
dnsop J. Dickinson
Internet-Draft J. Hague
Intended status: Standards Track S. Dickinson
Expires: June 15, 2019 Sinodun IT
 T. Manderson
 J. Bond
 ICANN
 December 12, 2018

 C-DNS: A DNS Packet Capture Format
 draft-ietf-dnsop-dns-capture-format-10

Abstract

 This document describes a data representation for collections of DNS
 messages. The format is designed for efficient storage and
 transmission of large packet captures of DNS traffic; it attempts to
 minimize the size of such packet capture files but retain the full
 DNS message contents along with the most useful transport metadata.
 It is intended to assist with the development of DNS traffic
 monitoring applications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 15, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Dickinson, et al. Expires June 15, 2019 [Page 1]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 5
 3. Data collection use cases 5
 4. Design considerations . 7
 5. Choice of CBOR . 9
 6. C-DNS format conceptual overview 9
 6.1. Block Parameters . 13
 6.2. Storage Parameters 13
 6.2.1. Optional data items 14
 6.2.2. Optional RRs and OPCODEs 15
 6.2.3. Storage flags . 15
 6.2.4. IP Address storage 16
 7. C-DNS format detailed description 16
 7.1. Map quantities and indexes 16
 7.2. Tabular representation 17
 7.3. "File" . 18
 7.4. "FilePreamble" . 18
 7.4.1. "BlockParameters" 19
 7.4.2. "CollectionParameters" 22
 7.5. "Block" . 24
 7.5.1. "BlockPreamble" 24
 7.5.2. "BlockStatistics" 25
 7.5.3. "BlockTables" . 26
 7.6. "QueryResponse" . 32
 7.6.1. "ResponseProcessingData" 34
 7.6.2. "QueryResponseExtended" 34
 7.7. "AddressEventCount" 35
 7.8. "MalformedMessage" 36
 8. Versioning . 37
 9. C-DNS to PCAP . 37
 9.1. Name compression . 38
 10. Data collection . 39
 10.1. Matching algorithm 40
 10.2. Message identifiers 42
 10.2.1. Primary ID (required) 42
 10.2.2. Secondary ID (optional) 43
 10.3. Algorithm parameters 43
 10.4. Algorithm requirements 43
 10.5. Algorithm limitations 43

Dickinson, et al. Expires June 15, 2019 [Page 2]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 10.6. Workspace . 44
 10.7. Output . 44
 10.8. Post processing . 44
 11. Implementation guidance 44
 11.1. Optional data . 45
 11.2. Trailing bytes . 45
 11.3. Limiting collection of RDATA 45
 11.4. Timestamps . 45
 12. Implementation status . 46
 12.1. DNS-STATS Compactor 46
 13. IANA considerations . 47
 13.1. Transport types . 47
 13.2. Data storage flags 48
 13.3. Response processing flags 48
 13.4. AddressEvent types 49
 14. Security considerations 49
 15. Privacy considerations 50
 16. Acknowledgements . 50
 17. Changelog . 51
 18. References . 54
 18.1. Normative References 54
 18.2. Informative References 55
 18.3. URIs . 57
 Appendix A. CDDL . 58
 Appendix B. DNS Name compression example 68
 B.1. NSD compression algorithm 69
 B.2. Knot Authoritative compression algorithm 70
 B.3. Observed differences 70
 Appendix C. Comparison of Binary Formats 70
 C.1. Comparison with full PCAP files 73
 C.2. Simple versus block coding 74
 C.3. Binary versus text formats 74
 C.4. Performance . 74
 C.5. Conclusions . 75
 C.6. Block size choice . 75
 Authors’ Addresses . 76

1. Introduction

 There has long been a need for server operators to collect DNS
 queries and responses on authoritative and recursive name servers for
 monitoring and analysis. This data is used in a number of ways
 including traffic monitoring, analyzing network attacks and "day in
 the life" (DITL) [ditl] analysis.

 A wide variety of tools already exist that facilitate the collection
 of DNS traffic data, such as DSC [dsc], packetq [packetq], dnscap
 [dnscap] and dnstap [dnstap]. However, there is no standard exchange

Dickinson, et al. Expires June 15, 2019 [Page 3]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 format for large DNS packet captures. The PCAP [pcap] or PCAP-NG
 [pcapng] formats are typically used in practice for packet captures,
 but these file formats can contain a great deal of additional
 information that is not directly pertinent to DNS traffic analysis
 and thus unnecessarily increases the capture file size. Additionally
 these tools and formats typically have no filter mechanism to
 selectively record only certain fields at capture time, requiring
 post-processing for anonymization or pseudonymization of data to
 protect user privacy.

 There has also been work on using text based formats to describe DNS
 packets such as [I-D.daley-dnsxml], [RFC8427], but these are largely
 aimed at producing convenient representations of single messages.

 Many DNS operators may receive hundreds of thousands of queries per
 second on a single name server instance so a mechanism to minimize
 the storage and transmission size (and therefore upload overhead) of
 the data collected is highly desirable.

 The format described in this document, C-DNS (Compacted-DNS),
 focusses on the problem of capturing and storing large packet capture
 files of DNS traffic with the following goals in mind:

 o Minimize the file size for storage and transmission.

 o Minimize the overhead of producing the packet capture file and the
 cost of any further (general purpose) compression of the file.

 This document contains:

 o A discussion of some common use cases in which DNS data is
 collected, see Section 3.

 o A discussion of the major design considerations in developing an
 efficient data representation for collections of DNS messages, see
 Section 4.

 o A description of why CBOR [RFC7049] was chosen for this format,
 see Section 5.

 o A conceptual overview of the C-DNS format, see Section 6.

 o The definition of the C-DNS format for the collection of DNS
 messages, see Section 7.

 o Notes on converting C-DNS data to PCAP format, see Section 9.

Dickinson, et al. Expires June 15, 2019 [Page 4]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 o Some high level implementation considerations for applications
 designed to produce C-DNS, see Section 10.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 "Packet" refers to an individual IPv4 or IPv6 packet. Typically
 packets are UDP datagrams, but may also be part of a TCP data stream.
 "Message", unless otherwise qualified, refers to a DNS payload
 extracted from a UDP datagram or a TCP data stream.

 The parts of DNS messages are named as they are in [RFC1035].
 Specifically, the DNS message has five sections: Header, Question,
 Answer, Authority, and Additional.

 Pairs of DNS messages are called a Query and a Response.

3. Data collection use cases

 From a purely server operator perspective, collecting full packet
 captures of all packets going in or out of a name server provides the
 most comprehensive picture of network activity. However, there are
 several design choices or other limitations that are common to many
 DNS installations and operators.

 o DNS servers are hosted in a variety of situations:

 * Self-hosted servers

 * Third party hosting (including multiple third parties)

 * Third party hardware (including multiple third parties)

 o Data is collected under different conditions:

 * On well-provisioned servers running in a steady state

 * On heavily loaded servers

 * On virtualized servers

 * On servers that are under DoS attack

Dickinson, et al. Expires June 15, 2019 [Page 5]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 * On servers that are unwitting intermediaries in DoS attacks

 o Traffic can be collected via a variety of mechanisms:

 * Within the name server implementation itself

 * On the same hardware as the name server itself

 * Using a network tap on an adjacent host to listen to DNS
 traffic

 * Using port mirroring to listen from another host

 o The capabilities of data collection (and upload) networks vary:

 * Out-of-band networks with the same capacity as the in-band
 network

 * Out-of-band networks with less capacity than the in-band
 network

 * Everything being on the in-band network

 Thus, there is a wide range of use cases from very limited data
 collection environments (third party hardware, servers that are under
 attack, packet capture on the name server itself and no out-of-band
 network) to "limitless" environments (self hosted, well provisioned
 servers, using a network tap or port mirroring with an out-of-band
 networks with the same capacity as the in-band network). In the
 former, it is infeasible to reliably collect full packet captures,
 especially if the server is under attack. In the latter case,
 collection of full packet captures may be reasonable.

 As a result of these restrictions, the C-DNS data format is designed
 with the most limited use case in mind such that:

 o data collection will occur on the same hardware as the name server
 itself

 o collected data will be stored on the same hardware as the name
 server itself, at least temporarily

 o collected data being returned to some central analysis system will
 use the same network interface as the DNS queries and responses

 o there can be multiple third party servers involved

Dickinson, et al. Expires June 15, 2019 [Page 6]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 Because of these considerations, a major factor in the design of the
 format is minimal storage size of the capture files.

 Another significant consideration for any application that records
 DNS traffic is that the running of the name server software and the
 transmission of DNS queries and responses are the most important jobs
 of a name server; capturing data is not. Any data collection system
 co-located with the name server needs to be intelligent enough to
 carefully manage its CPU, disk, memory and network utilization. This
 leads to designing a format that requires a relatively low overhead
 to produce and minimizes the requirement for further potentially
 costly compression.

 However, it is also essential that interoperability with less
 restricted infrastructure is maintained. In particular, it is highly
 desirable that the collection format should facilitate the re-
 creation of common formats (such as PCAP) that are as close to the
 original as is realistic given the restrictions above.

4. Design considerations

 This section presents some of the major design considerations used in
 the development of the C-DNS format.

 1. The basic unit of data is a combined DNS Query and the associated
 Response (a "Q/R data item"). The same structure will be used
 for unmatched Queries and Responses. Queries without Responses
 will be captured omitting the response data. Responses without
 queries will be captured omitting the Query data (but using the
 Question section from the response, if present, as an identifying
 QNAME).

 * Rationale: A Query and Response represents the basic level of
 a client’s interaction with the server. Also, combining the
 Query and Response into one item often reduces storage
 requirements due to commonality in the data of the two
 messages.

 In the context of generating a C-DNS file it is assumed that only
 those DNS payloads which can be parsed to produce a well-formed
 DNS message are stored in the C-DNS format and that all other
 messages will be (optionally) recorded as malformed messages.
 Parsing a well-formed message means as a minimum:

 * The packet has a well-formed 12 byte DNS Header with a
 recognised OPCODE.

 * The section counts are consistent with the section contents.

Dickinson, et al. Expires June 15, 2019 [Page 7]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 * All of the resource records can be fully parsed.

 2. All top level fields in each Q/R data item will be optional.

 * Rationale: Different operators will have different
 requirements for data to be available for analysis. Operators
 with minimal requirements should not have to pay the cost of
 recording full data, though this will limit the ability to
 perform certain kinds of data analysis and also to reconstruct
 packet captures. For example, omitting the resource records
 from a Response will reduce the C-DNS file size; in principle
 responses can be synthesized if there is enough context.
 Operators may have different policies for collecting user data
 and can choose to omit or anonymize certain fields at capture
 time e.g. client address.

 3. Multiple Q/R data items will be collected into blocks in the
 format. Common data in a block will be abstracted and referenced
 from individual Q/R data items by indexing. The maximum number
 of Q/R data items in a block will be configurable.

 * Rationale: This blocking and indexing provides a significant
 reduction in the volume of file data generated. Although this
 introduces complexity, it provides compression of the data
 that makes use of knowledge of the DNS message structure.

 * It is anticipated that the files produced can be subject to
 further compression using general purpose compression tools.
 Measurements show that blocking significantly reduces the CPU
 required to perform such strong compression. See
 Appendix C.2.

 * Examples of commonality between DNS messages are that in most
 cases the QUESTION RR is the same in the query and response,
 and that there is a finite set of query signatures (based on a
 subset of attributes). For many authoritative servers there
 is very likely to be a finite set of responses that are
 generated, of which a large number are NXDOMAIN.

 4. Traffic metadata can optionally be included in each block.
 Specifically, counts of some types of non-DNS packets (e.g.
 ICMP, TCP resets) sent to the server may be of interest.

 5. The wire format content of malformed DNS messages may optionally
 be recorded.

 * Rationale: Any structured capture format that does not capture
 the DNS payload byte for byte will be limited to some extent

Dickinson, et al. Expires June 15, 2019 [Page 8]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 in that it cannot represent malformed DNS messages. Only
 those messages that can be fully parsed and transformed into
 the structured format can be fully represented. Note,
 however, this can result in rather misleading statistics. For
 example, a malformed query which cannot be represented in the
 C-DNS format will lead to the (well formed) DNS responses with
 error code FORMERR appearing as ’unmatched’. Therefore it can
 greatly aid downstream analysis to have the wire format of the
 malformed DNS messages available directly in the C-DNS file.

5. Choice of CBOR

 This document presents a detailed format description using CBOR, the
 Concise Binary Object Representation defined in [RFC7049].

 The choice of CBOR was made taking a number of factors into account.

 o CBOR is a binary representation, and thus is economical in storage
 space.

 o Other binary representations were investigated, and whilst all had
 attractive features, none had a significant advantage over CBOR.
 See Appendix C for some discussion of this.

 o CBOR is an IETF specification and familiar to IETF participants.
 It is based on the now-common ideas of lists and objects, and thus
 requires very little familiarization for those in the wider
 industry.

 o CBOR is a simple format, and can easily be implemented from
 scratch if necessary. More complex formats require library
 support which may present problems on unusual platforms.

 o CBOR can also be easily converted to text formats such as JSON
 ([RFC8259]) for debugging and other human inspection requirements.

 o CBOR data schemas can be described using CDDL
 [I-D.ietf-cbor-cddl].

6. C-DNS format conceptual overview

 The following figures show purely schematic representations of the
 C-DNS format to convey the high-level structure of the C-DNS format.
 Section 7 provides a detailed discussion of the CBOR representation
 and individual elements.

 Figure 1 shows the C-DNS format at the top level including the file
 header and data blocks. The Query/Response data items, Address/Event

Dickinson, et al. Expires June 15, 2019 [Page 9]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 Count data items and Malformed Message data items link to various
 Block tables.

