Anonymity is less discussed in the IETF than for instance security [RFC3552] or privacy [RFC6973]. This can be attributed to the fact anonymity is a hard technical problem or that anonymizing user data is not of specific market interest. It remains a fact that ‘most internet users would like to be anonymous online at least occasionally’ [Pew].

This document aims to break down the different meanings and implications of anonymity on a mediated computer network.
carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 2
2. Vocabulary Used ... 3
3. Should protocols promote anonymity? 4
4. Example of use cases 5
 4.1. Simultaneous use 5
 4.2. Successive use 5
 4.3. Selective use 6
 4.4. User analysis 6
5. Practical advices ... 6
 5.1. Protocol developers 6
 5.2. Protocol implementors 7
6. Open Questions ... 7
7. Security Considerations 7
8. IANA Considerations 7
9. Research Group Information 8
10. Objections against anonymity 8
11. References .. 8
 11.1. Informative References 8
 11.2. URIs .. 10
Authors’ Addresses ... 11

1. Introduction

There seems to be a clear need for anonymity online in an environment where harassment on the Internet is on the increase [Pew2] and the UN Special Rapporteur for Freedom of Expression calls anonymity ‘necessary for the exercise of the right to freedom of opinion and expression in the digital age’ [UNHRC2015].

Nonetheless anonymity is not getting much discussion at the IETF, providing anonymity does not seem a (semi-)objective for many protocols, even though several documents contribute to improving anonymity such as [RFC7258], [RFC7626], [RFC7858].

There are initiatives on the Internet to improve end users anonymity, most notably [torproject], but these initiatives rely on adding encryption in the application layer.

This document aims to break down the different meanings and implications of anonymity on a mediated computer network and to see
whether (some parts of) anonymity should be taken into consideration in protocol development.

2. Vocabulary Used

Concepts in this draft currently strongly hinges on [AnonTerm]

Anonymity A state of an individual in which an observer or attacker cannot identify the individual within a set of other individuals (the anonymity set). [RFC6973]

Linkability Linkability of two or more items of interest (IOIs – Items Of Interest, e.g., subjects, messages, actions, ...) from an attacker’s perspective means that within the system (comprising these and possibly other items), the attacker can sufficiently distinguish whether these IOIs are related or not. [AnonTerm]

Official identity Government-issued identity, as written on ID cards and passports. We don’t use terms like "real names" since a chosen pseudonym, for instance, is not less real than a identity given at birth.

Pseudonymity Derived from pseudonym, a persistent identity which is not the same as the entity’s given (or official) name. For all IETF protocols, pseudonimity is a given: protocols don’t care whether the identity is an official one or not. Even if the protocol allows to use official identities (for instance in the From: header of an Internet email), it does not require it. But it should be noted that, if the user cannot create new pseudonyms easily, pseudonyms suffer from linkability. Unlinkability depends on this ability to create new pseudonyms gratis and at will (good examples are SSH keys or Bitcoin addresses). Easy creation will allow to have one pseudonym per use, thus defeating linkability.

Unlinkability Unlinkability of two or more items of interest (IOIs, e.g., subjects, messages, actions, ...) from an attacker’s perspective means that within the system (comprising these and possibly other items), the attacker cannot sufficiently distinguish whether these IOIs are related or not. [AnonTerm]

Undetectability The impossibility of being noticed or discovered

Undetectability of an item of interest (IOI) from an attacker’s perspective means that the attacker cannot sufficiently distinguish whether it exists or not [AnonTerm]

Unobservability
Unobservability of an item of interest (IOI) means: undetectability of the IOI against all subjects uninvolved in it and anonymity of the subject(s) involved in the IOI even against the other subject(s) involved in that IOI. [AnonTerm]

It should be noted that the word "anonymity" is both very loaded politically (witness all the headlines about the "darknet") and poorly understood. Most texts talking about anonymity actually refer to pseudonymity (for instance, when people say that "Bitcoin is anonymous"). This confusion is even in the example given in [RFC4949] definition of anonymity.

Anonymity is strongly linked to unlinkability: if your actions are linkable, it suffices that one of them is tied to your identity, and anonymity is over.

It should be noted that anonymity is not binary: there have been these recent years a lot of progress of desanonymisation techniques (see also [GDPR], article 26). Data is never fully "anonymous", it is only more or less anonymous. [RFC6235] [MITdeano] [Utexas] [Article29]

3. Should protocols promote anonymity?

The amount of data that is generated by and about individuals is growing exponentially. This can be attributed to the fact that an ever increasing number of actions is digitally mediated, and the increase of connected sensors in the every day environment. Even though these two causes do not fully fall within the scope of the IETF, there is a significant part of these two examples that do.

TODO add here more examples of the need to anonymity

With the increase of data there is also an increasing ability for third parties to analyze human behaviour. It should be noted that any data that could identify an individual is personally identifiable information (PII). This means that information which can be used to distinguish an individual from other individuals can be considered as personally identifiable information. The access and control of personally identifiable information by a third party is a (potential) liability for both the third party and the individual. This liability could for example translate into a physical risk for the individual or into a legal risk for the third party under information security and privacy laws.
Some network operators argue that without the opportunity to persistently identify individual users it becomes harder to thwart attacks and troubleshoot network issues. Whereas identification might be helpful to address issues in some cases, it poses an inherent threat to the anonymity of users. Not protecting the anonymity of users leads to a deterioration of the right to privacy, and the right to freedom of opinion and expression. There can be limitations the right to privacy and freedom of expression, but these should always be provided by law and necessary and proportionate to achieve one of a handful of legitimate objectives. It is clear that anonymity may make system and network administration different. To quote [RFC7824], "Those properties (stable and trackable IP addresses, derived from static identifiers) are convenient for system administrators". Here, there is a clear and fundamental tussle between the protection of the users and the ability of the system and network administrator to continue their work in the same way.

Anonymity will always be a balancing act between user protection (which requires a high level of anonymity) and other requirements for operations and research, such as routing information. Anonymity is by no means achieved by default in an online environment, nor has it been a strong consideration in protocol development in the development of the Internet. Increasing anonymity in the digital environment is not an easy task, exactly because the ubiquity of data that is generated and stored. But exactly the fact that we generate so much data urges us to address this issue.

4. Example of use cases

4.1. Simultaneous use

One user may use concurrently several identities, mixing them in operations, while wanting to keep them distinct. The protocol and its implementations should not preclude this use.

4.2. Successive use

One user may switch from one identity to another. In that case, it must be doable without a "bleedover" from the old identity to the new one.

One of the reasons to switch identities might be to make the relationship between this identity and another one (for instance the official one) more difficult. The longer you use a pseudonym, the more clues you give to someone who tries to unveil pseudonymity.
4.3. Selective use

A user might want to retain their anonymity to certain actors / protocols, but identified to others. Also, she may also wish to be identified for some operations but not always.

4.4. User analysis

A user might want to understand which other actors might (potentially) have which level of information about them. This conflicts of course with privacy because the user has to reveal who he is. Example: if a domain name registry does not publish the name of a registrant, the registrant cannot check if the person who did the registration indicated the name of their client, or their own name.

5. Practical advices

5.1. Protocol developers

First, the protocol should avoid to have mandatory persistent identifiers.

Even without persistent identifiers, anonymity could be broken by examining the patterns of access. If an user visits each morning the three same Web sites, always in the same order, it will be easy to identify them even without persistent identifier. Protocol designers should therefore ask themselves if patterns are easily visible, or obfuscated in some way.

If the protocol collects data and distributes it (see [RFC6235]), "anonymizing" the data is often suggested but it is notoriously hard. Do not think that just dropping the last byte of an IP address "anonymizes" data.

Pay attention to the fact that Internet actors do not all see the same thing. Consider the anonymity of the user with respect to:
- local network operator
- other networks you connect to
- your communications peer on the other end of the pipe
- intermediaries ([RFC6973])
- enablers ([RFC6973])
- someone who is in several roles, for instance a big state surveillance agency

5.2. Protocol implementors

Avoid adding options or configurations that create or might lead to patterns or regularities that are not explicitly required by the protocol.

An example is DHCP where sending a persistent identifier as the client name was not mandatory but, in practice, done by many implementations, before [RFC7844].

If an implementation allows for identity management, there should be a clear barrier between the identities to ensure that they cannot (easily) be associated with each other.

If there are anonymization option for the protocol, these should be enabled by default.

