello " "world"
 "Hello" h’20’ "world"
 "" h’48656c6c6f20776f726c64’ ""

 Similarly, the following byte string values are equivalent

 ’Hello world’
 ’Hello ’ ’world’
 ’Hello ’ h’776f726c64’
 ’Hello’ h’20’ ’world’
 ’’ h’48656c6c6f20776f726c64’ ’’ b64’’
 h’4 86 56c 6c6f’ h’ 20776 f726c64’

 (Note that the approach of separating by whitespace, while familiar
 from the C language, requires some attention - a single comma makes a
 big difference here.)

G.5. Hexadecimal, octal, and binary numbers

 In addition to JSON’s decimal numbers, EDN provides hexadecimal,
 octal and binary numbers in the usual C-language notation (octal with
 0o prefix present only).

 The following are equivalent:

Birkholz, et al. Expires August 30, 2018 [Page 46]

Internet-Draft CDDL February 2018

 4711
 0x1267
 0o11147
 0b1001001100111

 As are:

 1.5
 0x1.8p0
 0x18p-4

G.6. Comments

 Longer pieces of diagnostic notation may benefit from comments. JSON
 famously does not provide for comments, and basic RFC 7049 diagnostic
 notation inherits this property.

 In extended diagnostic notation, comments can be included, delimited
 by slashes ("/"). Any text within and including a pair of slashes is
 considered a comment.

 Comments are considered white space. Hence, they are allowed in
 prefixed byte strings; for instance, the following are equivalent:

 h’68656c6c6f20776f726c64’
 h’68 65 6c /doubled l!/ 6c 6f /hello/
 20 /space/
 77 6f 72 6c 64’ /world/

 This can be used to annotate a CBOR structure as in:

 /grasp-message/ [/M_DISCOVERY/ 1, /session-id/ 10584416,
 /objective/ [/objective-name/ "opsonize",
 /D, N, S/ 7, /loop-count/ 105]]

 (There are currently no end-of-line comments. If we want to add
 them, "//" sounds like a reasonable delimiter given that we already
 use slashes for comments, but we also could go e.g. for "#".)

Appendix H. Examples

 This section contains various examples of structures defined using
 CDDL.

 The theme for the first example is taken from [RFC7071], which
 defines certain JSON structures in English. For a similar example,
 it may also be of interest to examine Appendix A of [RFC8007], which

Birkholz, et al. Expires August 30, 2018 [Page 47]

Internet-Draft CDDL February 2018

 contains a CDDL definition for a JSON structure defined in the main
 body of the RFC.

 The second subsection in this appendix translates examples from
 [I-D.newton-json-content-rules] into CDDL.

 These examples all happen to describe data that is interchanged in
 JSON. Examples for CDDL definitions of data that is interchanged in
 CBOR can be found in [RFC8152], [I-D.ietf-anima-grasp], or
 [I-D.ietf-core-senml].

H.1. RFC 7071

 [RFC7071] defines the Reputon structure for JSON using somewhat
 formalized English text. Here is a (somewhat verbose) equivalent
 definition using the same terms, but notated in CDDL:

Birkholz, et al. Expires August 30, 2018 [Page 48]

Internet-Draft CDDL February 2018

 reputation-object = {
 reputation-context,
 reputon-list
 }

 reputation-context = (
 application: text
)

 reputon-list = (
 reputons: reputon-array
)

 reputon-array = [* reputon]

 reputon = {
 rater-value,
 assertion-value,
 rated-value,
 rating-value,
 ? conf-value,
 ? normal-value,
 ? sample-value,
 ? gen-value,
 ? expire-value,
 * ext-value,
 }

 rater-value = (rater: text)
 assertion-value = (assertion: text)
 rated-value = (rated: text)
 rating-value = (rating: float16)
 conf-value = (confidence: float16)
 normal-value = (normal-rating: float16)
 sample-value = (sample-size: uint)
 gen-value = (generated: uint)
 expire-value = (expires: uint)
 ext-value = (text => any)

 An equivalent, more compact form of this example would be:

Birkholz, et al. Expires August 30, 2018 [Page 49]

Internet-Draft CDDL February 2018

 reputation-object = {
 application: text
 reputons: [* reputon]
 }

 reputon = {
 rater: text
 assertion: text
 rated: text
 rating: float16
 ? confidence: float16
 ? normal-rating: float16
 ? sample-size: uint
 ? generated: uint
 ? expires: uint
 * text => any
 }

 Note how this rather clearly delineates the structure somewhat
 shrouded by so many words in section 6.2.2. of [RFC7071]. Also, this
 definition makes it clear that several ext-values are allowed (by
 definition with different member names); RFC 7071 could be read to
 forbid the repetition of ext-value ("A specific reputon-element MUST
 NOT appear more than once" is ambiguous.)

 The CDDL tool (which hasn’t quite been trained for polite
 conversation) says:

Birkholz, et al. Expires August 30, 2018 [Page 50]

Internet-Draft CDDL February 2018

 {
 "application": "tridentiferous",
 "reputons": [
 {
 "rater": "loamily",
 "assertion": "Dasyprocta",
 "rated": "uncommensurableness",
 "rating": 0.05055809746548934,
 "confidence": 0.7484706448605812,
 "normal-rating": 0.8677887734049299,
 "sample-size": 4059,
 "expires": 3969,
 "bearer": "nitty",
 "faucal": "postulnar",
 "naturalism": "sarcotic"
 },
 {
 "rater": "precreed",
 "assertion": "xanthosis",
 "rated": "balsamy",
 "rating": 0.36091333590593955,
 "confidence": 0.3700759808403371,
 "sample-size": 3904
 },
 {
 "rater": "urinosexual",
 "assertion": "malacostracous",
 "rated": "arenariae",
 "rating": 0.9210673488013762,
 "normal-rating": 0.4778762617112776,
 "sample-size": 4428,
 "generated": 3294,
 "backfurrow": "enterable",
 "fruitgrower": "flannelflower"
 },
 {
 "rater": "pedologistically",
 "assertion": "unmetaphysical",
 "rated": "elocutionist",
 "rating": 0.42073613384304287,
 "misimagine": "retinaculum",
 "snobbish": "contradict",
 "Bosporanic": "periostotomy",
 "dayworker": "intragyral"
 }
]
 }