 +-------+
 + C-DNS |
 +-------+--------------------------+
 | File type identifier |
 +----------------------------------+
 | File preamble |
 | +--------------------------------+
 | | Format version info |
 | +--------------------------------+
 | | Block parameters |
 +-+--------------------------------+
 | Block |
 | +--------------------------------+
 | | Block preamble |
 | +--------------------------------+
 | | Block statistics |
 | +--------------------------------+
 | | Block tables |
 | +--------------------------------+
 | | Query/Response data items |
 | +--------------------------------+
 | | Address/Event Count data items |
 | +--------------------------------+
 | | Malformed Message data items |
 +-+--------------------------------+
 | Block |
 | +--------------------------------+
 | | Block preamble |
 | +--------------------------------+
 | | Block statistics |
 | +--------------------------------+
 | | Block tables |
 | +--------------------------------+
 | | Query/Response data items |
 | +--------------------------------+
 | | Address/Event Count data items |
 | +--------------------------------+
 | | Malformed Message data items |
 +-+--------------------------------+
 | Further Blocks... |
 +----------------------------------+

 Figure 1: The C-DNS format.

Dickinson, et al. Expires June 15, 2019 [Page 10]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 Figure 2 shows some more detailed relationships within each block,
 specifically those between the Query/Response data item and the
 relevant Block tables.

 +----------------+
 | Query/Response |
 +-------------------------+
 | Time offset |
 +-------------------------+ +------------------+
 | Client address |------------>| IP address array |
 +-------------------------+ +------------------+
 | Client port |
 +-------------------------+ +------------------+
 | Transaction ID | +------>| Name/RDATA array |<------+
 +-------------------------+ | +------------------+ |
 | Query signature |--+ | |
 +-------------------------+ | | +-----------------+ |
 | Client hoplimit (q) | +--)------>| Query Signature | |
 +-------------------------+ | +-----------------+------+ |
 | Response delay (r) | | | Server address | |
 +-------------------------+ | +------------------------+ |
 | Query name |--+--+ | Server port | |
 +-------------------------+ | +------------------------+ |
 | Query size (q) | | | Transport flags | |
 +-------------------------+ | +------------------------+ |
 | Response size (r) | | | QR type | |
 +-------------------------+ | +------------------------+ |
Response processing (r)			QR signature flags	
+-----------------------+	+------------------------+			
	Bailiwick index	--+	Query OPCODE (q)	
+-----------------------+ +------------------------+				
	Flags		QR DNS flags	
+-+-----------------------+ +------------------------+				
Extra query info (q)		Query RCODE (q)		
+-----------------------+ +------------------------+				
	Question	--+---+ +--+-Query Class/Type (q)		
+-----------------------+		+------------------------+		
	Answer	--+		
+-----------------------+			+------------------------+	
	Authority	--+		
+-----------------------+			+------------------------+	
	Additional	--+		
+-+-----------------------+			+------------------------+	
Extra response info (r)		-+		
+-----------------------+				+------------------------+
	Answer	--+		
+-----------------------+				+------------------------+
	Authority	--+		

Dickinson, et al. Expires June 15, 2019 [Page 11]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 | +-----------------------+ | | | | +------------------------+ |
 | | Additional |--+ | | | | Response RCODE (r) | |
 +-+-----------------------+ | | | +------------------------+ |
 | | | |
 | | | |
 + -----------------------------+ | +----------+ |
 | | | | | | |
 | + -----------------------------+ | |
 | | +---------------+ +----------+ | |
 | +->| Question list |->| Question | | |
 | | array | | array | | |
 | +---------------+ +----------+--+ | |
 | | Name |--+------)------------------+
 | +-------------+ | | +------------+
 | | Class/type |--)---+--+->| Class/Type |
 | +-------------+ | | | array |
 | | | +------------+--+
 | | | | Class |
 | +---------------+ +----------+ | | +---------------+
 +--->| RR list array |->| RR array | | | | Type |
 +---------+-----+ +----------+--+ | | +---------------+
 | Name |--+ |
 +-------------+ |
 | Class/type |------+
 +-------------+

 Figure 2: The Query/Response data item and subsidiary tables.

 In Figure 2 data items annotated (q) are only present when a query/
 response has a query, and those annotated (r) are only present when a
 query/response response is present.

 A C-DNS file begins with a file header containing a File Type
 Identifier and a File Preamble. The File Preamble contains
 information on the file Format Version and an array of Block
 Parameters items (the contents of which include Collection and
 Storage Parameters used for one or more blocks).

 The file header is followed by a series of data Blocks.

 A Block consists of a Block Preamble item, some Block Statistics for
 the traffic stored within the Block and then various arrays of common
 data collectively called the Block Tables. This is then followed by
 an array of the Query/Response data items detailing the queries and
 responses stored within the Block. The array of Query/Response data
 items is in turn followed by the Address/Event Counts data items (an
 array of per-client counts of particular IP events) and then

Dickinson, et al. Expires June 15, 2019 [Page 12]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 Malformed Message data items (an array of malformed messages that
 stored in the Block).

 The exact nature of the DNS data will affect what block size is the
 best fit, however sample data for a root server indicated that block
 sizes up to 10,000 Q/R data items give good results. See
 Appendix C.6 for more details.

 This design exploits data commonality and block based storage to
 minimise the C-DNS file size. As a result C-DNS cannot be streamed
 below the level of a block.

6.1. Block Parameters

 The details of the Block Parameters items are not shown in the
 diagrams but are discussed here for context.

 An array of Block Parameters items is stored in the File Preamble
 (with a minimum of one item at index 0); a Block Parameters item
 consists of a collection of Storage and Collection Parameters that
 applies to any given Block. An array is used in order to support use
 cases such as wanting to merge C-DNS files from different sources.
 The Block Preamble item then contains an optional index for the Block
 Parameters item that applies for that Block; if not present the index
 defaults to 0. Hence, in effect, a global Block Parameters item is
 defined which can then be overridden per Block.

6.2. Storage Parameters

 The Block Parameters item includes a Storage Parameters item - this
 contains information about the specific data fields stored in the
 C-DNS file.

 These parameters include:

 o The sub-second timing resolution used by the data.

 o Information (hints) on which optional data are omitted. See
 Section 6.2.1.

 o Recorded OPCODES [opcodes] and RR types [rrtypes]. See
 Section 6.2.2.

 o Flags indicating, for example, whether the data is sampled or
 anonymized. See Section 6.2.3 and Section 15.

 o Client and server IPv4 and IPv6 address prefixes. See
 Section 6.2.4

Dickinson, et al. Expires June 15, 2019 [Page 13]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

6.2.1. Optional data items

 To enable implementations to store data to their precise requirements
 in as space-efficient manner as possible, all fields in the following
 arrays are optional:

 o Query/Response

 o Query Signature

 o Malformed messages

 In other words, an implementation can choose to omit any data item
 that is not required for its use case. In addition, implementations
 may be configured to not record all RRs, or only record messages with
 certain OPCODES.

 This does, however, mean that a consumer of a C-DNS file faces two
 problems:

 1. How can it quickly determine if a file definitely does not
 contain the data items it requires to complete a particular task
 (e.g. reconstructing query traffic or performing a specific piece
 of data analysis)?

 2. How can it determine if a data item is not present because it
 was:

 * explicitly not recorded or

 * the data item was not available/present.

 For example, capturing C-DNS data from within a nameserver
 implementation makes it unlikely that the Client Hoplimit can be
 recorded. Or, if there is no query ARCount recorded and no query OPT
 RDATA [RFC6891] recorded, is that because no query contained an OPT
 RR, or because that data was not stored?

 The Storage Parameters therefore also contains a Storage Hints item
 which specifies which items the encoder of the file omits from the
 stored data and will therefore never be present. (This approach is
 taken because a flag that indicated which items were included for
 collection would not guarantee that the item was present, only that
 it might be.) An implementation decoding that file can then use
 these to quickly determine whether the input data is rich enough for
 its needs.

Dickinson, et al. Expires June 15, 2019 [Page 14]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

6.2.2. Optional RRs and OPCODEs

 Also included in the Storage Parameters are explicit arrays listing
 the RR types and the OPCODEs to be recorded. These remove any
 ambiguity over whether messages containing particular OPCODEs or are
 not present because they did not occur, or because the implementation
 is not configured to record them.

 In the case of OPCODEs, for a message to be fully parsable, the
 OPCODE must be known to the collecting implementation. Any message
 with an OPCODE unknown to the collecting implementation cannot be
 validated as correctly formed, and so must be treated as malformed.
 Messages with OPCODES known to the recording application but not
 listed in the Storage Parameters are discarded by the recording
 application during C-DNS capture (regardless of whether they are
 malformed or not).

 In the case of RR records, each record in a message must be fully
 parsable, including parsing the record RDATA, as otherwise the
 message cannot be validated as correctly formed. Any RR record with
 an RR type not known to the collecting implementation cannot be
 validated as correctly formed, and so must be treated as malformed.

 Once a message is correctly parsed, an implementation is free to
 record only a subset of the RR records present.

6.2.3. Storage flags

 The Storage Parameters contains flags that can be used to indicate
 if:

 o the data is anonymized,

 o the data is produced from sample data, or

 o names in the data have been normalized (converted to uniform
 case).

 The Storage Parameters also contains optional fields holding details
 of the sampling method used and the anonymization method used. It is
 RECOMMENDED these fields contain URIs [RFC3986] pointing to resources
 describing the methods used. See Section 15 for further discussion
 of anonymization and normalization.

Dickinson, et al. Expires June 15, 2019 [Page 15]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

6.2.4. IP Address storage

 The format can store either full IP addresses or just IP prefixes,
 the Storage Parameters contains fields to indicate if only IP
 prefixes were stored.

 If the IP address prefixes are absent, then full addresses are
 stored. In this case the IP version can be directly inferred from
 the stored address length and the fields "qr-transport-flags" in
 QueryResponseSignature and "mm-transport-flags" in
 MalformedMessageData (which contain the IP version bit) are optional.

 If IP address prefixes are given, only the prefix bits of addresses
 are stored. In this case the fields "qr-transport-flags" in
 QueryResponseSignature and "mm-transport-flags" in
 MalformedMessageData MUST be present, so that the IP version can be
 determined. See Section 7.5.3.2 and Section 7.5.3.5.

 As an example of storing only IP prefixes, if a client IPv6 prefix of
 48 is specified, a client address of 2001:db8:85a3::8a2e:370:7334
 will be stored as 0x20010db885a3, reducing address storage space
 requirements. Similarly, if a client IPv4 prefix of 16 is specified,
 a client address of 192.0.2.1 will be stored as 0xc000 (192.0).

7. C-DNS format detailed description

 The CDDL definition for the C-DNS format is given in Appendix A.

7.1. Map quantities and indexes

 All map keys are integers with values specified in the CDDL. String
 keys would significantly bloat the file size.

 All key values specified are positive integers under 24, so their
 CBOR representation is a single byte. Positive integer values not
 currently used as keys in a map are reserved for use in future
 standard extensions.

 Implementations may choose to add additional implementation-specific
 entries to any map. Negative integer map keys are reserved for these
 values. Key values from -1 to -24 also have a single byte CBOR
 representation, so such implementation-specific extensions are not at
 any space efficiency disadvantage.

 An item described as an index is the index of the data item in the
 referenced array. Indexes are 0-based.

Dickinson, et al. Expires June 15, 2019 [Page 16]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

7.2. Tabular representation

 The following sections present the C-DNS specification in tabular
 format with a detailed description of each item.

 In all quantities that contain bit flags, bit 0 indicates the least
 significant bit, i.e. flag "n" in quantity "q" is on if "(q & (1 <<
 n)) != 0".

 For the sake of readability, all type and field names defined in the
 CDDL definition are shown in double quotes. Type names are by
 convention camel case (e.g. "BlockTable"), field names are lower-
 case with hyphens (e.g. "block-tables").

 For the sake of brevity, the following conventions are used in the
 tables:

 o The column M marks whether items in a map are mandatory.

 * X - Mandatory items.

 * C - Conditionally mandatory item. Such items are usually
 optional but may be mandatory in some configurations.

 * If the column is empty, the item is optional.

 o The column T gives the CBOR data type of the item.

 * U - Unsigned integer

 * I - Signed integer (i.e. CBOR unsigned or negative integer)

 * B - Boolean

 * S - Byte string

 * T - Text string

 * M - Map

 * A - Array

 In the case of maps and arrays, more information on the type of each
 value, include the CDDL definition name if applicable, is given in
 the description.

Dickinson, et al. Expires June 15, 2019 [Page 17]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

7.3. "File"

 A C-DNS file has an outer structure "File", a map that contains the
 following:

 +---------------+---+---+---+
 | Field | M | T | Description |
 +---------------+---+---+---+
file-type-id	X	T	String "C-DNS" identifying the file type.
file-preamble	X	M	Version and parameter information for the
			whole file. Map of type "FilePreamble",
			see Section 7.4.
file-blocks	X	A	Array of items of type "Block", see
			Section 7.5. The array may be empty if
			the file contains no data.
 +---------------+---+---+---+

7.4. "FilePreamble"

 Information about data in the file. A map containing the following:

 +----------------------+---+---+------------------------------------+
 | Field | M | T | Description |
 +----------------------+---+---+------------------------------------+
major-format-version	X	U	Unsigned integer ’1’. The major
			version of format used in file.
			See Section 8.
minor-format-version	X	U	Unsigned integer ’0’. The minor
			version of format used in file.
			See Section 8.
private-version		U	Version indicator available for
			private use by implementations.
block-parameters	X	A	Array of items of type
			"BlockParameters", see Section
			7.4.1. The array must contain at
			least one entry. (The "block-
			parameters-index" item in each
			"BlockPreamble" indicates which
			array entry applies to that
			"Block".)
 +----------------------+---+---+------------------------------------+

Dickinson, et al. Expires June 15, 2019 [Page 18]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

7.4.1. "BlockParameters"

 Parameters relating to data storage and collection which apply to one
 or more items of type "Block". A map containing the following:

 +-----------------------+---+---+-----------------------------------+
 | Field | M | T | Description |
 +-----------------------+---+---+-----------------------------------+
storage-parameters	X	M	Parameters relating to data
			storage in a "Block" item. Map
			of type "StorageParameters", see
			Section 7.4.1.1.
collection-parameters		M	Parameters relating to collection
			of the data in a "Block" item.
			Map of type
			"CollectionParameters", see
			Section 7.4.2.
 +-----------------------+---+---+-----------------------------------+

7.4.1.1. "StorageParameters"

 Parameters relating to how data is stored in the items of type
 "Block". A map containing the following:

 +------------------+---+---+--+
 | Field | M | T | Description |
 +------------------+---+---+--+
ticks-per-second	X	U	Sub-second timing is recorded in
			ticks. This specifies the number of
			ticks in a second.
max-block-items	X	U	The maximum number of items stored in
			any of the arrays in a "Block" item
			(Q/R items, address event counts or
			malformed messages). An indication to
			a decoder of the resources needed to
			process the file.
storage-hints	X	M	Collection of hints as to which fields
			are omitted in the arrays that have
			optional fields. Map of type
			"StorageHints", see Section 7.4.1.1.1.
opcodes	X	A	Array of OPCODES [opcodes] (unsigned
			integers, each in the range 0 to 15
			inclusive) recorded by the collection
			implementation. See Section 6.2.2.