6. Open Questions

While analyzing protocols for their impact on users anonymity, would it make sense to ask the following questions:

1. How does the protocol impact pseudonymity? If the protocol limits the creation of new pseudonyms, it can limit their usefulness to "hide" an user’s identity. For instance, IP addresses are pseudonyms but, since they are not under end users’s control, they have strong linkability. That’s why they are rightly regarded as personal identifiers [EUcourt]. On the other hand, Bitcoin addresses are pseudonyms with limited linkability, since the user can always create a lot of them.

2. Could there be more advice for protocol developers and implementers to improve anonymity? (Besides the ones in Section 5.)

7. Security Considerations

As this draft concerns a research document, there are no security considerations.

8. IANA Considerations

This document has no actions for IANA.
9. Research Group Information

The discussion list for the IRTF Human Rights Protocol Considerations proposed working group is located at the e-mail address hrpc@ietf.org [1]. Information on the group and information on how to subscribe to the list is at https://www.irtf.org/mailman/listinfo/hrpc [2].

Archives of the list can be found at: https://www.irtf.org/mail-archive/web/hrpc/current/index.html [3].

10. Objections against anonymity

TODO: should be turned into an appendix. This draft is about how to allow anonymity, not about how to fight it.

For a long time, there have been objections against anonymity. This document won’t attempt to rebuke them all, since it is concerned about how to ensure that protocols allow anonymity. But it is interesting to keep in mind that protocols never forbid anonymity. If someone wants his or her actions to be trackable, and under her or his official name, they can do so, by adding this information to their messages. In the same way, people are free not to engage with anonymous entities, in the same way that a SIP use, for instance, is free not to pick up a call if it comes from sip:anonymous@anonymous.invalid. This document is concerned about enabling anonymity, not about mandating it.

11. References

11.1. Informative References

[AnonTerm]

[Article29]

11.2. URIs

[1] mailto:hrpc@ietf.org

Authors' Addresses

Stephane Bortzmeyer
AFNIC

EMail: bortzmeyer+ietf@nic.fr

Niels ten Oever
University of Amsterdam

EMail: mail@nielstenoever.net
Abstract

This document sets guidelines for human rights considerations in networking protocols, similar to the work done on the guidelines for privacy considerations [RFC6973]. This is an updated version of the guidelines for human rights considerations in [RFC8280].
Table of Contents

1. Introduction ... 3
2. Vocabulary used .. 3
3. Model for developing human rights protocol considerations .. 3
 3.1. Human rights threats 3
 3.2. Conducting human rights reviews 4
 3.2.1. Analyzing drafts based on guidelines for human rights
 considerations model 5
 3.2.2. Analyzing drafts based on their perceived or
 speculated impact 5
 3.2.3. Expert interviews 5
 3.2.4. Interviews with impacted persons and communities .. 5
 3.2.5. Tracing impacts of implementations 6
 3.3. Guidelines for human rights considerations 6
 3.3.1. Connectivity 7
 3.3.2. Privacy .. 7
 3.3.3. Content agnosticism 8
 3.3.4. Security ... 8
 3.3.5. Internationalization 9
 3.3.6. Censorship resistance 10
 3.3.7. Open Standards 11
 3.3.8. Heterogeneity Support 12
 3.3.9. Pseudonymity 13
 3.3.10. Accessibility 14
 3.3.11. Localization 15
 3.3.12. Decentralization 15
 3.3.13. Reliability 16
 3.3.14. Confidentiality 17
 3.3.15. Integrity 18
 3.3.16. Authenticity 19
 3.3.17. Adaptability 20
 3.3.18. Outcome Transparency 20
 3.3.19. Anonymity 21
4. Document Status ... 22
5. Acknowledgements ... 22
6. Security Considerations 22
7. IANA Considerations 22
8. Research Group Information 22
9. References ... 23
 9.1. Informative References 23
 9.2. URIs .. 27
Author’s Address .. 27
1. Introduction

2. Vocabulary used

3. Model for developing human rights protocol considerations

This section outlines a set of human rights protocol considerations for protocol developers. It provides questions engineers should ask themselves when developing or improving protocols if they want to understand their human rights impact. It should however be noted that the impact of a protocol cannot solely be deduced from its design, but its usage and implementation should also be studied to form a full protocol human rights impact assessment.

The questions are based on the research performed by the hrpc research group which has been documented before these considerations. The research establishes that human rights relate to standards and protocols and offers a common vocabulary of technical concepts that impact human rights and how these technical concept can be combined to ensure that the Internet remains an enabling environment for human rights. With this the contours of a model for developing human rights protocol considerations has taken shape.

3.1. Human rights threats

Human rights threats on the Internet come in a myriad of forms. Protocols and standards can harm or enable the right to freedom of expression, right to non-discrimination, right to equal protection, right to participate in cultural life, arts and science, right to freedom of assembly and association, and the right to security. An end-user who is denied access to certain services, data or websites may be unable to disclose vital information about the malpractices of a government or other authority. A person whose communications are monitored may be prevented from exercising their right to freedom of association or participate in political processes [Penney]. In a worst-case scenario, protocols that leak information can lead to physical danger. A realistic example to consider is when individuals perceived as threats to the state are subjected to torture or extrajudicial killing or detention on the basis of information gathered by state agencies through information leakage in protocols.

This section details several ‘common’ threats to human rights, indicating how each of these can lead to human rights violations/ harms and present several examples of how these threats to human rights materialize on the Internet. This threat modeling is inspired by [RFC6973] Privacy Considerations for Internet Protocols, which is based on the security threat analysis. This method is by no means a perfect solution for assessing human rights risks in Internet
protocols and systems; it is however the best approach currently available. Certain specific human rights threats are indirectly considered in Internet protocols as part of the security considerations [BCP72], but privacy guidelines [RFC6973] or reviews, let alone human rights impact assessments of protocols are not standardized or implemented.

Many threats, enablers and risks are linked to different rights. This is not unsurprising if one takes into account that human rights are interrelated, interdependent and indivisible. Here however we’re not discussing all human rights because not all human rights are relevant to ICTs in general and protocols and standards in particular [Bless]: "The main source of the values of human rights is the International Bill of Human Rights that is composed of the Universal Declaration of Human Rights [UDHR] along with the International Covenant on Civil and Political Rights [ICCPR] and the International Covenant on Economic, Social and Cultural Rights [ICESCR]. In the light of several cases of Internet censorship, the Human Rights Council Resolution 20/8 was adopted in 2012 [UNHRC2016], affirming "...that the same rights that people have offline must also be protected online...". In 2015, the Charter of Human Rights and Principles for the Internet [IRP] was developed and released. According to these documents, some examples of human rights relevant for ICT systems are human dignity (Art. 1 UDHR), non-discrimination (Art. 2), rights to life, liberty and security (Art. 3), freedom of opinion and expression (Art. 19), freedom of assembly and association (Art. 20), rights to equal protection, legal remedy, fair trial, due process, presumed innocent (Art. 7-11), appropriate social and international order (Art. 28), participation in public affairs (Art. 21), participation in cultural life, protection of the moral and material interests resulting from any scientific, literary or artistic production of which [they are] the author (Art. 27), and privacy (Art. 12)." A partial catalog of human rights related to Information and Communications technologies, including economic rights, can be found in [Hill2014].

This is by no means an attempt to exclude specific rights or prioritize some rights over others. If other rights seem relevant, please contact the authors.

3.2. Conducting human rights reviews

Human rights reviews can take place in different parts of the development process of an Internet Draft. However generally speaking it is easier to influence the development of a technology at earlier stages than at later stages. This does not mean that reviews at last-call are not relevant, but they are less likely to result in significant changes in the reviewed document.
Methods for analyzing technology for specific human rights impacts are still quite nascent. Currently three five methods have been explored by the Human Rights Review Team, often in conjunction with each other:

3.2.1. Analyzing drafts based on guidelines for human rights considerations model

This analysis of Internet-Drafts uses the model as described below. The outlined categories and questions are used to review an Internet Draft and generally the review is also presented in that order. The advantage of this is that it provides a known overview, and document authors can go back to this document as well as [RFC8280] to understand the background and the context.

3.2.2. Analyzing drafts based on their perceived or speculated impact

When reviewing an Internet-Draft specific human rights impacts might become apparent by doing a close reading of the draft and seeking to understand how it might provide a different ordering of the network or society. While less structured than the straight use of the human rights considerations model, this analysis might lead to new speculative understandings between human rights and protocols.

3.2.3. Expert interviews

Interviews with document authors, active members of the Working Group, or experts in the field can help explore the characteristics of the protocol and their effects. There are two main advantages to this approach; one the one hand it allows the reviewer to gain a deeper understanding of the (intended) workings of the protocol, on the other hand it also allows for the reviewer to start a discussion with an expert or even document author about certain aspects, which might help gain the review gain traction when it is published.