Birkholz, et al. Expires August 30, 2018 [Page 51]

Internet-Draft CDDL February 2018

H.1.1. Examples from JSON Content Rules

 Although JSON Content Rules [I-D.newton-json-content-rules] seems to
 address a more general problem than CDDL, it is still a worthwhile
 resource to explore for examples (beyond all the inspiration the
 format itself has had for CDDL).

 Figure 2 of the JCR I-D looks very similar, if slightly less noisy,
 in CDDL:

 root = [2*2 {
 precision: text,
 Latitude: float,
 Longitude: float,
 Address: text,
 City: text,
 State: text,
 Zip: text,
 Country: text
 }]

 Figure 18: JCR, Figure 2, in CDDL

 Apart from the lack of a need to quote the member names, text strings
 are called "text" or "tstr" in CDDL ("string" would be ambiguous as
 CBOR also provides byte strings).

 The CDDL tool creates the below example instance for this:

 [{"precision": "pyrosphere", "Latitude": 0.5399712314350172,
 "Longitude": 0.5157523963028087, "Address": "resow",
 "City": "problemwise", "State": "martyrlike", "Zip": "preprove",
 "Country": "Pace"},
 {"precision": "unrigging", "Latitude": 0.10422704368372193,
 "Longitude": 0.6279808663725834, "Address": "picturedom",
 "City": "decipherability", "State": "autometry", "Zip": "pout",
 "Country": "wimple"}]

 Figure 4 of the JCR I-D in CDDL:

Birkholz, et al. Expires August 30, 2018 [Page 52]

Internet-Draft CDDL February 2018

 root = { image }

 image = (
 Image: {
 size,
 Title: text,
 thumbnail,
 IDs: [* int]
 }
)

 size = (
 Width: 0..1280
 Height: 0..1024
)

 thumbnail = (
 Thumbnail: {
 size,
 Url: ˜uri
 }
)

 This shows how the group concept can be used to keep related elements
 (here: width, height) together, and to emulate the JCR style of
 specification. (It also shows referencing a type by unwrapping a tag
 from the prelude, "uri" - this could be done differently.) The more
 compact form of Figure 5 of the JCR I-D could be emulated like this:

 root = {
 Image: {
 size, Title: text,
 Thumbnail: { size, Url: ˜uri },
 IDs: [* int]
 }
 }

 size = (
 Width: 0..1280,
 Height: 0..1024,
)

 The CDDL tool creates the below example instance for this:

 {"Image": {"Width": 566, "Height": 516, "Title": "leisterer",
 "Thumbnail": {"Width": 1111, "Height": 176, "Url": 32("scrog")},
 "IDs": []}}

Birkholz, et al. Expires August 30, 2018 [Page 53]

Internet-Draft CDDL February 2018

Acknowledgements

 CDDL was originally conceived by Bert Greevenbosch, who also wrote
 the original five versions of this document.

 Inspiration was taken from the C and Pascal languages, MPEG’s
 conventions for describing structures in the ISO base media file
 format, Relax-NG and its compact syntax [RELAXNG], and in particular
 from Andrew Lee Newton’s "JSON Content Rules"
 [I-D.newton-json-content-rules].

 Useful feedback came from members of the IETF CBOR WG, in particular
 Joe Hildebrand, Sean Leonard and Jim Schaad. Also, Francesca
 Palombini and Joe volunteered to chair this WG, providing the
 framework for generating and processing this feedback.

 The CDDL tool was written by Carsten Bormann, building on previous
 work by Troy Heninger and Tom Lord.

Editorial Comments

[_format] So far, the ability to restrict format choices have not been
 needed beyond the floating point formats. Those can be
 applied to ranges using the new .and control now. It is not
 clear we want to add more format control before we have a use
 case.

[_range] TO DO: define this precisely. This clearly includes integers
 and floats. Strings - as in "a".."z" - could be added if
 desired, but this would require adopting a definition of string
 ordering and possibly a successor function so "a".."z" does not
 include "bb".

[_strings] TO DO: This still needs to be fully realized in the ABNF and
 in the CDDL tool.

[_bitsendian] How useful would it be to have another variant that counts
 bits like in RFC box notation? (Or at least per-byte?
 32-bit words don’t always perfectly mesh with byte
 strings.)

[unflex] A comment has been that this is counter-intuitive. One
 solution would be to simply disallow unparenthesized usage of
 occurrence indicators in front of type choices unless a member
 key is also present like in group2 above.

[_abnftodo] Potential improvements: the prefixed byte strings are more
 liberally specified than they actually are.

Birkholz, et al. Expires August 30, 2018 [Page 54]

Internet-Draft CDDL February 2018

[tdate] The prelude as included here does not yet have a .regexp control
 on tdate, but we probably do want to have one.

Authors’ Addresses

 Henk Birkholz
 Fraunhofer SIT
 Rheinstrasse 75
 Darmstadt 64295
 Germany

 Email: henk.birkholz@sit.fraunhofer.de

 Christoph Vigano
 Universitaet Bremen

 Email: christoph.vigano@uni-bremen.de

 Carsten Bormann
 Universitaet Bremen TZI
 Bibliothekstr. 1
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Birkholz, et al. Expires August 30, 2018 [Page 55]