Dickinson, et al. Expires June 15, 2019 [Page 19]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

rr-types	X	A	Array of RR types [rrtypes] (unsigned
			integers, each in the range 0 to 65535
			inclusive) recorded by the collection
			implementation. See Section 6.2.2.
storage-flags		U	Bit flags indicating attributes of
			stored data.
			Bit 0. 1 if the data has been
			anonymized.
			Bit 1. 1 if the data is sampled data.
			Bit 2. 1 if the names have been
			normalized (converted to uniform
			case).
client-address		U	IPv4 client address prefix length, in
-prefix-ipv4			the range 1 to 32 inclusive. If
			specified, only the address prefix
			bits are stored.
client-address		U	IPv6 client address prefix length, in
-prefix-ipv6			the range 1 to 128 inclusive. If
			specified, only the address prefix
			bits are stored.
server-address		U	IPv4 server address prefix length, in
-prefix-ipv4			the range 1 to 32 inclusive. If
			specified, only the address prefix
			bits are stored.
server-address		U	IPv6 server address prefix length, in
-prefix-ipv6			the range 1 to 128 inclusive. If
			specified, only the address prefix
			bits are stored.
sampling-method		T	Information on the sampling method
			used. See Section 6.2.3.
anonymization		T	Information on the anonymization
-method			method used. See Section 6.2.3.
 +------------------+---+---+--+

7.4.1.1.1. "StorageHints"

 An indicator of which fields the collecting implementation omits in
 the maps with optional fields. A map containing the following:

 +------------------+---+---+--+

Dickinson, et al. Expires June 15, 2019 [Page 20]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 | Field | M | T | Description |
 +------------------+---+---+--+
query-response	X	U	Hints indicating which "QueryResponse"
-hints			fields are candidates for capture or
			omitted, see section Section 7.6. If a
			bit is unset, the field is omitted
			from the capture.
			Bit 0. time-offset
			Bit 1. client-address-index
			Bit 2. client-port
			Bit 3. transaction-id
			Bit 4. qr-signature-index
			Bit 5. client-hoplimit
			Bit 6. response-delay
			Bit 7. query-name-index
			Bit 8. query-size
			Bit 9. response-size
			Bit 10. response-processing-data
			Bit 11. query-question-sections
			Bit 12. query-answer-sections
			Bit 13. query-authority-sections
			Bit 14. query-additional-sections
			Bit 15. response-answer-sections
			Bit 16. response-authority-sections
			Bit 17. response-additional-sections
query-response	X	U	Hints indicating which
-signature-hints			"QueryResponseSignature" fields are
			candidates for capture or omitted, see
			section Section 7.5.3.2. If a bit is
			unset, the field is omitted from the
			capture.
			Bit 0. server-address
			Bit 1. server-port
			Bit 2. qr-transport-flags
			Bit 3. qr-type
			Bit 4. qr-sig-flags
			Bit 5. query-opcode
			Bit 6. dns-flags
			Bit 7. query-rcode
			Bit 8. query-class-type
			Bit 9. query-qdcount
			Bit 10. query-ancount
			Bit 11. query-nscount
			Bit 12. query-arcount
			Bit 13. query-edns-version
			Bit 14. query-udp-size
			Bit 15. query-opt-rdata

Dickinson, et al. Expires June 15, 2019 [Page 21]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

			Bit 16. response-rcode
rr-hints	X	U	Hints indicating which optional "RR"
			fields are candidates for capture or
			omitted, see Section 7.5.3.4. If a bit
			is unset, the field is omitted from
			the capture.
			Bit 0. ttl
			Bit 1. rdata-index
other-data-hints	X	U	Hints indicating which other data
			types are omitted. If a bit is unset,
			the the data type is omitted from the
			capture.
			Bit 0. malformed-messages
			Bit 1. address-event-counts
 +------------------+---+---+--+

7.4.2. "CollectionParameters"

 Parameters providing information to how data in the file was
 collected (applicable for some, but not all collection environments).
 The values are informational only and serve as hints to downstream
 analysers as to the configuration of a collecting implementation.
 They can provide context when interpreting what data is present/
 absent from the capture but cannot necessarily be validated against
 the data captured.

 These parameters have no default. If they do not appear, nothing can
 be inferred about their value.

 A map containing the following items:

Dickinson, et al. Expires June 15, 2019 [Page 22]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 +------------------+---+---+--+
 | Field | M | T | Description |
 +------------------+---+---+--+
query-timeout		U	To be matched with a query, a response
			must arrive within this number of
			seconds.
skew-timeout		U	The network stack may report a
			response before the corresponding
			query. A response is not considered to
			be missing a query until after this
			many micro-seconds.
snaplen		U	Collect up to this many bytes per
			packet.
promisc		B	"true" if promiscuous mode
			[pcap-options] was enabled on the
			interface, "false" otherwise.
interfaces		A	Array of identifiers (of type text
			string) of the interfaces used for
			collection.
server-addresses		A	Array of server collection IP
			addresses (of type byte string). Hint
			for downstream analysers; does not
			affect collection.
vlan-ids		A	Array of identifiers (of type unsigned
			integer, each in the range 1 to 4094
			inclusive) of VLANs [IEEE802.1Q]
			selected for collection. VLAN IDs are
			unique only within an administrative
			domain.
filter		T	"tcpdump" [pcap-filter] style filter
			for input.
generator-id		T	Implementation specific human-readable
			string identifying the collection
			method.
host-id		T	String identifying the collecting
			host. Empty if converting an existing
			packet capture file.
 +------------------+---+---+--+

Dickinson, et al. Expires June 15, 2019 [Page 23]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

7.5. "Block"

 Container for data with common collection and storage parameters. A
 map containing the following:

 +--------------------+---+---+--------------------------------------+
 | Field | M | T | Description |
 +--------------------+---+---+--------------------------------------+
block-preamble	X	M	Overall information for the "Block"
			item. Map of type "BlockPreamble",
			see Section 7.5.1.
block-statistics		M	Statistics about the "Block" item.
			Map of type "BlockStatistics", see
			Section 7.5.2.
block-tables		M	The arrays containing data
			referenced by individual
			"QueryResponse" or
			"MalformedMessage" items. Map of
			type "BlockTables", see Section
			7.5.3.
query-responses		A	Details of individual DNS Q/R data
			items. Array of items of type
			"QueryResponse", see Section 7.6. If
			present, the array must not be
			empty.
address-event		A	Per client counts of ICMP messages
-counts			and TCP resets. Array of items of
			type "AddressEventCount", see
			Section 7.7. If present, the array
			must not be empty.
malformed-messages		A	Details of malformed DNS messages.
			Array of items of type
			"MalformedMessage", see Section 7.8.
			If present, the array must not be
			empty.
 +--------------------+---+---+--------------------------------------+

7.5.1. "BlockPreamble"

 Overall information for a "Block" item. A map containing the
 following:

Dickinson, et al. Expires June 15, 2019 [Page 24]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 +------------------+---+---+--+
 | Field | M | T | Description |
 +------------------+---+---+--+
earliest-time	C	A	A timestamp (2 unsigned integers,
			"Timestamp") for the earliest record
			in the "Block" item. The first integer
			is the number of seconds since the
			POSIX epoch [posix-time] ("time_t"),
			excluding leap seconds. The second
			integer is the number of ticks (see
			Section 7.4.1.1) since the start of
			the second. This field is mandatory
			unless all block items containing a
			time offset from the start of the
			block also omit that time offset.
block-parameters		U	The index of the item in the "block-
-index			parameters" array (in the "file-
			premable" item) applicable to this
			block. If not present, index 0 is
			used. See Section 7.4.1.
 +------------------+---+---+--+

7.5.2. "BlockStatistics"

 Basic statistical information about a "Block" item. A map containing
 the following:

Dickinson, et al. Expires June 15, 2019 [Page 25]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 +---------------------+---+---+-------------------------------------+
 | Field | M | T | Description |
 +---------------------+---+---+-------------------------------------+
processed-messages		U	Total number of DNS messages
			processed from the input traffic
			stream during collection of data in
			this "Block" item.
qr-data-items		U	Total number of Q/R data items in
			this "Block" item.
unmatched-queries		U	Number of unmatched queries in this
			"Block" item.
unmatched-responses		U	Number of unmatched responses in
			this "Block" item.
discarded-opcode		U	Number of DNS messages processed
			from the input traffic stream
			during collection of data in this
			"Block" item but not recorded
			because their OPCODE is not in the
			list to be collected.
malformed-items		U	Number of malformed messages found
			in input for this "Block" item.
 +---------------------+---+---+-------------------------------------+

7.5.3. "BlockTables"

 Map of arrays containing data referenced by individual
 "QueryResponse" or "MalformedMessage" items in this "Block". Each
 element is an array which, if present, must not be empty.

 An item in the "qlist" array contains indexes to values in the "qrr"
 array. Therefore, if "qlist" is present, "qrr" must also be present.
 Similarly, if "rrlist" is present, "rr" must also be present.

 The map contains the following items:

 +-------------------+---+---+---------------------------------------+
 | Field | M | T | Description |
 +-------------------+---+---+---------------------------------------+
ip-address		A	Array of IP addresses, in network
			byte order (of type byte string). If
			client or server address prefixes are
			set, only the address prefix bits are
			stored. Each string is therefore up

Dickinson, et al. Expires June 15, 2019 [Page 26]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

			to 4 bytes long for an IPv4 address,
			or up to 16 bytes long for an IPv6
			address. See Section 7.4.1.1.
classtype		A	Array of RR class and type
			information. Type is "ClassType", see
			Section 7.5.3.1.
name-rdata		A	Array where each entry is the
			contents of a single NAME or RDATA in
			wire format (of type byte string).
			Note that NAMEs, and labels within
			RDATA contents, are full domain names
			or labels; no [RFC1035] name
			compression is used on the individual
			names/labels within the format.
qr-sig		A	Array Q/R data item signatures. Type
			is "QueryResponseSignature", see
			Section 7.5.3.2.
qlist		A	Array of type "QuestionList". A
			"QuestionList" is an array of
			unsigned integers, indexes to
			"Question" items in the "qrr" array.
qrr		A	Array of type "Question". Each entry
			is the contents of a single question,
			where a question is the second or
			subsequent question in a query. See
			Section 7.5.3.3.
rrlist		A	Array of type "RRList". An "RRList"
			is an array of unsigned integers,
			indexes to "RR" items in the "rr"
			array.
rr		A	Array of type "RR". Each entry is the
			contents of a single RR. See Section
			7.5.3.4.
malformed-message		A	Array of the contents of malformed
-data			messages. Array of type
			"MalformedMessageData", see Section
			7.5.3.5.
 +-------------------+---+---+---------------------------------------+

Dickinson, et al. Expires June 15, 2019 [Page 27]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

7.5.3.1. "ClassType"

 RR class and type information. A map containing the following:

 +-------+---+---+--------------------------+
 | Field | M | T | Description |
 +-------+---+---+--------------------------+
 | type | X | U | TYPE value [rrtypes]. |
 | | | | |
 | class | X | U | CLASS value [rrclasses]. |
 +-------+---+---+--------------------------+

7.5.3.2. "QueryResponseSignature"

 Elements of a Q/R data item that are often common between multiple
 individual Q/R data items. A map containing the following:

 +--------------------+---+---+--------------------------------------+
 | Field | M | T | Description |
 +--------------------+---+---+--------------------------------------+
server-address		U	The index in the item in the "ip-
-index			address" array of the server IP
			address. See Section 7.5.3.
server-port		U	The server port.
qr-transport-flags	C	U	Bit flags describing the transport
			used to service the query. Same
			definition as "mm-transport-flags"
			in Section 7.5.3.5, with an
			additional indicator for trailing
			bytes, see Appendix A.
			Bit 0. IP version. 0 if IPv4, 1 if
			IPv6. See Section 6.2.4.
			Bit 1-4. Transport. 4 bit unsigned
			value where 0 = UDP, 1 = TCP, 2 =
			TLS, 3 = DTLS [RFC7858], 4 = DoH
			[RFC8484]. Values 5-15 are reserved
			for future use.
			Bit 5. 1 if trailing bytes in query
			packet. See Section 11.2.
qr-type		U	Type of Query/Response transaction.
			0 = Stub. A query from a stub
			resolver.
			1 = Client. An incoming query to a
			recursive resolver.
			2 = Resolver. A query sent from a

Dickinson, et al. Expires June 15, 2019 [Page 28]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

			recursive resolver to an authorative
			resolver.
			3 = Authorative. A query to an
			authorative resolver.
			4 = Forwarder. A query sent from a
			recursive resolver to an upstream
			recursive resolver.
			5 = Tool. A query sent to a server
			by a server tool.
qr-sig-flags		U	Bit flags explicitly indicating
			attributes of the message pair
			represented by this Q/R data item
			(not all attributes may be recorded
			or deducible).
			Bit 0. 1 if a Query was present.
			Bit 1. 1 if a Response was present.
			Bit 2. 1 if a Query was present and
			it had an OPT Resource Record.
			Bit 3. 1 if a Response was present
			and it had an OPT Resource Record.
			Bit 4. 1 if a Query was present but
			had no Question.
			Bit 5. 1 if a Response was present
			but had no Question (only one query-
			name-index is stored per Q/R item).
query-opcode		U	Query OPCODE.
qr-dns-flags		U	Bit flags with values from the Query
			and Response DNS flags. Flag values
			are 0 if the Query or Response is
			not present.
			Bit 0. Query Checking Disabled (CD).
			Bit 1. Query Authenticated Data
			(AD).
			Bit 2. Query reserved (Z).
			Bit 3. Query Recursion Available
			(RA).
			Bit 4. Query Recursion Desired (RD).
			Bit 5. Query TrunCation (TC).
			Bit 6. Query Authoritative Answer
			(AA).
			Bit 7. Query DNSSEC answer OK (DO).
			Bit 8. Response Checking Disabled
			(CD).
			Bit 9. Response Authenticated Data
			(AD).