3.2.4. Interviews with impacted persons and communities

Protocols impact users of the Internet. There it might help the review to understand how it impacts the people that use the protocol, and the people whose lives are impacted by the protocol. Since human rights should always be understood from the rightsholder, this approach will improve the understanding of the real world effects of the technology. At the same time it can be hard to attribute specific changes to a particular protocol, this is of course even harder when a protocol has not been (widely) deployed.
3.2.5. Tracing impacts of implementations

When an Internet Draft is describing running code that has already been implemented, the code could be analyzed either in an experimental setting or on the Internet where its impact can be observed. Other than reviewing a draft, this allows the reviewer to understand how the document works in practice and potentially also what unknown or unexpected effects the technology might have.

3.3. Guidelines for human rights considerations

This section provides guidance for document authors in the form of a questionnaire about protocols and their (potential) impact. The questionnaire may be useful at any point in the design process, particularly after document authors have developed a high-level protocol model as described in [RFC4101]. These guidelines do not seek to replace any existing referenced specifications, but rather contribute to them and look at the design process from a human rights perspective.

Protocols and Internet Standard might benefit from a documented discussion of potential human rights risks arising from potential misapplications of the protocol or technology described in the RFC. This might be coupled with an Applicability Statement for that RFC.

Note that the guidance provided in this section does not recommend specific practices. The range of protocols developed in the IETF is too broad to make recommendations about particular uses of data or how human rights might be balanced against other design goals. However, by carefully considering the answers to the following questions, document authors should be able to produce a comprehensive analysis that can serve as the basis for discussion on whether the protocol adequately takes specific human rights threats into account. This guidance is meant to help the thought process of a human rights analysis; it does not provide specific directions for how to write a human rights protocol considerations section (following the example set in [RFC6973]), and the addition of a human rights protocol considerations section has also not yet been proposed. In considering these questions, authors will need to be aware of the potential of technical advances or the passage of time to undermine protections. In general, considerations of rights are likely to be more effective if they are considered given a purpose and specific use cases, rather than as abstract absolute goals.
3.3.1. Connectivity

Question(s): Does your protocol add application-specific functions to intermediary nodes? Could this functionality be added to end nodes instead of intermediary nodes? Is your protocol optimized for low bandwidth and high latency connections? Could your protocol also be developed in a stateless manner?

Explanation: The end-to-end principle [Saltzer] holds that ‘the intelligence is end to end rather than hidden in the network’ [RFC1958]. The end-to-end principle is important for the robustness of the network and innovation. Such robustness of the network is crucial to enabling human rights like freedom of expression.

Example: Middleboxes (which can be Content Delivery Networks, Firewalls, NATs or other intermediary nodes that provide other ‘services’ than routing) serve many legitimate purposes. But the protocols guiding them, can influence individuals’ ability to communicate online freely and privately. The potential for abuse and intentional and unintentional censoring and limiting permissionless innovation, and thus ultimately the impact of middleboxes on the Internet as a place of unfiltered, unmonitored freedom of speech, is real.

Impacts:
- Right to freedom of expression
- Right to freedom of assembly and association

3.3.2. Privacy

Question(s): Did you have a look at the Guidelines in the Privacy Considerations for Internet Protocols [RFC6973] section 7? Could your protocol in any way impact the confidentiality of protocol metadata? Could your protocol counter traffic analysis? Could your protocol improve data minimization? Does your document identify potentially sensitive logged data by your protocol and/or for how long that needs to be retained for technical reasons?

Explanation: Privacy refers to the right of an entity (normally a person), acting in its own behalf, to determine the degree to which it will interact with its environment, including the degree to which the entity is willing to share its personal information with others. [RFC4949]. If a protocol provides insufficient privacy protection it may have a negative impact on freedom of expression as users self-censor for fear of surveillance, or find themselves unable to express themselves freely.
Example: See [RFC6973]

Impacts:

- Right to freedom of expression
- Right to non-discrimination

3.3.3. Content agnosticism

Question(s): If your protocol impacts packet handling, does it use user data (packet data that is not included in the header)? Is it making decisions based on the payload of the packet? Does your protocol prioritize certain content or services over others in the routing process? Is the protocol transparent about the prioritization that is made (if any)?

Explanation: Content agnosticism refers to the notion that network traffic is treated identically regardless of payload, with some exception where it comes to effective traffic handling, for instance where it comes to delay tolerant or delay sensitive packets, based on the header.

Example: Content agnosticism prevents payload-based discrimination against packets. This is important because changes to this principle can lead to a two-tiered Internet, where certain packets are prioritized over others on the basis of their content. Effectively this would mean that although all users are entitled to receive their packets at a certain speed, some users become more equal than others.

Impacts:

- Right to freedom of expression
- Right to non-discrimination
- Right to equal protection

3.3.4. Security

Question(s): Did you have a look at Guidelines for Writing RFC Text on Security Considerations [BCP72]? Have you found any "attacks that are somewhat related to your protocol yet considered out of scope of your document? Would these attacks be pertinent to the human rights enabling features of the Internet (as described throughout this document)?
Explanation: Most people speak of security as if it were a single monolithic property of a protocol or system, however, upon reflection one realizes that it is clearly not true. Rather, security is a series of related but somewhat independent properties. Not all of these properties are required for every application. Since communications are carried out by systems and access to systems is through communications channels, these goals obviously interlock, but they can also be independently provided [BCP72].

Example: See [BCP72].

Impacts:
- Right to freedom of expression
- Right to freedom of assembly and association
- Right to non-discrimination
- Right to security

3.3.5. Internationalization

Question(s): Does your protocol have text strings that have to be understood or entered by humans? Does your protocol allow Unicode? If so, do you accept texts in one charset (which must be UTF-8), or several (which is dangerous for interoperability)? If character sets or encodings other than UTF-8 are allowed, does your protocol mandate a proper tagging of the charset? Did you have a look at [RFC6365]?

Explanation: Internationalization refers to the practice of making protocols, standards, and implementations usable in different languages and scripts (see Localization). In the IETF, internationalization means to add or improve the handling of non-ASCII text in a protocol. [RFC6365] A different perspective, more appropriate to protocols that are designed for global use from the beginning, is the definition used by W3C:

"Internationalization is the design and development of a product, application or document content that enables easy localization for target audiences that vary in culture, region, or language." ([W3Ci18nDef])

Many protocols that handle text only handle one charset (US-ASCII), or leave the question of what CCS and encoding are used up to local guesswork (which leads, of course, to interoperability problems). If multiple charsets are permitted, they must be explicitly identified [RFC2277]. Adding non-ASCII text to a protocol allows the protocol
to handle more scripts, hopefully representing users across the world. In today's world, that is normally best accomplished by allowing Unicode encoded in UTF-8 only.

In the current IETF policy [RFC2277], internationalization is aimed at user-facing strings, not protocol elements, such as the verbs used by some text-based protocols. (Do note that some strings are both content and protocol elements, such as the identifiers.) If the Internet wants to be a global network of networks, the protocols should work with other languages than English and other character sets than latin characters. It is therefore crucial that at least the content carried by the protocol can be in any script, and that all scripts are treated equally.

Example: See localization

Impacts:
- Right to freedom of expression
- Right to political participation
- Right to participate in cultural life, arts and science

3.3.6. Censorship resistance

Question(s): Does this protocol introduce new identifiers or reuse existing identifiers (e.g. MAC addresses) that might be associated with persons or content? Does your protocol make it apparent or transparent when access to a resource it restricted? Can your protocol contribute to filtering in a way it could be implemented to censor data or services? Could this be designed to ensure this doesn’t happen?

Explanation: Censorship resistance refers to the methods and measures to prevent Internet censorship.

Example: In the development of the IPv6 protocol it was discussed to embed a Media Access Control (MAC) address into unique IP addresses. This would make it possible for ‘eavesdroppers and other information collectors to identify when different addresses used in different transactions actually correspond to the same node. [RFC4941] This is why Privacy Extensions for Stateless Address Autoconfiguration in IPv6 have been introduced. [RFC4941]

Identifiers of content exposed within a protocol might be used to facilitate censorship, as in the case of Application Layer based censorship, which affects protocols like HTTP. Denial or restriction
of access can be made apparent by the use of status code 451 - which allows server operators to operate with greater transparency in circumstances where issues of law or public policy affect their operation [RFC7725].

Impacts:
- Right to freedom of expression
- Right to political participation
- Right to participate in cultural life, arts and science
- Right to freedom of assembly and association

3.3.7. Open Standards

Question(s): Is your protocol fully documented in a way that it could be easily implemented, improved, built upon and/or further developed? Do you depend on proprietary code for the implementation, running or further development of your protocol? Does your protocol favor a particular proprietary specification over technically equivalent and competing specification(s), for instance by making any incorporated vendor specification "required" or "recommended" [RFC2026]? Do you normatively reference another standard that is not available without cost (and could it possible be done without)? Are you aware of any patents that would prevent your standard from being fully implemented [RFC3979] [RFC6701]?

Explanation: The Internet was able to be developed into the global network of networks because of the existence of open, non-proprietary standards [Zittrain]. They are crucial for enabling interoperability. Yet, open standards are not explicitly defined within the IETF. On the subject, [RFC2026] states: Various national and international standards bodies, such as ANSI, ISO, IEEE, and ITU-T, develop a variety of protocol and service specifications that are similar to Technical Specifications defined at the IETF. National and international groups also publish "implementors' agreements" that are analogous to Applicability Statements, capturing a body of implementation-specific detail concerned with the practical application of their standards. All of these are considered to be "open external standards" for the purposes of the Internet Standards Process. Similarly, [RFC3935] does not define open standards but does emphasize the importance of 'open process': any interested person can participate in the work, know what is being decided, and make his or her voice heard on the issue. Part of this principle is the IETF’s commitment to making its documents, WG mailing lists,
attendance lists, and meeting minutes publicly available on the
Internet.

Open standards are important as they allow for permissionless
innovation, which is important to maintain the freedom and ability to
freely create and deploy new protocols on top of the communications
constructs that currently exist. It is at the heart of the Internet
as we know it, and to maintain its fundamentally open nature, we need
to be mindful of the need for developing open standards.

All standards that need to be normatively implemented should be
freely available and with reasonable protection for patent
infringement claims, so it can also be implemented in open source or
free software. Patents have often held back open standardization or
been used against those deploying open standards, particularly in the
domain of cryptography [newegg]. An exemption of this is sometimes
made when a protocol is standardized that normatively relies on
specifications produced by others SDOs that are not freely available.
Patents in open standards or in normative references to other
standards should have a patent disclosure [notewell], royalty-free
licensing [patentpolicy], or some other form of reasonable
protection. Reasonable patent protection should include but is not
limited to cryptographic primitives.

Example: [RFC6108] describes a system for providing critical end-user
notifications to web browsers, which has been deployed by Comcast, an
Internet Service Provider (ISP). Such a notification system is being
used to provide near-immediate notifications to customers, such as to
warn them that their traffic exhibits patterns that are indicative of
malware or virus infection. There are other proprietary systems that
can perform such notifications, but those systems utilize Deep Packet
Inspection (DPI) technology. In contrast to DPI, this document
describes a system that does not rely upon DPI, and is instead based
in open IETF standards and open source applications.

Impacts:
- Right to freedom of expression
- Right to participate in cultural life, arts and science

3.3.8. Heterogeneity Support

Question(s): Does your protocol support heterogeneity by design?
Does your protocol allow for multiple types of hardware? Does your
protocol allow for multiple types of application protocols? Is your
protocol liberal in what it receives and handles? Will it remain
usable and open if the context changes? Does your protocol allow
there to be well-defined extension points? Do these extension points allow for open innovation?

Explanation: The Internet is characterized by heterogeneity on many levels: devices and nodes, router scheduling algorithms and queue management mechanisms, routing protocols, levels of multiplexing, protocol versions and implementations, underlying link layers (e.g., point-to-point, multi-access links, wireless, FDDI, etc.), in the traffic mix and in the levels of congestion at different times and places. Moreover, as the Internet is composed of autonomous organizations and Internet service providers, each with their own separate policy concerns, there is a large heterogeneity of administrative domains and pricing structures. As a result, the heterogeneity principle proposed in [RFC1958] needs to be supported by design [FIArch].

Example: Heterogeneity is inevitable and needs be supported by design. Multiple types of hardware must be allowed for, e.g. transmission speeds differing by at least 7 orders of magnitude, various computer word lengths, and hosts ranging from memory-starved microprocessors up to massively parallel supercomputers. Multiple types of application protocol must be allowed for, ranging from the simplest such as remote login up to the most complex such as distributed databases [RFC1958].

Impacts:

- Right to freedom of expression
- Right to political participation

3.3.9. Pseudonymity

Question(s): Have you considered the Privacy Considerations for Internet Protocols [RFC6973], especially section 6.1.2? Does the protocol collect personally derived data? Does the protocol generate or process anything that can be, or be tightly correlated with, personally identifiable information? Does the protocol utilize data that is personally-derived, i.e. derived from the interaction of a single person, or their device or address? Does this protocol generate personally derived data, and if so how will that data be handled?

Explanation: Pseudonymity - the ability to use a persistent identifier not linked to one’s offline identity" straight away - is an important feature for many end-users, as it allows them different degrees of disguised identity and privacy online.
Example: Designing a standard that exposes personal data, it is important to consider ways to mitigate the obvious impacts. While pseudonyms cannot be simply reverse engineered - some early approaches simply took approaches such as simple hashing of IP addresses, these could then be simply reversed by generating a hash for each potential IP address and comparing it to the pseudonym - limiting the exposure of personal data remains important.

Pseudonymity means using a pseudonym instead of one’s "real" name. There are many reasons for users to use pseudonyms, for instance to: hide their gender, protect themselves against harassment, protect their families’ privacy, frankly discuss sexuality, or develop an artistic or journalistic persona without retribution from an employer, (potential) customers, or social surrounding. [geekfeminism] The difference between anonymity and pseudonymity is that a pseudonym often is persistent. "Pseudonymity is strengthened when less personal data can be linked to the pseudonym; when the same pseudonym is used less often and across fewer contexts; and when independently chosen pseudonyms are more frequently used for new actions (making them, from an observer’s or attacker’s perspective, unlinkable)." [RFC6973]

Impacts:
- Right to non-discrimination
- Right to freedom of assembly and association

3.3.10. Accessibility

Question(s): Is your protocol designed to provide an enabling environment for people who are not able-bodied? Have you looked at the W3C Web Accessibility Initiative for examples and guidance?

Explanation: The Internet is fundamentally designed to work for all people, whatever their hardware, software, language, culture, location, or physical or mental ability. When the Internet meets this goal, it is accessible to people with a diverse range of hearing, movement, sight, and cognitive ability [W3CAccessibility]. Sometimes in the design of protocols, websites, web technologies, or web tools, barriers are created that exclude people from using the Web.

Example: The HTML protocol as defined in [HTML5] specifically requires that every image must have an alt attribute (with a few exceptions) to ensure images are accessible for people that cannot themselves decipher non-text content in web pages.
3.3.11. Localization

Question(s): Does your protocol uphold the standards of internationalization? Have made any concrete steps towards localizing your protocol for relevant audiences?

Explanation: Localization refers to the adaptation of a product, application or document content to meet the language, cultural and other requirements of a specific target market (a locale) [W3Ci18nDef]. It is also described as the practice of translating an implementation to make it functional in a specific language or for users in a specific locale (see Internationalization).

Example: The Internet is a global medium, but many of its protocols and products are developed with a certain audience in mind, that often share particular characteristics like knowing how to read and write in ASCII and knowing English. This limits the ability of a large part of the world’s online population from using the Internet in a way that is culturally and linguistically accessible. An example of a protocol that has taken into account the view that individuals like to have access to data in their native language can be found in [RFC5646]. This protocol labels the information content with an identifier for the language in which it is written. And this allows information to be presented in more than one language.

Impacts:
- Right to non-discrimination
- Right to participate in cultural life, arts and science
- Right to freedom of expression

3.3.12. Decentralization

Question(s): Can your protocol be implemented without one single point of control? If applicable, can your protocol be deployed in a federated manner? What is the potential for discrimination against
users of your protocol? How can the use of your protocol be used to implicate users? Does your protocol create additional centralized points of control?

Explanation: Decentralization is one of the central technical concepts of the architecture of the networks, and embraced as such by the IETF [RFC3935]. It refers to the absence or minimization of centralized points of control; a feature that is assumed to make it easy for new users to join and new uses to unfold [Brown]. It also reduces issues surrounding single points of failure, and distributes the network such that it continues to function if one or several nodes are disabled. With the commercialization of the Internet in the early 1990’s there has been a slow move to move away from decentralization, to the detriment of the technical benefits of having a decentralized Internet.