Dickinson, et al. Expires June 15, 2019 [Page 29]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

			Bit 10. Response reserved (Z).
			Bit 11. Response Recursion Available
			(RA).
			Bit 12. Response Recursion Desired
			(RD).
			Bit 13. Response TrunCation (TC).
			Bit 14. Response Authoritative
			Answer (AA).
query-rcode		U	Query RCODE. If the Query contains
			OPT [RFC6891], this value
			incorporates any
			EXTENDED_RCODE_VALUE [rcodes].
query-classtype		U	The index to the item in the the
-index			"classtype" array of the CLASS and
			TYPE of the first Question. See
			Section 7.5.3.
query-qd-count		U	The QDCOUNT in the Query, or
			Response if no Query present.
query-an-count		U	Query ANCOUNT.
query-ns-count		U	Query NSCOUNT.
query-ar-count		U	Query ARCOUNT.
edns-version		U	The Query EDNS version.
udp-buf-size		U	The Query EDNS sender’s UDP payload
			size.
opt-rdata-index		U	The index in the "name-rdata" array
			of the OPT RDATA. See Section 7.5.3.
response-rcode		U	Response RCODE. If the Response
			contains OPT [RFC6891], this value
			incorporates any
			EXTENDED_RCODE_VALUE [rcodes].
 +--------------------+---+---+--------------------------------------+

7.5.3.3. "Question"

 Details on individual Questions in a Question section. A map
 containing the following:

Dickinson, et al. Expires June 15, 2019 [Page 30]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 +-----------------+---+---+---+
 | Field | M | T | Description |
 +-----------------+---+---+---+
name-index	X	U	The index in the "name-rdata" array of
			the QNAME. See Section 7.5.3.
classtype-index	X	U	The index in the "classtype" array of
			the CLASS and TYPE of the Question. See
			Section 7.5.3.
 +-----------------+---+---+---+

7.5.3.4. "RR"

 Details on individual Resource Records in RR sections. A map
 containing the following:

 +-----------------+---+---+---+
 | Field | M | T | Description |
 +-----------------+---+---+---+
name-index	X	U	The index in the "name-rdata" array of
			the NAME. See Section 7.5.3.
classtype-index	X	U	The index in the "classtype" array of
			the CLASS and TYPE of the RR. See
			Section 7.5.3.
ttl		U	The RR Time to Live.
rdata-index		U	The index in the "name-rdata" array of
			the RR RDATA. See Section 7.5.3.
 +-----------------+---+---+---+

7.5.3.5. "MalformedMessageData"

 Details on malformed message items in this "Block" item. A map
 containing the following:

Dickinson, et al. Expires June 15, 2019 [Page 31]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 +--------------------+---+---+--------------------------------------+
 | Field | M | T | Description |
 +--------------------+---+---+--------------------------------------+
server-address		U	The index in the "ip-address" array
-index			of the server IP address. See
			Section 7.5.3.
server-port		U	The server port.
mm-transport-flags	C	U	Bit flags describing the transport
			used to service the query, see
			Section 6.2.4.
			Bit 0. IP version. 0 if IPv4, 1 if
			IPv6
			Bit 1-4. Transport. 4 bit unsigned
			value where 0 = UDP, 1 = TCP, 2 =
			TLS, 3 = DTLS [RFC7858], 4 = DoH
			[RFC8484]. Values 5-15 are reserved
			for future use.
mm-payload		S	The payload (raw bytes) of the DNS
			message.
 +--------------------+---+---+--------------------------------------+

7.6. "QueryResponse"

 Details on individual Q/R data items.

 Note that there is no requirement that the elements of the "query-
 responses" array are presented in strict chronological order.

 A map containing the following items:

 +----------------------+---+---+------------------------------------+
 | Field | M | T | Description |
 +----------------------+---+---+------------------------------------+
time-offset		U	Q/R timestamp as an offset in
			ticks (see Section 7.4.1.1) from
			"earliest-time". The timestamp is
			the timestamp of the Query, or the
			Response if there is no Query.
client-address-index		U	The index in the "ip-address"
			array of the client IP address.
			See Section 7.5.3.
client-port		U	The client port.

Dickinson, et al. Expires June 15, 2019 [Page 32]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

transaction-id		U	DNS transaction identifier.
qr-signature-index		U	The index in the "qr-sig" array of
			the "QueryResponseSignature" item.
			See Section 7.5.3.
client-hoplimit		U	The IPv4 TTL or IPv6 Hoplimit from
			the Query packet.
response-delay		I	The time difference between Query
			and Response, in ticks (see
			Section 7.4.1.1). Only present if
			there is a query and a response.
			The delay can be negative if the
			network stack/capture library
			returns packets out of order.
query-name-index		U	The index in the "name-rdata"
			array of the item containing the
			QNAME for the first Question. See
			Section 7.5.3.
query-size		U	DNS query message size (see
			below).
response-size		U	DNS response message size (see
			below).
response-processing		M	Data on response processing. Map
-data			of type "ResponseProcessingData",
			see Section 7.6.1.
query-extended		M	Extended Query data. Map of type
			"QueryResponseExtended", see
			Section 7.6.2.
response-extended		M	Extended Response data. Map of
			type "QueryResponseExtended", see
			Section 7.6.2.
 +----------------------+---+---+------------------------------------+

 The "query-size" and "response-size" fields hold the DNS message
 size. For UDP this is the size of the UDP payload that contained the
 DNS message. For TCP it is the size of the DNS message as specified
 in the two-byte message length header. Trailing bytes in UDP queries
 are routinely observed in traffic to authoritative servers and this
 value allows a calculation of how many trailing bytes were present.

Dickinson, et al. Expires June 15, 2019 [Page 33]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

7.6.1. "ResponseProcessingData"

 Information on the server processing that produced the response. A
 map containing the following:

 +------------------+---+---+--+
 | Field | M | T | Description |
 +------------------+---+---+--+
bailiwick-index		U	The index in the "name-rdata" array of
			the owner name for the response
			bailiwick. See Section 7.5.3.
processing-flags		U	Flags relating to response processing.
			Bit 0. 1 if the response came from
			cache.
 +------------------+---+---+--+

7.6.2. "QueryResponseExtended"

 Extended data on the Q/R data item.

 Each item in the map is present only if collection of the relevant
 details is configured.

 A map containing the following items:

Dickinson, et al. Expires June 15, 2019 [Page 34]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 +------------------+---+---+--+
 | Field | M | T | Description |
 +------------------+---+---+--+
question-index		U	The index in the "qlist" array of the
			entry listing any second and
			subsequent Questions in the Question
			section for the Query or Response. See
			Section 7.5.3.
answer-index		U	The index in the "rrlist" array of the
			entry listing the Answer Resource
			Record sections for the Query or
			Response. See Section 7.5.3.
authority-index		U	The index in the "rrlist" array of the
			entry listing the Authority Resource
			Record sections for the Query or
			Response. See Section 7.5.3.
additional-index		U	The index in the "rrlist" array of the
			entry listing the Additional Resource
			Record sections for the Query or
			Response. See Section 7.5.3. Note that
			Query OPT RR data can be optionally
			stored in the QuerySignature.
 +------------------+---+---+--+

7.7. "AddressEventCount"

 Counts of various IP related events relating to traffic with
 individual client addresses. A map containing the following:

Dickinson, et al. Expires June 15, 2019 [Page 35]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 +------------------+---+---+--+
 | Field | M | T | Description |
 +------------------+---+---+--+
ae-type	X	U	The type of event. The following
			events types are currently defined:
			0. TCP reset.
			1. ICMP time exceeded.
			2. ICMP destination unreachable.
			3. ICMPv6 time exceeded.
			4. ICMPv6 destination unreachable.
			5. ICMPv6 packet too big.
ae-code		U	A code relating to the event. For ICMP
			or ICMPv6 events, this MUST be the
			ICMP [RFC0792] or ICMPv6 [RFC4443]
			code. For other events the contents
			are undefined.
ae-address-index	X	U	The index in the "ip-address" array of
			the client address. See Section 7.5.3.
ae-count	X	U	The number of occurrences of this
			event during the block collection
			period.
 +------------------+---+---+--+

7.8. "MalformedMessage"

 Details of malformed messages. A map containing the following:

 +----------------------+---+---+------------------------------------+
 | Field | M | T | Description |
 +----------------------+---+---+------------------------------------+
time-offset		U	Message timestamp as an offset in
			ticks (see Section 7.4.1.1) from
			"earliest-time".
client-address-index		U	The index in the "ip-address"
			array of the client IP address.
			See Section 7.5.3.
client-port		U	The client port.
message-data-index		U	The index in the "malformed-
			message-data" array of the message
			data for this message. See Section
			7.5.3.
 +----------------------+---+---+------------------------------------+

Dickinson, et al. Expires June 15, 2019 [Page 36]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

8. Versioning

 The C-DNS file preamble includes a file format version; a major and
 minor version number are required fields. The document defines
 version 1.0 of the C-DNS specification. This section describes the
 intended use of these version numbers in future specifications.

 It is noted that version 1.0 includes many optional fields and
 therefore consumers of version 1.0 should be inherently robust to
 parsing files with variable data content.

 Within a major version, a new minor version MUST be a strict superset
 of the previous minor version, with no semantic changes to existing
 fields. New keys MAY be added to existing maps, and new maps MAY be
 added. A consumer capable of reading a particular major.minor
 version MUST also be capable of reading all previous minor versions
 of the same major version. It SHOULD also be capable of parsing all
 subsequent minor versions ignoring any keys or maps that it does not
 recognise.

 A new major version indicates changes to the format that are not
 backwards compatible with previous major versions. A consumer
 capable of only reading a particular major version (greater than 1)
 is not required to and has no expectation to be capable of reading a
 previous major version.

9. C-DNS to PCAP

 It is possible to re-construct PCAP files from the C-DNS format in a
 lossy fashion. Some of the issues with reconstructing both the DNS
 payload and the full packet stream are outlined here.

 The reconstruction depends on whether or not all the optional
 sections of both the query and response were captured in the C-DNS
 file. Clearly, if they were not all captured, the reconstruction
 will be imperfect.

 Even if all sections of the response were captured, one cannot
 reconstruct the DNS response payload exactly due to the fact that
 some DNS names in the message on the wire may have been compressed.
 Section 9.1 discusses this is more detail.

 Some transport information is not captured in the C-DNS format. For
 example, the following aspects of the original packet stream cannot
 be re-constructed from the C-DNS format:

 o IP fragmentation

Dickinson, et al. Expires June 15, 2019 [Page 37]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 o TCP stream information:

 * Multiple DNS messages may have been sent in a single TCP
 segment

 * A DNS payload may have been split across multiple TCP segments

 * Multiple DNS messages may have been sent on a single TCP
 session

 o Malformed DNS messages if the wire format is not recorded

 o Any Non-DNS messages that were in the original packet stream e.g.
 ICMP

 Simple assumptions can be made on the reconstruction: fragmented and
 DNS-over-TCP messages can be reconstructed into single packets and a
 single TCP session can be constructed for each TCP packet.

 Additionally, if malformed messages and Non-DNS packets are captured
 separately, they can be merged with packet captures reconstructed
 from C-DNS to produce a more complete packet stream.

9.1. Name compression

 All the names stored in the C-DNS format are full domain names; no
 [RFC1035] name compression is used on the individual names within the
 format. Therefore when reconstructing a packet, name compression
 must be used in order to reproduce the on the wire representation of
 the packet.

 [RFC1035] name compression works by substituting trailing sections of
 a name with a reference back to the occurrence of those sections
 earlier in the message. Not all name server software uses the same
 algorithm when compressing domain names within the responses. Some
 attempt maximum recompression at the expense of runtime resources,
 others use heuristics to balance compression and speed and others use
 different rules for what is a valid compression target.

 This means that responses to the same question from different name
 server software which match in terms of DNS payload content (header,
 counts, RRs with name compression removed) do not necessarily match
 byte-for-byte on the wire.

 Therefore, it is not possible to ensure that the DNS response payload
 is reconstructed byte-for-byte from C-DNS data. However, it can at
 least, in principle, be reconstructed to have the correct payload
 length (since the original response length is captured) if there is

Dickinson, et al. Expires June 15, 2019 [Page 38]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 enough knowledge of the commonly implemented name compression
 algorithms. For example, a simplistic approach would be to try each
 algorithm in turn to see if it reproduces the original length,
 stopping at the first match. This would not guarantee the correct
 algorithm has been used as it is possible to match the length whilst
 still not matching the on the wire bytes but, without further
 information added to the C-DNS data, this is the best that can be
 achieved.

 Appendix B presents an example of two different compression
 algorithms used by well-known name server software.

10. Data collection

 This section describes a non-normative proposed algorithm for the
 processing of a captured stream of DNS queries and responses and
 production of a stream of query/response items, matching queries/
 responses where possible.

 For the purposes of this discussion, it is assumed that the input has
 been pre-processed such that:

 1. All IP fragmentation reassembly, TCP stream reassembly, and so
 on, has already been performed.

 2. Each message is associated with transport metadata required to
 generate the Primary ID (see Section 10.2.1).

 3. Each message has a well-formed DNS header of 12 bytes and (if
 present) the first Question in the Question section can be parsed
 to generate the Secondary ID (see below). As noted earlier, this
 requirement can result in a malformed query being removed in the
 pre-processing stage, but the correctly formed response with
 RCODE of FORMERR being present.