Example: The bits traveling the Internet are increasingly susceptible to monitoring and censorship, from both governments and Internet service providers, as well as third (malicious) parties. The ability to monitor and censor is further enabled by the increased centralization of the network that creates central infrastructure points that can be tapped in to. The creation of peer-to-peer networks and the development of voice-over-IP protocols using peer-to-peer technology in combination with distributed hash table (DHT) for scalability are examples of how protocols can preserve decentralization [Pouwelse].

Impacts:
- Right to freedom of expression
- Right to freedom of assembly and association

3.3.13. Reliability

Question(s): Is your protocol fault tolerant? Does it degrade gracefully? Can your protocol resist malicious degradation attempts? Do you have a documented way to announce degradation? Do you have measures in place for recovery or partial healing from failure? Can your protocol maintain dependability and performance in the face of unanticipated changes or circumstances?

Explanation: Reliability ensures that a protocol will execute its function consistently and error resistant as described, and function without unexpected result. A system that is reliable degenerates gracefully and will have a documented way to announce degradation. It also has mechanisms to recover from failure gracefully, and if applicable, allow for partial healing. It is important here to draw
a distinction between random degradation and malicious degradation. Many current attacks against TLS, for example, exploit TLS’s ability to gracefully degrade to older cipher suites - from a functional perspective, this is good. From a security perspective, this can be very bad. As with confidentiality, the growth of the Internet and fostering innovation in services depends on users having confidence and trust [RFC3724] in the network. For reliability it is necessary that services notify the users if a delivery fails. In the case of real-time systems in addition to the reliable delivery the protocol needs to safeguard timeliness.

Example: In the modern IP stack structure, a reliable transport layer requires an indication that transport processing has successfully completed, such as given by TCP’s ACK message [RFC0793], and not simply an indication from the IP layer that the packet arrived. Similarly, an application layer protocol may require an application-specific acknowledgement that contains, among other things, a status code indicating the disposition of the request (See [RFC3724]).

Impacts:

- Right to freedom of expression
- Right to security

3.3.14. Confidentiality

Question(s): Does this protocol expose information related to identifiers or data? If so, does it do so to each other protocol entity (i.e., recipients, intermediaries, and enablers) [RFC6973]? What options exist for protocol implementers to choose to limit the information shared with each entity? What operational controls are available to limit the information shared with each entity?

What controls or consent mechanisms does the protocol define or require before personal data or identifiers are shared or exposed via the protocol? If no such mechanisms or controls are specified, is it expected that control and consent will be handled outside of the protocol?

Does the protocol provide ways for initiators to share different pieces of information with different recipients? If not, are there mechanisms that exist outside of the protocol to provide initiators with such control?

Does the protocol provide ways for initiators to limit the sharing or express individuals’ preferences to recipients or intermediaries with regard to the collection, use, or disclosure of their personal data?
If not, are there mechanisms that exist outside of the protocol to provide users with such control? Is it expected that users will have relationships that govern the use of the information (contractual or otherwise) with those who operate these intermediaries? Does the protocol prefer encryption over clear text operation?

Explanation: Confidentiality refers to keeping your data secret from unintended listeners [BCP72]. The growth of the Internet depends on users having confidence that the network protects their personal data [RFC1984].

Example: Protocols that do not encrypt their payload make the entire content of the communication available to the idealized attacker along their path. Following the advice in [RFC3365], most such protocols have a secure variant that encrypts the payload for confidentiality, and these secure variants are seeing ever-wider deployment. A noteworthy exception is DNS [RFC1035], as DNSSEC [RFC4033] does not have confidentiality as a requirement. This implies that, in the absence of changes to the protocol as presently under development in the IETF’s DNS Private Exchange (DPRIVE) working group, all DNS queries and answers generated by the activities of any protocol are available to the attacker. When store-and-forward protocols are used (e.g., SMTP [RFC5321]), intermediaries leave this data subject to observation by an attacker that has compromised these intermediaries, unless the data is encrypted end-to-end by the application-layer protocol or the implementation uses an encrypted store for this data [RFC7624].

Impacts:
- Right to privacy
- Right to security

3.3.15. Integrity

Question(s): Does your protocol maintain, assure and/or verify the accuracy of payload data? Does your protocol maintain and assure the consistency of data? Does your protocol in any way allow for the data to be (intentionally or unintentionally) altered?

Explanation: Integrity refers to the maintenance and assurance of the accuracy and consistency of data to ensure it has not been (intentionally or unintentionally) altered.

Example: Integrity verification of data is important to prevent vulnerabilities and attacks, like man-in-the-middle-attacks. These attacks happen when a third party (often for malicious reasons)
intercepts a communication between two parties, inserting themselves in the middle changing the content of the data. In practice this looks as follows:

Alice wants to communicate with Bob.
Corinne forges and sends a message to Bob, impersonating Alice. Bob cannot see the data from Alice was altered by Corinne.
Corinne intercepts and alters the communication as it is sent between Alice and Bob.
Corinne is able to control the communication content.

Impacts:
- Right to freedom of expression
- Right to security

3.3.16. Authenticity

Question(s): Do you have sufficient measures to confirm the truth of an attribute of a single piece of data or entity? Can the attributes get garbled along the way (see security)? If relevant have you implemented IPsec, DNSsec, HTTPS and other Standard Security Best Practices?

Explanation: Authenticity ensures that data does indeed come from the source it claims to come from. This is important to prevent certain attacks or unauthorized access and use of data.

Example: Authentication of data is important to prevent vulnerabilities and attacks, like man-in-the-middle-attacks. These attacks happen when a third party (often for malicious reasons) intercepts a communication between two parties, inserting themselves in the middle and posing as both parties. In practice this looks as follows:

Alice wants to communicate with Bob.
Alice sends data to Bob.
Corinne intercepts the data sent to Bob.
Corinne reads (and potentially alters) the message to Bob.
Bob cannot see the data did not come from Alice but from Corinne.

When there is proper authentication the scenario would be as follows:

Alice wants to communicate with Bob.
Alice sends data to Bob.
Corinne intercepts the data sent to Bob.
Corinne reads and alters the message to Bob.
Bob can see the data did not come from Alice but from Corinne.

Impacts:
- Right to privacy
- Right to freedom of expression
- Right to security

3.3.17. Adaptability

Question(s): Is your protocol written in such a way that is would be easy for other protocols to be developed on top of it, or to interact with it? Does your protocol impact permissionless innovation? See ‘Connectivity’ above.

Explanation: Adaptability is closely interrelated with permissionless innovation, both maintain the freedom and ability to freely create and deploy new protocols on top of the communications constructs that currently exist. It is at the heart of the Internet as we know it, and to maintain its fundamentally open nature, we need to be mindful of the impact of protocols on maintaining or reducing permissionless innovation to ensure the Internet can continue to develop.

Example: WebRTC generates audio and/or video data. In order to ensure that WebRTC can be used in different locations by different parties it is important that standard Javascript APIs are developed to support applications from different voice service providers. Multiple parties will have similar capabilities, in order to ensure that all parties can build upon existing standards these need to be adaptable, and allow for permissionless innovation.

Impacts:
- Right to education
- Freedom of expression
- Freedom of assembly and association

3.3.18. Outcome Transparency

Question(s): Are the effects of your protocol fully and easily comprehensible, including with respect to unintended consequences of protocol choices?
Explanation: certain technical choice may have unintended consequences.

Example: lack of authenticity may lead to lack of integrity and negative externalities, of which spam is an example. Lack of data that could be used for billing and accounting can lead to so-called "free" arrangements which obscure the actual costs and distribution of the costs, for example the barter arrangements that are commonly used for Internet interconnection; and the commercial exploitation of personal data for targeted advertising which is the most common funding model for the so-called "free" services such as search engines and social networks.

Impacts: - Freedom of expression - Privacy - Freedom of assembly and association - Access to information

3.3.19. Anonymity

Example: Often protocols expose personal data, it is important to consider ways to mitigate the obvious privacy impacts. A protocol that uses data that could help identify a sender (items of interest) should be protected from third parties. For instance if one wants to hide the source/destination IP addresses of a packet, the use of IPsec in tunneling mode (e.g., inside a virtual private network) can be helpful to protect from third parties likely to eavesdrop packets exchanged between the tunnel endpoints.

Question(s): Does your protocol make use of persistent identifiers? Can it be done without them? If your protocol collects data and distributes it (see [RFC6235]), you should anonymize the data, but keep in mind that "anonymizing" data is notoriously hard. Do not think that just dropping the last byte of an IP address "anonymizes" data. If your protocol allows for identity management, there should be a clear barrier between the identities to ensure that they cannot (easily) be associated with each other. Did you have a look at the Privacy Considerations for Internet Protocols [RFC6973], especially section 6.1.1?

Explanation: Anonymity refers to the condition of an identity being unknown or concealed [RFC4949]. Even though full anonymity is hard to achieve, it is a non-binary concept. Making pervasive monitoring and tracking harder is important for many users as well as for the IETF [RFC7258]. Achieving a higher level of anonymity is an important feature for many end-users, as it allows them different degrees of privacy online. Anonymity is an inherent part of the right to freedom of opinion and expression and the right to privacy. Avoid adding identifiers, options or configurations that create or
might lead to patterns or regularities that are not explicitely required by the protocol.

Example: An example is DHCP where sending a persistent identifier as the client name was not mandatory but, in practice, done by many implementations, before [RFC7844].

Impacts:
- Right to non-discrimination
- Right to political participation
- Right to freedom of assembly and association
- Right to security

4. Document Status

This RG document is currently documenting best practices and guidelines for human rights reviews of networking protocols and other Internet-Drafts and RFCs

5. Acknowledgements

Thanks to: - Corinne Cath for work on [RFC8280]. - Theresa Engelhard and the hrpc list for suggestions. - The Human Rights Review Team for implementing the guidelines and helping them improve.

6. Security Considerations

As this document concerns a research document, there are no security considerations.

7. IANA Considerations

This document has no actions for IANA.

8. Research Group Information

The discussion list for the IRTF Human Rights Protocol Considerations Research Group is located at the e-mail address hrpc@ietf.org [1]. Information on the group and information on how to subscribe to the list is at https://www.irtf.org/mailman/listinfo/hrpc [2]

Archives of the list can be found at: https://www.irtf.org/mail-archive/web/hrpc/current/index.html [3]
9. References

9.1. Informative References

 Van Lieu, "Comcast’s Web Notification System Design",
 RFC 6108, DOI 10.17487/RFC6108, February 2011,

 Support", RFC 6235, DOI 10.17487/RFC6235, May 2011,

[RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in
 Internationalization in the IETF", BCP 166, RFC 6365,
 DOI 10.17487/RFC6365, September 2011,

 Application to Violators of IETF IPR Policy", RFC 6701,
 DOI 10.17487/RFC6701, August 2012,

[RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,

 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May

[RFC7624] Barnes, R., Schneier, B., Jennings, C., Hardie, T.,
 Trammell, B., Huitema, C., and D. Borkmann,
 "Confidentiality in the Face of Pervasive Surveillance: A
 Threat Model and Problem Statement", RFC 7624,
 DOI 10.17487/RFC7624, August 2015,

 RFC 7725, DOI 10.17487/RFC7725, February 2016,

 Profiles for DHCP Clients", RFC 7844,
 DOI 10.17487/RFC7844, May 2016,

[RFC8280] ten Oever, N. and C. Cath, "Research into Human Rights
 Protocol Considerations", RFC 8280, DOI 10.17487/RFC8280,

ten Oever (editor) Expires March 11, 2019
9.2. URIs

[1] mailto:hrpc@ietf.org

Author’s Address

Niels ten Oever
University of Amsterdam

EMail: mail@nielstenoever.net
New protocol elements for HTTP Status Code 451
draft-sahib-451-new-protocol-elements-03

Abstract

This document recommends additional protocol elements to Hypertext Transfer Protocol (HTTP) status code 451 (defined by RFC7725).

Discussion of this document was conducted on the Human Rights Protocol Considerations Research Group mailing list https://www.irtf.org/mailman/listinfo/hrpc [1], briefly on the HTTPBIS Working Group mailing list ietf-http-wg@w3.org [2] and on https://lists.ghserv.net/mailman/listinfo/statuscode451 [3].

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on February 2, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction ... 2
2. New Protocol Elements 2
 2.1. Blocking Authority 2
 2.2. Geographical Scope of Block 3
3. Security Considerations 3
4. IANA Considerations ... 3
5. Acknowledgements .. 3
6. References .. 4
 6.1. Normative References 4
 6.2. Informative References 4
 6.3. URIs .. 4
7. Author's Address ... 4

1. Introduction

[RFC7725] was standardized by the IETF in February 2016. It defined
HTTP status code 451 - to be used when "a server operator has
received a legal demand to deny access to a resource or to a set of
resources".

This document attempts to outline protocol recommendations that would
help make the status code more useful to users.

2. New Protocol Elements

2.1. Blocking Authority

An HTTP response with status code 451 should include a "Link" HTTP
header field [RFC8288] which has a "rel" parameter whose value is
"blocking-authority", in addition to the "blocked-by" header
specified in [RFC7725]. It's important to distinguish between the
implementer of the block, and the authority that mandated the block
in the first place [ERRATA_ID-5181]. This is because these two
organizations might not be the same - a government (the blocking
authority) could force an Internet Service Provider (the implementer
of the block) to deny access to a certain resource. Both provide
essential information about the legal block.
2.2. Geographical Scope of Block

HTTP status code 451 is increasingly being used to deny access to resources based on geographical location. The response should contain a provisional header named "geo-scope-block" that specifies the countries in which a resource is blocked. This scope should correspond to a comma-separated list of alpha-2 country codes defined in [ISO.3166-1]. The rationale for keeping the geographical scope to country-level granularity is that most blocks are mandated by national governments [IMPL_REPORT], [AUTOMATTIC_COUNTRY_BLOCK_LIST].

3. Security Considerations

This document does not add additional security considerations to [RFC7725].

4. IANA Considerations

The Link Relation Type Registry should be updated with the following entry:

- Relation Name: blocking-authority
- Description: Identifies the authority that has issued the block.
- Reference: this document

In addition, IANA should be updated with the following provisional header:

- Header field name: geo-scope-block
- Applicable protocol: http
- Status: provisional
- Specification document(s): this document

Acknowledgements

Thanks to Alp Toker, Niels ten Oever, Stephane Bortzmeyer, Corinne Cath, Christine Runnegar, and many others on the HRPC mailing list (linked above) for reviewing and brainstorming.
6. References

6.1. Normative References

[ERRATA_ID-5181]
Bortzmeyer, S., "[Technical Errata Reported] RFC7725 (5181)", 2017,

[ISO.3166-1]

[RFC8288] Nottingham, M., "Web Linking", RFC 8288,
DOI 10.17487/RFC8288, October 2017,

6.2. Informative References

[AUTOMATTIC_COUNTRY_BLOCK_LIST]
"Automattic - Country Block List", 2018,

[IMPL_REPORT]

6.3. URIs

[2] mailto:ietf-http-wg@w3.org

Author’s Address

Shivan Kaul Sahib
EMail: shivankaulsahib@gmail.com
Abstract

This document scopes the relation between Internet protocols and the right to freedom of assembly and association. Increasingly, the Internet mediates our lives, our relationships and our ability to exercise our human rights. The Internet provides a global public space, but one that is built predominantly on private infrastructure. Since Internet protocols play a central role in the management, development and use of the Internet, the relation between protocols and the aforementioned rights should be documented and any adverse impacts of this relation should be mitigated.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 30, 2018.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents.
carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction 2
2. Vocabulary used 3
3. Research questions 5
4. Methodology 5
5. Literature Review 5
6. Cases and examples 7
 6.1. Conversing 7
 6.1.1. Mailing Lists 7
 6.1.2. Multi-party video conferencing 8
 6.1.3. Internet Relay Chat 8
6.2. Peer-to-peer networks and systems 9
 6.2.1. Peer-to-peer system architectures 9
 6.2.2. Version control 11
6.3. Grouping together (identities) 11
 6.3.1. DNS 12
 6.3.2. Autonomous Systems 12
8. Conclusions 14
9. Acknowledgements 15
10. Security Considerations 15
11. IANA Considerations 15
12. Research Group Information 15
13. References 15
 13.1. Informative References 15
 13.2. URIs 22
Authors’ Addresses 22

1. Introduction

"We shape our tools and, thereafter, our tools shape us."\#8203;
- John Culkin (1967)

The Internet is a technology which shapes modern information societies. The ordering that the Internet provides is socio-technical, in other words, the Internet infrastructure and architecture consists of social and technological arrangements [StarRuhleder]. This ordering is not always apparent because infrastructure also tends to hide itself in the societal woodwork [Mosco], or with [Weiser]: ‘The most profound technologies are those that disappear’. Next to that infrastructure is often taken for

ten Oever & Perez de AchExpires November 30, 2018 [Page 2]
The rights to freedom of assembly and association protect collective expression, in turn, systems and protocols that enable communal communication between people and servers allow these rights to prosper. The Internet itself was originally designed as "a medium of communication for machines that share resources with each other as equals" [NelsonHedlun], the Internet thus forms a basic infrastructure for the right freedom of assembly and association.