 DNS messages are processed in the order they are delivered to the
 implementation.

 It should be noted that packet capture libraries do not necessarily
 provide packets in strict chronological order. This can, for
 example, arise on multi-core platforms where packets arriving at a
 network device are processed by different cores. On systems where
 this behaviour has been observed, the timestamps associated with each
 packet are consistent; queries always have a timestamp prior to the
 response timestamp. However, the order in which these packets appear
 in the packet capture stream is not necessarily strictly
 chronological; a response can appear in the capture stream before the

Dickinson, et al. Expires June 15, 2019 [Page 39]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 query that provoked the response. For this discussion, this non-
 chronological delivery is termed "skew".

 In the presence of skew, a response packets can arrive for matching
 before the corresponding query. To avoid generating false instances
 of responses without a matching query, and queries without a matching
 response, the matching algorithm must take account of the possibility
 of skew.

10.1. Matching algorithm

 A schematic representation of the algorithm for matching Q/R data
 items is shown in Figure 3. It takes individual DNS query or
 response messages as input, and outputs matched Q/R items. The
 numbers in the figure identify matching operations listed in Table 1.
 Specific details of the algorithm, for example queues, timers and
 identifiers, are given in the following sections.

Dickinson, et al. Expires June 15, 2019 [Page 40]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 .----------------------.
 | Process next message |<------------------+
 ‘----------------------’ |
 | |
 +------------------------------+ |
 | Generate message identifiers | |
 +------------------------------+ |
 | |
 Response | Query |
 +--------------< >---------------+ |
 | | |
 +--------------------+ +--------------------+ |
 | Find earliest QR | | Create QR item [2] | |
 | item in OFIFO [1] | +--------------------+ |
 +--------------------+ | |
 | +---------------+ |
 Match | No match | Append new QR | |
 +--------< >------+ | item to OFIFO | |
 | | +---------------+ |
 +-----------+ +--------+ | |
 | Update QR | | Add to | +-------------------+ |
 | item [3] | | RFIFO | | Find earliest QR | |
 +-----------+ +--------+ | item in RFIFO [1] | |
 | | +-------------------+ |
 +-----------------+ | |
 | | | | |
 | +----------------+ Match | No match |
 | | Remove R |-------< >-----+ |
 | | from RFIFO [3] | | |
 | +----------------+ | |
 | | | |
 +--------------+-----------------------+ |
 | |
 +--+ |
 | Update all timed out (QT) OFIFO QR items [4] | |
 +--+ |
 | |
 +--------------------------------+ |
 | Remove all timed out (ST) R | |
 | from RFIFO, create QR item [5] | |
 +--------------------------------+ |
 ____________________|_______________________ |
 / / |
 / Remove all consecutive done entries from /-------+
 / front of OFIFO for further processing /
 /__/

 Figure 3: Query/Response matching algorithm

Dickinson, et al. Expires June 15, 2019 [Page 41]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 +-----+---+
 | Ref | Operation |
 +-----+---+
 | [1] | Find earliest QR item in FIFO where: |
 | | * QR.done = false |
 | | * QR.Q.PrimaryID == R.PrimaryID |
 | | and, if both QR.Q and R have SecondaryID: |
 | | * QR.Q.SecondaryID == R.SecondaryID |
 | | |
 | [2] | Set: |
 | | QR.Q := Q |
 | | QR.R := nil |
 | | QR.done := false |
 | | |
 | [3] | Set: |
 | | QR.R := R |
 | | QR.done := true |
 | | |
 | [4] | Set: |
 | | QR.done := true |
 | | |
 | [5] | Set: |
 | | QR.Q := nil |
 | | QR.R := R |
 | | QR.done := true |
 +-----+---+

 Table 1: Operations used in the matching algorithm

10.2. Message identifiers

10.2.1. Primary ID (required)

 A Primary ID is constructed for each message. It is composed of the
 following data:

 1. Source IP Address

 2. Destination IP Address

 3. Source Port

 4. Destination Port

 5. Transport

 6. DNS Message ID

Dickinson, et al. Expires June 15, 2019 [Page 42]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

10.2.2. Secondary ID (optional)

 If present, the first Question in the Question section is used as a
 secondary ID for each message. Note that there may be well formed
 DNS queries that have a QDCOUNT of 0, and some responses may have a
 QDCOUNT of 0 (for example, responses with RCODE=FORMERR or NOTIMP).
 In this case the secondary ID is not used in matching.

10.3. Algorithm parameters

 1. Query timeout, QT. A query arrives with timestamp t1. If no
 response matching that query has arrived before other input
 arrives timestamped later than (t1 + QT), a query/response item
 containing only a query item is recorded. The query timeout
 value is typically of the order of 5 seconds.

 2. Skew timeout, ST. A response arrives with timestamp t2. If a
 response has not been matched by a query before input arrives
 timestamped later than (t2 + ST), a query/response item
 containing only a response is recorded. The skew timeout value
 is typically a few microseconds.

10.4. Algorithm requirements

 The algorithm is designed to handle the following input data:

 1. Multiple queries with the same Primary ID (but different
 Secondary ID) arriving before any responses for these queries are
 seen.

 2. Multiple queries with the same Primary and Secondary ID arriving
 before any responses for these queries are seen.

 3. Queries for which no later response can be found within the
 specified timeout.

 4. Responses for which no previous query can be found within the
 specified timeout.

10.5. Algorithm limitations

 For cases 1 and 2 listed in the above requirements, it is not
 possible to unambiguously match queries with responses. This
 algorithm chooses to match to the earliest query with the correct
 Primary and Secondary ID.

Dickinson, et al. Expires June 15, 2019 [Page 43]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

10.6. Workspace

 The algorithm employs two FIFO queues:

 o OFIFO, an output FIFO containing Q/R items in chronological order,

 o RFIFO, a FIFO holding responses without a matching query in order
 of arrival.

10.7. Output

 The output is a list of Q/R data items. Both the Query and Response
 elements are optional in these items, therefore Q/R data items have
 one of three types of content:

 1. A matched pair of query and response messages

 2. A query message with no response

 3. A response message with no query

 The timestamp of a list item is that of the query for cases 1 and 2
 and that of the response for case 3.

10.8. Post processing

 When ending capture, all items in the responses FIFO are timed out
 immediately, generating response-only entries to the Q/R data item
 FIFO. These and all other remaining entries in the Q/R data item
 FIFO should be treated as timed out queries.

11. Implementation guidance

 Whilst this document makes no specific recommendations with respect
 to Canonical CBOR (see Section 3.9 of [RFC7049]) the following
 guidance may be of use to implementors.

 Adherence to the first two rules given in Section 3.9 of [RFC7049]
 will minimise file sizes.

 Adherence to the last two rules given in Section 3.9 of [RFC7049] for
 all maps and arrays would unacceptably constrain implementations, for
 example, in the use case of real-time data collection in constrained
 environments where outputting block tables after query/response data
 and allowing indefinite length maps and arrays could reduce memory
 requirements.

Dickinson, et al. Expires June 15, 2019 [Page 44]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

11.1. Optional data

 When decoding C-DNS data some of the items required for a particular
 function that the consumer wishes to perform may be missing.
 Consumers should consider providing configurable default values to be
 used in place of the missing values in their output.

11.2. Trailing bytes

 A DNS query message in a UDP or TCP payload can be followed by some
 additional (spurious) bytes, which are not stored in C-DNS.

 When DNS traffic is sent over TCP, each message is prefixed with a
 two byte length field which gives the message length, excluding the
 two byte length field. In this context, trailing bytes can occur in
 two circumstances with different results:

 1. The number of bytes consumed by fully parsing the message is less
 than the number of bytes given in the length field (i.e. the
 length field is incorrect and too large). In this case, the
 surplus bytes are considered trailing bytes in an analogous
 manner to UDP and recorded as such. If only this case occurs it
 is possible to process a packet containing multiple DNS messages
 where one or more has trailing bytes.

 2. There are surplus bytes between the end of a well-formed message
 and the start of the length field for the next message. In this
 case the first of the surplus bytes will be processed as the
 first byte of the next length field, and parsing will proceed
 from there, almost certainly leading to the next and any
 subsequent messages in the packet being considered malformed.
 This will not generate a trailing bytes record for the processed
 well-formed message.

11.3. Limiting collection of RDATA

 Implementations should consider providing a configurable maximum
 RDATA size for capture, for example, to avoid memory issues when
 confronted with large XFR records.

11.4. Timestamps

 The preamble to each block includes a timestamp of the earliest
 record in the block. As described in Section 7.5.1, the timestamp is
 an array of 2 unsigned integers. The first is a POSIX "time_t"
 [posix-time]. Consumers of C-DNS should be aware of this as it
 excludes leap seconds and therefore may cause minor anomalies in the
 data e.g. when calculating query throughput.

Dickinson, et al. Expires June 15, 2019 [Page 45]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

12. Implementation status

 [Note to RFC Editor: please remove this section and reference to
 [RFC7942] prior to publication.]

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC7942], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

12.1. DNS-STATS Compactor

 ICANN/Sinodun IT have developed an open source implementation called
 DNS-STATS Compactor. The Compactor is a suite of tools which can
 capture DNS traffic (from either a network interface or a PCAP file)
 and store it in the Compacted-DNS (C-DNS) file format. PCAP files
 for the captured traffic can also be reconstructed. See Compactor
 [1].

 This implementation:

 o covers the whole of the specification described in the -03 draft
 with the exception of support for malformed messages and pico
 second time resolution. (Note: this implementation does allow
 malformed messages to be recorded separately in a PCAP file).

 o is released under the Mozilla Public License Version 2.0.

 o has a users mailing list available, see dns-stats-users [2].

 There is also some discussion of issues encountered during
 development available at Compressing Pcap Files [3] and Packet
 Capture [4].

Dickinson, et al. Expires June 15, 2019 [Page 46]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 This information was last updated on 3rd of May 2018.

13. IANA considerations

 IANA is requested to create a registry "C-DNS DNS Capture Format"
 containing the subregistries defined in sections Section 13.1 to
 Section 13.4 inclusive.

 In all cases, new entries may be added to the subregistries by Expert
 Review as defined in [RFC8126]. Experts are expected to exercise
 their own expert judgement, and should consider the following general
 guidelines in addition to any guidelines given particular to a
 subregistry.

 o There should be a real and compelling use for any new value.

 o Values assigned should be carefully chosen to minimise storage
 requirements for common cases.

13.1. Transport types

 IANA is requested to create a registry "C-DNS Transports" of C-DNS
 transport type identifiers. The primary purpose of this registry is
 to provide unique identifiers for all transports used for DNS
 queries.

 The following note is included in this registry: "In version 1.0 of
 C-DNS [[this RFC]], there is a field to identify the type of DNS
 transport. This field is 4 bits in size."

 The initial contents of the registry are as follows - see sections
 Section 7.5.3.2 and Section 7.5.3.5 of [[this RFC]]:

 +------------+------------+--------------+
 | Identifier | Name | Reference |
 +------------+------------+--------------+
 | 0 | UDP | [[this RFC]] |
 | 1 | TCP | [[this RFC]] |
 | 2 | TLS | [[this RFC]] |
 | 3 | DTLS | [[this RFC]] |
 | 4 | DoH | [[this RFC]] |
 | 5-15 | Unassigned | |
 +------------+------------+--------------+

 Expert reviewers should take the following points into consideration:

 o Is the requested DNS transport described by a Standards Track RFC?

Dickinson, et al. Expires June 15, 2019 [Page 47]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

13.2. Data storage flags

 IANA is requested to create a registry "C-DNS Storage Flags" of C-DNS
 data storage flags. The primary purpose of this registry is to
 provide indicators giving hints on processing of the data stored.

 The following note is included in this registry: "In version 1.0 of
 C-DNS [[this RFC]], there is a field describing attributes of the
 data recorded. The field is a CBOR [RFC7049] unsigned integer
 holding bit flags."

 The initial contents of the registry are as follows - see section
 Section 7.4.1.1 of [[this RFC]]:

 +------+------------------+-----------------------------+-----------+
 | Bit | Name | Description | Reference |
 +------+------------------+-----------------------------+-----------+
0	anonymised-data	The data has been	[[this
		anonymised.	RFC]]
1	sampled-data	The data is sampled data.	[[this
			RFC]]
2	normalized-names	Names in the data have been	[[this
		normalized.	RFC]]
3-63	Unassigned		
 +------+------------------+-----------------------------+-----------+

13.3. Response processing flags

 IANA is requested to create a registry "C-DNS Response Flags" of
 C-DNS response processing flags. The primary purpose of this
 registry is to provide indicators giving hints on the generation of a
 particular response.

 The following note is included in this registry: "In version 1.0 of
 C-DNS [[this RFC]], there is a field describing attributes of the
 responses recorded. The field is a CBOR [RFC7049] unsigned integer
 holding bit flags."

 The initial contents of the registry are as follows - see section
 Section 7.6.1 of [[this RFC]]:

 +------+------------+-------------------------------+--------------+
 | Bit | Name | Description | Reference |
 +------+------------+-------------------------------+--------------+
 | 0 | from-cache | The response came from cache. | [[this RFC]] |
 | 1-63 | Unassigned | | |
 +------+------------+-------------------------------+--------------+

Dickinson, et al. Expires June 15, 2019 [Page 48]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

13.4. AddressEvent types

 IANA is requested to create a registry "C-DNS Address Event Types" of
 C-DNS AddressEvent types. The primary purpose of this registry is to
 provide unique identifiers of different types of C-DNS address
 events, and so specify the contents of the optional companion field
 "ae-code" for each type.

 The following note is included in this registry: "In version 1.0 of
 C-DNS [[this RFC]], there is a field identify types of the events
 related to client addresses. This field is a CBOR [RFC7049] unsigned
 integer. There is a related optional field "ae-code", which, if
 present, holds an additional CBOR unsigned integer giving additional
 information specific to the event type."