The manner in which communication is designed and implemented impacts the ways in which rights can be exercised. For instance a decentralized and resilient architecture that protects anonymity and privacy, offers a strong protection for the exercise of such freedoms in the online environment. At the same time, centralized solutions have enabled people to group together in recognizable places and helped the visibility of groups. In other words, different architectural designs come with different affordances, or characteristics. These characteristics should be taken into account at the time of design, and when designing, updating and maintaining other parts of the architecture and infrastructure.

This draft continues the work started in [RFC8280] by investigating the exact impact of Internet protocols on specific human rights, namely the right to freedom of assembly and association given their importance for the Internet, in order to mitigate (potential) negative impacts.

2. Vocabulary used

Architecture The design of a structure

Autonomous System (AS) Autonomous Systems are the unit of routing policy in the modern world of exterior routing [RFC1930].

Within the Internet, an autonomous system (AS) is a collection of connected Internet Protocol (IP) routing prefixes under the control of one or more network operators on behalf of a single administrative entity or domain that presents a common, clearly defined routing policy to the Internet [RFC1930].
The classic definition of an Autonomous System is a set of routers under a single technical administration, using an interior gateway protocol and common metrics to route packets within the AS, and using an exterior gateway protocol to route packets to other ASs [RFC1771].

Connectivity The extent to which a device or network is able to reach other devices or networks to exchange data. The Internet is the tool for providing global connectivity [RFC1958]. Different types of connectivity are further specified in [RFC4084]. The combination of the end-to-end principle, interoperability, distributed architecture, resilience, reliability and robustness are the enabling factors that result in connectivity to and on the Internet.

Decentralization Implementation or deployment of standards, protocols or systems without one single point of control.

Distributed system A system with multiple components that have their behavior co-ordinated via message passing. These components are usually spatially separated and communicate using a network, and may be managed by a single root of trust or authority. [Troncosoetal]

Infrastructure Underlying basis or structure for a functioning society, organization or community. Because infrastructure is a precondition for other activities it has a procedural, rather than static, nature due to its social and cultural embeddedness [Pipekwulf] [Bloketal]. This means that infrastructure is always relational: infrastructure always develops in relation to something or someone [Bowker].

Internet The Network of networks, that consists of Autonomous Systems that are connected through the Internet Protocol (IP).

A persistent socio-technical system over which services are delivered [Mainwaringetal],

A techno-social assemblage of devices, users, sensors, networks, routers, governance, administrators, operators and protocols

An emergent-process-driven thing that is born from the collections of the ASes that happen to be gathered together at any given time. The fact that they tend to interact at any given time means it is
an emergent property that happens because they use the protocols defined at IETF.

3. Research questions

1. How does the internet architecture enable and/or inhibit freedom of association and assembly?

2. If the Internet is used to exercise the right to freedom of association, what are the implications for its architecture and infrastructure?

4. Methodology

In order to answer the research questions, first a number of cases have been collected to analyze where Internet infrastructure and protocols have either enabled or inhibited groups of people to collaborate, cooperate or communicate. This overview does not aim to cover all possible ways in which people can collectively organize or reach out to each other using Internet infrastructure and Internet protocols, but rather cover typical uses in an attempt at an ethnography of infrastructure [Star]. Subsequently we analyze the cases with the theoretical framework provided in the literature review and provide recommendations based on the findings.

5. Literature Review

The rights to freedom of assembly and association protects and enables collective action and expression [UDHR] [ICCPR]. These rights ensure everyone in a society has the opportunity to express the opinions they hold in common with others, which in turn facilitates dialogue among citizens, as well as with political leaders or governments [OSCE]. This is relevant because in the process of democratic deliberation, causes and opinions are more widely heard when a group of people come together behind the same cause or issue [Tocqueville].

In international law, the rights to freedom of assembly and association protect any collective, gathered either permanently or temporarily for "peaceful" purposes. It is important to underline the property of "freedom" because the right to freedom of association and assembly are voluntary and uncoerced: anyone can join or leave a group of choice, which in turn means one should not be forced to either join, stay or leave.

The difference between freedom of assembly and freedom of association is merely gradual one: the former tends to have an informal and ephemeral nature, whereas the latter refers to established and
permanent bodies with specific objectives. Nonetheless, one and the other are protected to the same degree.

An assembly is an intentional and temporary gathering of a collective in a private or public space for a specific purpose: demonstrations, indoor meetings, strikes, processions, rallies or even sits-in [UNHRC]. Association on the other hand has a more formal and established nature. It refers to a group of individuals or legal entities brought together in order to collectively act, express, pursue or defends a field of common interests [UNGA]. Within this category we can think about civil society organizations, clubs, cooperatives, NGOs, religious associations, political parties, trade unions or foundations.

The right to freedom of assembly and association is quintessential for the Internet, even if privacy and freedom of expression are the most discussed human rights when it comes to the online world. Online association and assembly are crucial to mobilise groups and people where physical gatherings have been impossible or dangerous [APC]. Throughout the world—from the Arab Spring to Latin American student movements and the #WomensMarch— the Internet has also played a crucial role by providing a means for the fast dissemination of information that was otherwise mediated by broadcast media, or even forbidden by the government [Pensado]. According to Hussain and Howard the Internet helped to "build solidarity networks and identification of collective identities and goals, extend the range of local coverage to international broadcast networks" and as platform for contestation for "the future of civil society and information infrastructure" [HussainHoward].

The IETF itself, defined as a 'open global community' of network designers, operators, vendors, and researchers, is also protected by freedom of assembly and association [RFC3233]. Discussions, comments and consensus around RFCs are possible because of the collective expression that freedom of association and assembly allow. The very word "protocol" found its way into the language of computer networking based on the need for collective agreement among network users [HafnerandLyon].

We are aware that some of these examples go beyond the use of Internet protocols and flow over into the applications layer or examples in the offline world whereas the purpose of the following document is to break down the relationship between Internet protocols and the right to freedom of assembly and association. Nonetheless, given that protocols are a part of the socio-technical ordering of reality, we do recognize that in some cases the line between them and applications, implementations, policies and offline realities are often blurred and hard (if not impossible) to differentiate.
6. Cases and examples

The Internet has become a central mediator for collective action and collaboration. This means the Internet has become a strong enabler of the rights of freedom of association and assembly.

Here we will discuss different cases to give an overview of how the Internet protocol and architecture facilitates the freedom of assembly and association.

6.1. Conversing

An interactive conversation between two or more people forms the basis for people to organize and associate. According to Anderson "the relationship between political conversation and engagement in the democratic process is strong." [Anderson]. By this definition, what defines the "political" is essentially assembly or association: a basis for the development of social cohesion in society.

6.1.1. Mailing Lists

Since the beginning of the Internet mailing lists have been a key site of assembly and association [RFC0155] [RFC1211]. In fact, mailing lists were one of the Internet’s first functionalities [HafnerandLyon].

In 1971, four years after the invention of email, the first mailing list was created to talk about the idea of using Arpanet for discussion. What had initially propelled the Arpanet project forward as a resource sharing platform was gradually replaced by the idea of a network as a means of bringing people together [Abbate]. More than 45 years after, mailing lists are pervasive and help communities to engage, have discussion, share information, ask questions, and build ties. Even as social media and discussion forums grow, mailing lists continue to be widely used [AckermannKargerZhang]. They are a crucial tool to organise groups and individuals around themes and causes [APC].

Mailing lists are still in wide use, also in the IETF because they allow for easy association and allow people to subscribe (join) and unsubscribe (leave) as they please. They also allow for association of specific groups on closed lists. Finally the archival function allows for accountability. The downsides of mailing lists are similar to the ones generally associated with e-mail, except that end-to-end encryption such as OpenPGP [RFC4880] and S/MIME [RFC5751] is not possible because the final recipients are not known. There have been experimental solutions to address this issue such as Schleuder [Schleuder], but this has not been standardized or widely deployed.
6.1.2. Multi-party video conferencing

Multi-party video conferencing protocols such as WebRTC [RFC6176] [RFC7118] allow for robust, bandwidth-adaptive, wideband and super-wideband video and audio discussions in groups. The WebRTC protocol was designed to enable responsive real-time communications over the Internet, and is instrumental in allowing streaming video and conferencing applications to run in the browser. In order to easily facilitate direct connections between computers (bypassing the need for a central server to act as a gatekeeper), WebRTC provides functionality to automatically collect the local and public IP addresses of Internet users (ICE or STUN). These functions do not require consent from the user, and can be instantiated by sites that a user visits without their awareness. The potential privacy implications of this aspect of WebRTC are well documented, and certain browsers have provided options to limit its behavior.’ [AndersonGuarnieri].