 The initial contents of the registry are as follows - see section
 Section 7.7:

 +------------+----------------------+-------------------+-----------+
 | Identifier | Event Type | ae-code contents | Reference |
 +------------+----------------------+-------------------+-----------+
0	TCP reset	None	[[this
			RFC]]
1	ICMP time exceeded	ICMP code	[[this
		[icmpcodes]	RFC]]
2	ICMP destination	ICMP code	[[this
	unreachable	[icmpcodes]	RFC]]
3	ICMPv6 time exceeded	ICMPv6 code	[[this
		[icmp6codes]	RFC]]
4	ICMPv6 destination	ICMPv6 code	[[this
	unreachable	[icmp6codes]	RFC]]
5	ICMPv6 packet too	ICMPv6 code	[[this
	big	[icmp6codes]	RFC]]
>5	Unassigned		
 +------------+----------------------+-------------------+-----------+

 Expert reviewers should take the following points into consideration:

 o "ae-code" contents must be defined for a type, or if not
 appropriate specified as "None". A specification of "None"
 requires less storage, and is therefore preferred.

14. Security considerations

 Any control interface MUST perform authentication and encryption.

 Any data upload MUST be authenticated and encrypted.

Dickinson, et al. Expires June 15, 2019 [Page 49]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

15. Privacy considerations

 Storage of DNS traffic by operators in PCAP and other formats is a
 long standing and widespread practice. Section 2.5 of
 [I-D.bortzmeyer-dprive-rfc7626-bis] is an analysis of the risks to
 Internet users of the storage of DNS traffic data in servers
 (recursive resolvers, authoritative and rogue servers).

 Section 5.2 of [I-D.dickinson-dprive-bcp-op] describes mitigations
 for those risks for data stored on recursive resolvers (but which
 could by extension apply to authoritative servers). These include
 data handling practices and methods for data minimization, IP address
 pseudonymization and anonymization. Appendix B of that document
 presents an analysis of 7 published anonymization processes. In
 addition, RSSAC have recently published RSSAC04: [5] "
 Recommendations on Anonymization Processes for Source IP Addresses
 Submitted for Future Analysis".

 The above analyses consider full data capture (e.g using PCAP) as a
 baseline for privacy considerations and therefore this format
 specification introduces no new user privacy issues beyond those of
 full data capture (which are quite severe). It does provides
 mechanisms to selectively record only certain fields at the time of
 data capture to improve user privacy and to explicitly indicate that
 data is sampled and or anonymized. It also provide flags to indicate
 if data normalization has been performed; data normalization
 increases user privacy by reducing the potential for fingerprinting
 individuals, however, a trade-off is potentially reducing the
 capacity to identify attack traffic via query name signatures.
 Operators should carefully consider their operational requirements
 and privacy policies and SHOULD capture at source the minimum user
 data required to meet their needs.

16. Acknowledgements

 The authors wish to thank CZ.NIC, in particular Tomas Gavenciak, for
 many useful discussions on binary formats, compression and packet
 matching. Also Jan Vcelak and Wouter Wijngaards for discussions on
 name compression and Paul Hoffman for a detailed review of the
 document and the C-DNS CDDL.

 Thanks also to Robert Edmonds, Jerry Lundstroem, Richard Gibson,
 Stephane Bortzmeyer and many other members of DNSOP for review.

 Also, Miek Gieben for mmark [6]

Dickinson, et al. Expires June 15, 2019 [Page 50]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

17. Changelog

 draft-ietf-dnsop-dns-capture-format-10

 o Add IANA Considerations

 o Convert graph in C.6 to table

 draft-ietf-dnsop-dns-capture-format-09

 o Editorial changes arising from IESG review

 o *-transport-flags and may be mandatory in some configurations

 o Mark fields that are conditionally mandatory

 o Change ‘promisc’ flag CDDL data type to boolean

 o Add ranges to configuration quantities where appropriate

 draft-ietf-dnsop-dns-capture-format-08

 o Convert diagrams to ASCII

 o Describe versioning

 o Fix unused group warning in CDDL

 draft-ietf-dnsop-dns-capture-format-07

 o Resolve outstanding questions and TODOs

 o Make RR RDATA optional

 o Update matching diagram and explain skew

 o Add count of discarded messages to block statistics

 o Editorial clarifications and improvements

 draft-ietf-dnsop-dns-capture-format-06

 o Correct BlockParameters type to map

 o Make RR ttl optional

 o Add storage flag indicating name normalization

Dickinson, et al. Expires June 15, 2019 [Page 51]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 o Add storage parameter fields for sampling and anonymization
 methods

 o Editorial clarifications and improvements

 draft-ietf-dnsop-dns-capture-format-05

 o Make all data items in Q/R, QuerySignature and Malformed Message
 arrays optional

 o Re-structure the FilePreamble and ConfigurationParameters into
 BlockParameters

 o BlockParameters has separate Storage and Collection Parameters

 o Storage Parameters includes information on what optional fields
 are present, and flags specifying anonymization or sampling

 o Addresses can now be stored as prefixes.

 o Switch to using a variable sub-second timing granularity

 o Add response bailiwick and query response type

 o Add specifics of how to record malformed messages

 o Add implementation guidance

 o Improve terminology and naming consistency

 draft-ietf-dnsop-dns-capture-format-04

 o Correct query-d0 to query-do in CDDL

 o Clarify that map keys are unsigned integers

 o Add Type to Class/Type table

 o Clarify storage format in section 7.12

 draft-ietf-dnsop-dns-capture-format-03

 o Added an Implementation Status section

 draft-ietf-dnsop-dns-capture-format-02

 o Update qr_data_format.png to match CDDL

Dickinson, et al. Expires June 15, 2019 [Page 52]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 o Editorial clarifications and improvements

 draft-ietf-dnsop-dns-capture-format-01

 o Many editorial improvements by Paul Hoffman

 o Included discussion of malformed message handling

 o Improved Appendix C on Comparison of Binary Formats

 o Now using C-DNS field names in the tables in section 8

 o A handful of new fields included (CDDL updated)

 o Timestamps now include optional picoseconds

 o Added details of block statistics

 draft-ietf-dnsop-dns-capture-format-00

 o Changed dnstap.io to dnstap.info

 o qr_data_format.png was cut off at the bottom

 o Update authors address

 o Improve wording in Abstract

 o Changed DNS-STAT to C-DNS in CDDL

 o Set the format version in the CDDL

 o Added a TODO: Add block statistics

 o Added a TODO: Add extend to support pico/nano. Also do this for
 Time offset and Response delay

 o Added a TODO: Need to develop optional representation of malformed
 messages within C-DNS and what this means for packet matching.
 This may influence which fields are optional in the rest of the
 representation.

 o Added section on design goals to Introduction

 o Added a TODO: Can Class be optimised? Should a class of IN be
 inferred if not present?

 draft-dickinson-dnsop-dns-capture-format-00

Dickinson, et al. Expires June 15, 2019 [Page 53]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 o Initial commit

18. References

18.1. Normative References

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-
 cddl-06 (work in progress), November 2018.

 [pcap-filter]
 tcpdump.org, "Manpage of PCAP-FILTER", 2017,
 <http://www.tcpdump.org/manpages/pcap-filter.7.html>.

 [pcap-options]
 tcpdump.org, "Manpage of PCAP", 2018,
 <http://www.tcpdump.org/manpages/pcap.3pcap.html>.

 [posix-time]
 The Open Group, "Section 4.16, Base Definitions, Standard
 for Information Technology - Portable Operating System
 Interface (POSIX(R)) Base Specifications, Issue 7", IEEE
 Standard 1003.1 2017 Edition,
 DOI 10.1109/IEEESTD.2018.8277153, 2017.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
 RFC 792, DOI 10.17487/RFC0792, September 1981,
 <https://www.rfc-editor.org/info/rfc792>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

Dickinson, et al. Expires June 15, 2019 [Page 54]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,
 RFC 4443, DOI 10.17487/RFC4443, March 2006,
 <https://www.rfc-editor.org/info/rfc4443>.

 [RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8484] Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
 <https://www.rfc-editor.org/info/rfc8484>.

18.2. Informative References

 [ditl] DNS-OARC, "DITL", 2016,
 <https://www.dns-oarc.net/oarc/data/ditl>.

 [dnscap] DNS-OARC, "DNSCAP", 2016,
 <https://www.dns-oarc.net/tools/dnscap>.

 [dnstap] dnstap.info, "dnstap", 2016, <http://dnstap.info/>.

 [dsc] Wessels, D. and J. Lundstrom, "DSC", 2016,
 <https://www.dns-oarc.net/tools/dsc>.

Dickinson, et al. Expires June 15, 2019 [Page 55]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 [I-D.bortzmeyer-dprive-rfc7626-bis]
 Bortzmeyer, S. and S. Dickinson, "DNS Privacy
 Considerations", draft-bortzmeyer-dprive-rfc7626-bis-01
 (work in progress), July 2018.

 [I-D.daley-dnsxml]
 Daley, J., Morris, S., and J. Dickinson, "dnsxml - A
 standard XML representation of DNS data", draft-daley-
 dnsxml-00 (work in progress), July 2013.

 [I-D.dickinson-dprive-bcp-op]
 Dickinson, S., Overeinder, B., Rijswijk-Deij, R., and A.
 Mankin, "Recommendations for DNS Privacy Service
 Operators", draft-dickinson-dprive-bcp-op-01 (work in
 progress), July 2018.

 [icmp6codes]
 IANA, "ICMPv6 "Code" Fields", 2018,
 <https://www.iana.org/assignments/icmpv6-parameters/
 icmpv6-parameters.xhtml#icmpv6-parameters-3>.

 [icmpcodes]
 IANA, "Code Fields", 2018,
 <https://www.iana.org/assignments/icmp-parameters/
 icmp-parameters.xhtml#icmp-parameters-codes>.

 [IEEE802.1Q]
 IEEE, "IEEE Standard for Local and metropolitan area
 networks -- Bridges and Bridged Networks",
 DOI 10.1109/IEEESTD.2014.6991462, 2014.

 [opcodes] IANA, "DNS OpCodes", 2018,
 <http://www.iana.org/assignments/dns-parameters/
 dns-parameters.xhtml#dns-parameters-5>.

 [packetq] .SE - The Internet Infrastructure Foundation, "PacketQ",
 2014, <https://github.com/dotse/PacketQ>.

 [pcap] tcpdump.org, "PCAP", 2016, <http://www.tcpdump.org/>.

 [pcapng] Tuexen, M., Risso, F., Bongertz, J., Combs, G., and G.
 Harris, "pcap-ng", 2016,
 <https://github.com/pcapng/pcapng>.

 [rcodes] IANA, "DNS RCODEs", 2018,
 <http://www.iana.org/assignments/dns-parameters/
 dns-parameters.xhtml#dns-parameters-6>.

Dickinson, et al. Expires June 15, 2019 [Page 56]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,
 RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8427] Hoffman, P., "Representing DNS Messages in JSON",
 RFC 8427, DOI 10.17487/RFC8427, July 2018,
 <https://www.rfc-editor.org/info/rfc8427>.

 [rrclasses]
 IANA, "DNS CLASSes", 2018,
 <http://www.iana.org/assignments/dns-parameters/
 dns-parameters.xhtml#dns-parameters-2>.

 [rrtypes] IANA, "Resource Record (RR) TYPEs", 2018,
 <http://www.iana.org/assignments/dns-parameters/
 dns-parameters.xhtml#dns-parameters-4>.

18.3. URIs

 [1] https://github.com/dns-stats/compactor/wiki

 [2] https://mm.dns-stats.org/mailman/listinfo/dns-stats-users

 [3] https://www.sinodun.com/2017/06/compressing-pcap-files/

 [4] https://www.sinodun.com/2017/06/more-on-debian-jessieubuntu-
 trusty-packet-capture-woes/

 [5] https://www.icann.org/en/system/files/files/rssac-
 040-07aug18-en.pdf

 [6] https://github.com/miekg/mmark

 [7] https://www.nlnetlabs.nl/projects/nsd/

 [8] https://www.knot-dns.cz/

 [9] https://avro.apache.org/

 [10] https://developers.google.com/protocol-buffers/

 [11] http://cbor.io

Dickinson, et al. Expires June 15, 2019 [Page 57]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 [12] https://github.com/kubo/snzip

 [13] http://google.github.io/snappy/

 [14] http://lz4.github.io/lz4/

 [15] http://www.gzip.org/

 [16] http://facebook.github.io/zstd/

 [17] http://tukaani.org/xz/

Appendix A. CDDL

 This appendix gives a CDDL [I-D.ietf-cbor-cddl] specification for
 C-DNS.

 CDDL does not permit a range of allowed values to be specified for a
 bitfield. Where necessary, those values are given as a CDDL group,
 but the group definition is commented out to prevent CDDL tooling
 from warning that the group is unused.

 ; CDDL specification of the file format for C-DNS,
 ; which describes a collection of DNS messages and
 ; traffic meta-data.

 ;
 ; The overall structure of a file.
 ;
 File = [
 file-type-id : "C-DNS",
 file-preamble : FilePreamble,
 file-blocks : [* Block],
]

 ;
 ; The file preamble.
 ;
 FilePreamble = {
 major-format-version => 1,
 minor-format-version => 0,
 ? private-version => uint,
 block-parameters => [+ BlockParameters],
 }
 major-format-version = 0
 minor-format-version = 1
 private-version = 2
 block-parameters = 3

Dickinson, et al. Expires June 15, 2019 [Page 58]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 BlockParameters = {
 storage-parameters => StorageParameters,
 ? collection-parameters => CollectionParameters,
 }
 storage-parameters = 0
 collection-parameters = 1

 IPv6PrefixLength = 1..128
 IPv4PrefixLength = 1..32
 OpcodeRange = 0..15
 RRTypeRange = 0..65535

 StorageParameters = {
 ticks-per-second => uint,
 max-block-items => uint,
 storage-hints => StorageHints,
 opcodes => [+ OpcodeRange],
 rr-types => [+ RRTypeRange],
 ? storage-flags => StorageFlags,
 ? client-address-prefix-ipv4 => IPv4PrefixLength,
 ? client-address-prefix-ipv6 => IPv6PrefixLength,
 ? server-address-prefix-ipv4 => IPv4PrefixLength,
 ? server-address-prefix-ipv6 => IPv6PrefixLength,
 ? sampling-method => tstr,
 ? anonymisation-method => tstr,
 }
 ticks-per-second = 0
 max-block-items = 1
 storage-hints = 2
 opcodes = 3
 rr-types = 4
 storage-flags = 5
 client-address-prefix-ipv4 = 6
 client-address-prefix-ipv6 = 7
 server-address-prefix-ipv4 = 8
 server-address-prefix-ipv6 = 9
 sampling-method = 10
 anonymisation-method = 11

 ; A hint indicates if the collection method will output the
 ; item or will ignore the item if present.
 StorageHints = {
 query-response-hints => QueryResponseHints,
 query-response-signature-hints =>
 QueryResponseSignatureHints,
 rr-hints => RRHints,
 other-data-hints => OtherDataHints,
 }

Dickinson, et al. Expires June 15, 2019 [Page 59]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 query-response-hints = 0
 query-response-signature-hints = 1
 rr-hints = 2
 other-data-hints = 3

 QueryResponseHintValues = &(
 time-offset : 0,
 client-address-index : 1,
 client-port : 2,
 transaction-id : 3,
 qr-signature-index : 4,
 client-hoplimit : 5,
 response-delay : 6,
 query-name-index : 7,
 query-size : 8,
 response-size : 9,
 response-processing-data : 10,
 query-question-sections : 11, ; Second & subsequent
 ; questions
 query-answer-sections : 12,
 query-authority-sections : 13,
 query-additional-sections : 14,
 response-answer-sections : 15,
 response-authority-sections : 16,
 response-additional-sections : 17,
)
 QueryResponseHints = uint .bits QueryResponseHintValues

 QueryResponseSignatureHintValues = &(
 server-address : 0,
 server-port : 1,
 qr-transport-flags : 2,
 qr-type : 3,
 qr-sig-flags : 4,
 query-opcode : 5,
 dns-flags : 6,
 query-rcode : 7,
 query-class-type : 8,
 query-qdcount : 9,
 query-ancount : 10,
 query-arcount : 11,
 query-nscount : 12,
 query-edns-version : 13,
 query-udp-size : 14,
 query-opt-rdata : 15,
 response-rcode : 16,
)
 QueryResponseSignatureHints =

Dickinson, et al. Expires June 15, 2019 [Page 60]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 uint .bits QueryResponseSignatureHintValues

 RRHintValues = &(
 ttl : 0,
 rdata-index : 1,
)
 RRHints = uint .bits RRHintValues

 OtherDataHintValues = &(
 malformed-messages : 0,
 address-event-counts : 1,
)
 OtherDataHints = uint .bits OtherDataHintValues

 StorageFlagValues = &(
 anonymised-data : 0,
 sampled-data : 1,
 normalized-names : 2,
)
 StorageFlags = uint .bits StorageFlagValues

 ; Hints for later analysis.
 VLANIdRange = 1..4094

 CollectionParameters = {
 ? query-timeout => uint,
 ? skew-timeout => uint,
 ? snaplen => uint,
 ? promisc => bool,
 ? interfaces => [+ tstr],
 ? server-addresses => [+ IPAddress],
 ? vlan-ids => [+ VLANIdRange],
 ? filter => tstr,
 ? generator-id => tstr,
 ? host-id => tstr,
 }
 query-timeout = 0
 skew-timeout = 1
 snaplen = 2
 promisc = 3
 interfaces = 4
 server-addresses = 5
 vlan-ids = 6
 filter = 7
 generator-id = 8
 host-id = 9

 ;

Dickinson, et al. Expires June 15, 2019 [Page 61]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 ; Data in the file is stored in Blocks.
 ;
 Block = {
 block-preamble => BlockPreamble,
 ? block-statistics => BlockStatistics, ; Much of this
 ; could be derived
 ? block-tables => BlockTables,
 ? query-responses => [+ QueryResponse],
 ? address-event-counts => [+ AddressEventCount],
 ? malformed-messages => [+ MalformedMessage],
 }
 block-preamble = 0
 block-statistics = 1
 block-tables = 2
 query-responses = 3
 address-event-counts = 4
 malformed-messages = 5

 ;
 ; The (mandatory) preamble to a block.
 ;
 BlockPreamble = {
 ? earliest-time => Timestamp,
 ? block-parameters-index => uint .default 0,
 }
 earliest-time = 0
 block-parameters-index = 1

 ; Ticks are subsecond intervals. The number of ticks in a second is
 ; file/block metadata. Signed and unsigned tick types are defined.
 ticks = int
 uticks = uint

 Timestamp = [
 timestamp-secs : uint,
 timestamp-uticks : uticks,
]

 ;
 ; Statistics about the block contents.
 ;
 BlockStatistics = {
 ? processed-messages => uint,
 ? qr-data-items => uint,
 ? unmatched-queries => uint,
 ? unmatched-responses => uint,
 ? discarded-opcode => uint,
 ? malformed-items => uint,

Dickinson, et al. Expires June 15, 2019 [Page 62]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 }
 processed-messages = 0
 qr-data-items = 1
 unmatched-queries = 2
 unmatched-responses = 3
 discarded-opcode = 4
 malformed-items = 5

 ;
 ; Tables of common data referenced from records in a block.
 ;
 BlockTables = {
 ? ip-address => [+ IPAddress],
 ? classtype => [+ ClassType],
 ? name-rdata => [+ bstr], ; Holds both Names
 ; and RDATA
 ? qr-sig => [+ QueryResponseSignature],
 ? QuestionTables,
 ? RRTables,
 ? malformed-message-data => [+ MalformedMessageData],
 }
 ip-address = 0
 classtype = 1
 name-rdata = 2
 qr-sig = 3
 qlist = 4
 qrr = 5
 rrlist = 6
 rr = 7
 malformed-message-data = 8

 IPv4Address = bstr .size 4
 IPv6Address = bstr .size 16
 IPAddress = IPv4Address / IPv6Address

 ClassType = {
 type => uint,
 class => uint,
 }
 type = 0
 class = 1

 QueryResponseSignature = {
 ? server-address-index => uint,
 ? server-port => uint,
 ? qr-transport-flags => QueryResponseTransportFlags,
 ? qr-type => QueryResponseType,
 ? qr-sig-flags => QueryResponseFlags,

Dickinson, et al. Expires June 15, 2019 [Page 63]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 ? query-opcode => uint,
 ? qr-dns-flags => DNSFlags,
 ? query-rcode => uint,
 ? query-classtype-index => uint,
 ? query-qd-count => uint,
 ? query-an-count => uint,
 ? query-ns-count => uint,
 ? query-ar-count => uint,
 ? edns-version => uint,
 ? udp-buf-size => uint,
 ? opt-rdata-index => uint,
 ? response-rcode => uint,
 }
 server-address-index = 0
 server-port = 1
 qr-transport-flags = 2
 qr-type = 3
 qr-sig-flags = 4
 query-opcode = 5
 qr-dns-flags = 6
 query-rcode = 7
 query-classtype-index = 8
 query-qd-count = 9
 query-an-count = 10
 query-ns-count = 12
 query-ar-count = 12
 edns-version = 13
 udp-buf-size = 14
 opt-rdata-index = 15
 response-rcode = 16

 ; Transport gives the values that may appear in bits 1..4 of
 ; TransportFlags. There is currently no way to express this in
 ; CDDL, so Transport is unused. To avoid confusion when used
 ; with CDDL tools, it is commented out.
 ;
 ; Transport = &(
 ; udp : 0,
 ; tcp : 1,
 ; tls : 2,
 ; dtls : 3,
 ; doh : 4,
 ;)

 TransportFlagValues = &(
 ip-version : 0, ; 0=IPv4, 1=IPv6
) / (1..4)
 TransportFlags = uint .bits TransportFlagValues

Dickinson, et al. Expires June 15, 2019 [Page 64]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 QueryResponseTransportFlagValues = &(
 query-trailingdata : 5,
) / TransportFlagValues
 QueryResponseTransportFlags =
 uint .bits QueryResponseTransportFlagValues

 QueryResponseType = &(
 stub : 0,
 client : 1,
 resolver : 2,
 auth : 3,
 forwarder : 4,
 tool : 5,
)

 QueryResponseFlagValues = &(
 has-query : 0,
 has-reponse : 1,
 query-has-opt : 2,
 response-has-opt : 3,
 query-has-no-question : 4,
 response-has-no-question: 5,
)
 QueryResponseFlags = uint .bits QueryResponseFlagValues

 DNSFlagValues = &(
 query-cd : 0,
 query-ad : 1,
 query-z : 2,
 query-ra : 3,
 query-rd : 4,
 query-tc : 5,
 query-aa : 6,
 query-do : 7,
 response-cd: 8,
 response-ad: 9,
 response-z : 10,
 response-ra: 11,
 response-rd: 12,
 response-tc: 13,
 response-aa: 14,
)
 DNSFlags = uint .bits DNSFlagValues

 QuestionTables = (
 qlist => [+ QuestionList],
 qrr => [+ Question]
)

Dickinson, et al. Expires June 15, 2019 [Page 65]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 QuestionList = [+ uint] ; Index of Question

 Question = { ; Second and subsequent questions
 name-index => uint, ; Index to a name in the
 ; name-rdata table
 classtype-index => uint,
 }
 name-index = 0
 classtype-index = 1

 RRTables = (
 rrlist => [+ RRList],
 rr => [+ RR]
)

 RRList = [+ uint] ; Index of RR

 RR = {
 name-index => uint, ; Index to a name in the
 ; name-rdata table
 classtype-index => uint,
 ? ttl => uint,
 ? rdata-index => uint, ; Index to RDATA in the
 ; name-rdata table
 }
 ; Other map key values already defined above.
 ttl = 2
 rdata-index = 3

 MalformedMessageData = {
 ? server-address-index => uint,
 ? server-port => uint,
 ? mm-transport-flags => TransportFlags,
 ? mm-payload => bstr,
 }
 ; Other map key values already defined above.
 mm-transport-flags = 2
 mm-payload = 3

 ;
 ; A single query/response pair.
 ;
 QueryResponse = {
 ? time-offset => uticks, ; Time offset from
 ; start of block
 ? client-address-index => uint,
 ? client-port => uint,
 ? transaction-id => uint,

Dickinson, et al. Expires June 15, 2019 [Page 66]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 ? qr-signature-index => uint,
 ? client-hoplimit => uint,
 ? response-delay => ticks,
 ? query-name-index => uint,
 ? query-size => uint, ; DNS size of query
 ? response-size => uint, ; DNS size of response
 ? response-processing-data => ResponseProcessingData,
 ? query-extended => QueryResponseExtended,
 ? response-extended => QueryResponseExtended,
 }
 time-offset = 0
 client-address-index = 1
 client-port = 2
 transaction-id = 3
 qr-signature-index = 4
 client-hoplimit = 5
 response-delay = 6
 query-name-index = 7
 query-size = 8
 response-size = 9
 response-processing-data = 10
 query-extended = 11
 response-extended = 12

 ResponseProcessingData = {
 ? bailiwick-index => uint,
 ? processing-flags => ResponseProcessingFlags,
 }
 bailiwick-index = 0
 processing-flags = 1

 ResponseProcessingFlagValues = &(
 from-cache : 0,
)
 ResponseProcessingFlags = uint .bits ResponseProcessingFlagValues

 QueryResponseExtended = {
 ? question-index => uint, ; Index of QuestionList
 ? answer-index => uint, ; Index of RRList
 ? authority-index => uint,
 ? additional-index => uint,
 }
 question-index = 0
 answer-index = 1
 authority-index = 2
 additional-index = 3

 ;

Dickinson, et al. Expires June 15, 2019 [Page 67]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 ; Address event data.
 ;
 AddressEventCount = {
 ae-type => &AddressEventType,
 ? ae-code => uint,
 ae-address-index => uint,
 ae-count => uint,
 }
 ae-type = 0
 ae-code = 1
 ae-address-index = 2
 ae-count = 3

 AddressEventType = (
 tcp-reset : 0,
 icmp-time-exceeded : 1,
 icmp-dest-unreachable : 2,
 icmpv6-time-exceeded : 3,
 icmpv6-dest-unreachable: 4,
 icmpv6-packet-too-big : 5,
)

 ;
 ; Malformed messages.
 ;
 MalformedMessage = {
 ? time-offset => uticks, ; Time offset from
 ; start of block
 ? client-address-index => uint,
 ? client-port => uint,
 ? message-data-index => uint,
 }
 ; Other map key values already defined above.
 message-data-index = 3

Appendix B. DNS Name compression example

 The basic algorithm, which follows the guidance in [RFC1035], is
 simply to collect each name, and the offset in the packet at which it
 starts, during packet construction. As each name is added, it is
 offered to each of the collected names in order of collection,
 starting from the first name. If labels at the end of the name can
 be replaced with a reference back to part (or all) of the earlier
 name, and if the uncompressed part of the name is shorter than any
 compression already found, the earlier name is noted as the
 compression target for the name.

Dickinson, et al. Expires June 15, 2019 [Page 68]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 The following tables illustrate the process. In an example packet,
 the first name is foo.example.

 +---+-------------+--------------+--------------------+
 | N | Name | Uncompressed | Compression Target |
 +---+-------------+--------------+--------------------+
 | 1 | foo.example | | |
 +---+-------------+--------------+--------------------+

 The next name added is bar.example. This is matched against
 foo.example. The example part of this can be used as a compression
 target, with the remaining uncompressed part of the name being bar.

 +---+-------------+--------------+-----------------------+
 | N | Name | Uncompressed | Compression Target |
 +---+-------------+--------------+-----------------------+
 | 1 | foo.example | | |
 | 2 | bar.example | bar | 1 + offset to example |
 +---+-------------+--------------+-----------------------+

 The third name added is www.bar.example. This is first matched
 against foo.example, and as before this is recorded as a compression
 target, with the remaining uncompressed part of the name being
 www.bar. It is then matched against the second name, which again can
 be a compression target. Because the remaining uncompressed part of
 the name is www, this is an improved compression, and so it is
 adopted.

 +---+-----------------+--------------+-----------------------+
 | N | Name | Uncompressed | Compression Target |
 +---+-----------------+--------------+-----------------------+
 | 1 | foo.example | | |
 | 2 | bar.example | bar | 1 + offset to example |
 | 3 | www.bar.example | www | 2 |
 +---+-----------------+--------------+-----------------------+

 As an optimization, if a name is already perfectly compressed (in
 other words, the uncompressed part of the name is empty), then no
 further names will be considered for compression.

B.1. NSD compression algorithm

 Using the above basic algorithm the packet lengths of responses
 generated by NSD [7] can be matched almost exactly. At the time of
 writing, a tiny number (<.01%) of the reconstructed packets had
 incorrect lengths.

Dickinson, et al. Expires June 15, 2019 [Page 69]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

B.2. Knot Authoritative compression algorithm

 The Knot Authoritative [8] name server uses different compression
 behavior, which is the result of internal optimization designed to
 balance runtime speed with compression size gains. In brief, and
 omitting complications, Knot Authoritative will only consider the
 QNAME and names in the immediately preceding RR section in an RRSET
 as compression targets.

 A set of smart heuristics as described below can be implemented to
 mimic this and while not perfect it produces output nearly, but not
 quite, as good a match as with NSD. The heuristics are:

 1. A match is only perfect if the name is completely compressed AND
 the TYPE of the section in which the name occurs matches the TYPE
 of the name used as the compression target.

 2. If the name occurs in RDATA:

 * If the compression target name is in a query, then only the
 first RR in an RRSET can use that name as a compression
 target.

 * The compression target name MUST be in RDATA.

 * The name section TYPE must match the compression target name
 section TYPE.

 * The compression target name MUST be in the immediately
 preceding RR in the RRSET.

 Using this algorithm less than 0.1% of the reconstructed packets had
 incorrect lengths.

B.3. Observed differences

 In sample traffic collected on a root name server around 2-4% of
 responses generated by Knot had different packet lengths to those
 produced by NSD.

Appendix C. Comparison of Binary Formats

 Several binary serialisation formats were considered, and for
 completeness were also compared to JSON.

 o Apache Avro [9]. Data is stored according to a pre-defined
 schema. The schema itself is always included in the data file.

Dickinson, et al. Expires June 15, 2019 [Page 70]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 Data can therefore be stored untagged, for a smaller serialisation
 size, and be written and read by an Avro library.

 * At the time of writing, Avro libraries are available for C,
 C++, C#, Java, Python, Ruby and PHP. Optionally tools are
 available for C++, Java and C# to generate code for encoding
 and decoding.

 o Google Protocol Buffers [10]. Data is stored according to a pre-
 defined schema. The schema is used by a generator to generate
 code for encoding and decoding the data. Data can therefore be
 stored untagged, for a smaller serialisation size. The schema is
 not stored with the data, so unlike Avro cannot be read with a
 generic library.

 * Code must be generated for a particular data schema to read and
 write data using that schema. At the time of writing, the
 Google code generator can currently generate code for encoding
 and decoding a schema for C++, Go, Java, Python, Ruby, C#,
 Objective-C, Javascript and PHP.

 o CBOR [11]. Defined in [RFC7049], this serialisation format is
 comparable to JSON but with a binary representation. It does not
 use a pre-defined schema, so data is always stored tagged.
 However, CBOR data schemas can be described using CDDL
 [I-D.ietf-cbor-cddl] and tools exist to verify data files conform
 to the schema.

 * CBOR is a simple format, and simple to implement. At the time
 of writing, the CBOR website lists implementations for 16
 languages.

 Avro and Protocol Buffers both allow storage of untagged data, but
 because they rely on the data schema for this, their implementation
 is considerably more complex than CBOR. Using Avro or Protocol
 Buffers in an unsupported environment would require notably greater
 development effort compared to CBOR.

 A test program was written which reads input from a PCAP file and
 writes output using one of two basic structures; either a simple
 structure, where each query/response pair is represented in a single
 record entry, or the C-DNS block structure.

 The resulting output files were then compressed using a variety of
 common general-purpose lossless compression tools to explore the
 compressibility of the formats. The compression tools employed were:

Dickinson, et al. Expires June 15, 2019 [Page 71]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 o snzip [12]. A command line compression tool based on the Google
 Snappy [13] library.

 o lz4 [14]. The command line compression tool from the reference C
 LZ4 implementation.

 o gzip [15]. The ubiquitous GNU zip tool.

 o zstd [16]. Compression using the Zstandard algorithm.

 o xz [17]. A popular compression tool noted for high compression.

 In all cases the compression tools were run using their default
 settings.

 Note that this draft does not mandate the use of compression, nor any
 particular compression scheme, but it anticipates that in practice
 output data will be subject to general-purpose compression, and so
 this should be taken into consideration.

 "test.pcap", a 662Mb capture of sample data from a root instance was
 used for the comparison. The following table shows the formatted
 size and size after compression (abbreviated to Comp. in the table
 headers), together with the task resident set size (RSS) and the user
 time taken by the compression. File sizes are in Mb, RSS in kb and
 user time in seconds.

 +-------------+-----------+-------+------------+-------+-----------+
 | Format | File size | Comp. | Comp. size | RSS | User time |
 +-------------+-----------+-------+------------+-------+-----------+
PCAP	661.87	snzip	212.48	2696	1.26
		lz4	181.58	6336	1.35
		gzip	153.46	1428	18.20
		zstd	87.07	3544	4.27
		xz	49.09	97416	160.79
JSON simple	4113.92	snzip	603.78	2656	5.72
		lz4	386.42	5636	5.25
		gzip	271.11	1492	73.00
		zstd	133.43	3284	8.68
		xz	51.98	97412	600.74
Avro simple	640.45	snzip	148.98	2656	0.90
		lz4	111.92	5828	0.99
		gzip	103.07	1540	11.52
		zstd	49.08	3524	2.50
		xz	22.87	97308	90.34

Dickinson, et al. Expires June 15, 2019 [Page 72]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

CBOR simple	764.82	snzip	164.57	2664	1.11
		lz4	120.98	5892	1.13
		gzip	110.61	1428	12.88
		zstd	54.14	3224	2.77
		xz	23.43	97276	111.48
PBuf simple	749.51	snzip	167.16	2660	1.08
		lz4	123.09	5824	1.14
		gzip	112.05	1424	12.75
		zstd	53.39	3388	2.76
		xz	23.99	97348	106.47
JSON block	519.77	snzip	106.12	2812	0.93
		lz4	104.34	6080	0.97
		gzip	57.97	1604	12.70
		zstd	61.51	3396	3.45
		xz	27.67	97524	169.10
Avro block	60.45	snzip	48.38	2688	0.20
		lz4	48.78	8540	0.22
		gzip	39.62	1576	2.92
		zstd	29.63	3612	1.25
		xz	18.28	97564	25.81
CBOR block	75.25	snzip	53.27	2684	0.24
		lz4	51.88	8008	0.28
		gzip	41.17	1548	4.36
		zstd	30.61	3476	1.48
		xz	18.15	97556	38.78
PBuf block	67.98	snzip	51.10	2636	0.24
		lz4	52.39	8304	0.24
		gzip	40.19	1520	3.63
		zstd	31.61	3576	1.40
		xz	17.94	97440	33.99
 +-------------+-----------+-------+------------+-------+-----------+

 The above results are discussed in the following sections.

C.1. Comparison with full PCAP files

 An important first consideration is whether moving away from PCAP
 offers significant benefits.

 The simple binary formats are typically larger than PCAP, even though
 they omit some information such as Ethernet MAC addresses. But not
 only do they require less CPU to compress than PCAP, the resulting
 compressed files are smaller than compressed PCAP.

Dickinson, et al. Expires June 15, 2019 [Page 73]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

C.2. Simple versus block coding

 The intention of the block coding is to perform data de-duplication
 on query/response records within the block. The simple and block
 formats above store exactly the same information for each query/
 response record. This information is parsed from the DNS traffic in
 the input PCAP file, and in all cases each field has an identifier
 and the field data is typed.

 The data de-duplication on the block formats show an order of
 magnitude reduction in the size of the format file size against the
 simple formats. As would be expected, the compression tools are able
 to find and exploit a lot of this duplication, but as the de-
 duplication process uses knowledge of DNS traffic, it is able to
 retain a size advantage. This advantage reduces as stronger
 compression is applied, as again would be expected, but even with the
 strongest compression applied the block formatted data remains around
 75% of the size of the simple format and its compression requires
 roughly a third of the CPU time.

C.3. Binary versus text formats

 Text data formats offer many advantages over binary formats,
 particularly in the areas of ad-hoc data inspection and extraction.
 It was therefore felt worthwhile to carry out a direct comparison,
 implementing JSON versions of the simple and block formats.

 Concentrating on JSON block format, the format files produced are a
 significant fraction of an order of magnitude larger than binary
 formats. The impact on file size after compression is as might be
 expected from that starting point; the stronger compression produces
 files that are 150% of the size of similarly compressed binary
 format, and require over 4x more CPU to compress.

C.4. Performance

 Concentrating again on the block formats, all three produce format
 files that are close to an order of magnitude smaller that the
 original "test.pcap" file. CBOR produces the largest files and Avro
 the smallest, 20% smaller than CBOR.

 However, once compression is taken into account, the size difference
 narrows. At medium compression (with gzip), the size difference is
 4%. Using strong compression (with xz) the difference reduces to 2%,
 with Avro the largest and Protocol Buffers the smallest, although
 CBOR and Protocol Buffers require slightly more compression CPU.

Dickinson, et al. Expires June 15, 2019 [Page 74]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 The measurements presented above do not include data on the CPU
 required to generate the format files. Measurements indicate that
 writing Avro requires 10% more CPU than CBOR or Protocol Buffers. It
 appears, therefore, that Avro’s advantage in compression CPU usage is
 probably offset by a larger CPU requirement in writing Avro.

C.5. Conclusions

 The above assessments lead us to the choice of a binary format file
 using blocking.

 As noted previously, this draft anticipates that output data will be
 subject to compression. There is no compelling case for one
 particular binary serialisation format in terms of either final file
 size or machine resources consumed, so the choice must be largely
 based on other factors. CBOR was therefore chosen as the binary
 serialisation format for the reasons listed in Section 5.

C.6. Block size choice

 Given the choice of a CBOR format using blocking, the question arises
 of what an appropriate default value for the maximum number of query/
 response pairs in a block should be. This has two components; what
 is the impact on performance of using different block sizes in the
 format file, and what is the impact on the size of the format file
 before and after compression.

 The following table addresses the performance question, showing the
 impact on the performance of a C++ program converting "test.pcap" to
 C-DNS. File size is in Mb, resident set size (RSS) in kb.

 +------------+-----------+--------+-----------+
 | Block size | File size | RSS | User time |
 +------------+-----------+--------+-----------+
 | 1000 | 133.46 | 612.27 | 15.25 |
 | 5000 | 89.85 | 676.82 | 14.99 |
 | 10000 | 76.87 | 752.40 | 14.53 |
 | 20000 | 67.86 | 750.75 | 14.49 |
 | 40000 | 61.88 | 736.30 | 14.29 |
 | 80000 | 58.08 | 694.16 | 14.28 |
 | 160000 | 55.94 | 733.84 | 14.44 |
 | 320000 | 54.41 | 799.20 | 13.97 |
 +------------+-----------+--------+-----------+

 Increasing block size, therefore, tends to increase maximum RSS a
 little, with no significant effect (if anything a small reduction) on
 CPU consumption.

Dickinson, et al. Expires June 15, 2019 [Page 75]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 The following table demonstrates the effect of increasing block size
 on output file size for different compressions.

 +------------+--------+-------+-------+-------+-------+-------+
 | Block size | None | snzip | lz4 | gzip | zstd | xz |
 +------------+--------+-------+-------+-------+-------+-------+
 | 1000 | 133.46 | 90.52 | 90.03 | 74.65 | 44.78 | 25.63 |
 | 5000 | 89.85 | 59.69 | 59.43 | 46.99 | 37.33 | 22.34 |
 | 10000 | 76.87 | 50.39 | 50.28 | 38.94 | 33.62 | 21.09 |
 | 20000 | 67.86 | 43.91 | 43.90 | 33.24 | 32.62 | 20.16 |
 | 40000 | 61.88 | 39.63 | 39.69 | 29.44 | 28.72 | 19.52 |
 | 80000 | 58.08 | 36.93 | 37.01 | 27.05 | 26.25 | 19.00 |
 | 160000 | 55.94 | 35.10 | 35.06 | 25.44 | 24.56 | 19.63 |
 | 320000 | 54.41 | 33.87 | 33.74 | 24.36 | 23.44 | 18.66 |
 +------------+--------+-------+-------+-------+-------+-------+

 There is obviously scope for tuning the default block size to the
 compression being employed, traffic characteristics, frequency of
 output file rollover etc. Using a strong compression scheme, block
 sizes over 10,000 query/response pairs would seem to offer limited
 improvements.

Authors’ Addresses

 John Dickinson
 Sinodun IT
 Magdalen Centre
 Oxford Science Park
 Oxford OX4 4GA
 United Kingdom

 Email: jad@sinodun.com

 Jim Hague
 Sinodun IT
 Magdalen Centre
 Oxford Science Park
 Oxford OX4 4GA
 United Kingdom

 Email: jim@sinodun.com

Dickinson, et al. Expires June 15, 2019 [Page 76]

Internet-Draft C-DNS: A DNS Packet Capture Format December 2018

 Sara Dickinson
 Sinodun IT
 Magdalen Centre
 Oxford Science Park
 Oxford OX4 4GA
 United Kingdom

 Email: sara@sinodun.com

 Terry Manderson
 ICANN
 12025 Waterfront Drive
 Suite 300
 Los Angeles CA 90094-2536

 Email: terry.manderson@icann.org

 John Bond
 ICANN
 12025 Waterfront Drive
 Suite 300
 Los Angeles CA 90094-2536

 Email: john.bond@icann.org

Dickinson, et al. Expires June 15, 2019 [Page 77]