While facilitating freedom of assembly and association multi-party video conferencing tools might pose concrete risks for those who use them. One the one hand WebRTC is providing resilient channels of communications, but on the other hand it also exposes information about those who are using the tool which might lead to increased surveillance, identification and the consequences that might be derived from that. This is especially concerning because the usage of a VPN does not protect against the exposure of IP addresses [Crawford].

The risk of surveillance is also true in an offline space, but this is generally easy to analyze for the end-user. Security and privacy expectations of the end-user could be made more clear to the user (or improved) which would result in a more secure and/or private exercise of the right to freedom of assembly or association.

6.1.3. Internet Relay Chat

Internet Relay Chat (IRC) is an application layer protocol that enables communication in the form of text through a client/server networking model [RFC2810]. In other words, a chat service. IRC clients are computer programs that a user can install on their system. These clients communicate with chat servers to transfer messages to other clients.

For order to be kept within the IRC network, special classes of users become "operators" and are allowed to perform general maintenance functions on the network: basic network tasks such as disconnecting (temporary or permanently) and reconnecting servers as needed [RFC2812]. One of the most controversial power of operators is the
ability to remove a user from the connected network by 'force', i.e., operators are able to close the connection between any client and server [RFC2812].

IRC servers may deploy different policies for the ability of users to create their own channels or 'rooms', and for the delegation of 'operator'-rights in such a room. Some IRC servers support SSL/TLS connections for security purposes [RFC7194]. This helps stop the use of packet sniffer programs to obtain the passwords of IRC users, but has little use beyond this scope due to the public nature of IRC channels. TLS connections require both client and server support (that may require the user to install TLS binaries and IRC client specific patches or modules on their computers). Some networks also use TLS for server to server connections, and provide a special channel flag (such as +S) to only allow TLS-connected users on the channel, while disallowing operator identification in clear text, to better utilize the advantages that TLS provides.

6.2. Peer-to-peer networks and systems

At the organizational level, peer production is one of the most relevant innovations from Internet mediated social practices. According to [Benkler], it implies 'open collaborative innovation and creation, performed by diverse, decentralized groups organized principally by neither price signals nor organizational hierarchy, harnessing heterogeneous motivations, and governed and managed based on principles other than the residual authority of ownership implemented through contract.' [Benkler].

In his book The Wealth of Networks, Benkler significantly expands on his definition of commons-based peer production. According to Benkler, what distinguishes commons-based production is that it doesn't rely upon or propagate proprietary knowledge: "The inputs and outputs of the process are shared, freely or conditionally, in an institutional form that leaves them equally available for all to use as they choose at their individual discretion." [Benkler] To ensure that the knowledge generated is available for free use, commons-based projects are often shared under an open license.

6.2.1. Peer-to-peer system architectures

Peer-to-peer (P2P) is essentially a model of how people interact in real life because "we deal directly with one another whenever we wish to" [Vu]. Usually if we need something we ask our peers, who in turn refer us to other peers. In this sense, the ideal definition of P2P is that "nodes are able to directly exchange resources and services between themselves without the need for centralized servers" and where each participating node typically acts both as a server and as
a client [Vu]. In RFC 5694 P2P has been defined as peers or nodes that should be able to communicate directly between themselves without passing intermediaries, and that the system should be self-organizing and have decentralized control [RFC5694]. With this in mind, the ultimate model of P2P is a completely decentralized system, which is more resistant to speech regulation, immune to single points of failure and have a higher performance and scalability. Nonetheless, in practice some P2P systems are supported by centralized servers and some others have hybrid models where nodes are organized into two layers: the upper tier servers and the lower tier common nodes [Vu].

Since the ARPANET project, the original idea behind the Internet was conceived as what we would now call a peer-to-peer system [RFC0001]. Over time it has increasingly shifted towards a client/server model with "millions of consumer clients communicating with a relatively privileged set of servers" [NelsonHedlun].

Whether for resource sharing or data sharing, P2P systems are enabling freedom of assembly and association. Not only do they allow for effective dissemination of information, but because they leverage computing resources by diminishing costs allowing for the formation of open collectives at the network level. At the same time, in completely decentralized systems the nodes are autonomous and can join or leave the network as they want, which also makes the system unpredictable: a resource might be only sometimes available, and some other resources might be missing or incomplete [Vu]. Lack of information might in turn make association or assembly more difficult.

Additionally, when one architecturally assesses the role of P2P systems one can say that: "The main advantage of centralized P2P systems is that they are able to provide a quick and reliable resource locating. Their limitation, however, is that the scalability of the systems is affected by the use of servers. While decentralized P2P systems are better than centralized P2P systems in this aspect, they require a longer time in resource locating. As a result, hybrid P2P systems have been introduced to take advantage of both centralized and decentralized architectures. Basically, to maintain the scalability, similar to decentralized P2P systems, there are no servers in hybrid P2P systems. However, peer nodes that are more powerful than others can be selected to act as servers to serve others. These nodes are often called super peers. In this way, resource locating can be done by both decentralized search techniques and centralized search techniques (asking super peers), and hence the systems benefit from the search techniques of centralized P2P systems." [Vu]
6.2.2. Version control

Ever since developers needed to collaboratively write, maintain and discuss large code basis for the Internet there have been different approaches of doing so. One approach is discussing code through mailing lists, but this has proven to be hard in case of maintaining the most recent versions. There are many different versions and characteristics of version control systems.

A version control system is a piece of software that enables developers on a software team to work together and also archive a complete history of their work [Sink]. This allows teams to be working simultaneously on updated versions. According to Sink, broadly speaking, the history of version control tools can be divided into three generations. In the first one, concurrent development meant that only one person could be working on a file at a time. The second generation tools permit simultaneous modifications as long as users merge the current revisions into their work before they are allowed to commit. The third generation tools allow merge and commit to be separated [Sink].

Interestingly no version control system has ever been standardized in the IETF whereas the version control systems like Subversion and Git are widely used within the community, as well as by working groups. There has been a spirited discussion on whether working groups should use centralized forms of the Git protocol, such as those offered by Gitlab or Github. Proponents argue that this simplifies the workflow and allows for a more transparent workflow. Opponents argue that the reliance on a centralized service which is not merely using the Git protocol, but also uses non-standardized options like an Issue-Tracker, makes the process less transparent and reliant on a third party.

The IETF has not made a decision on the use of centralized instances of Git, such as Github or Gitlab. There have been two efforts to standardize the workflow vis a vis these third party services, but these haven’t come to fruition: [Wugh] [GithubIETF].

6.3. Grouping together (identities)

Collective identities are also protected by freedom of association and assembly. According to Melucci these are ‘shared definitions produced by several interacting individuals who are concerned with the orientation of their action as well as the field of opportunities and constraints in which their action takes place.’ [Melucci] In this sense, assemblies and associations are an important base in the maintenance and development of culture, as well as preservation of minority identities [OSCE].
6.3.1. DNS

Domain names allow hosts to be identified by human parsable information. Whereas an IP address might not be the expression of an identity, a domain name can be, and often is. On the other hand the grouping of a certain identity under a specific domain or even a Top Level Domain brings about risks because connecting an identity to a hierarchically structured identifier systems creates a central attack surface. Some of these risks are the surveillance of the services running on the domain, domain based censorship [RFC7754], or impersonation of the domain through DNS cache poisoning. Several technologies have been developed in the IETF to mitigated these risks such as DNS over TLS [RFC7858], DNSSEC [RFC4033], and TLS [RFC5246]. These mitigations would, when implemented, not make censorship impossible, but rather make it visible. The use of a centralized authority always makes censorship through a registry or registrar possible, as well as by using a fake resolver or using proposed standards such as DNS Response Policy Zones [RPZ].

The structuring of DNS as a hierarchical authority structure also brings about a specific characteristic, namely the possibility of centralized policy making vis a vis the management and operation of Top Level Domains, which is what (in part) happens at ICANN. The impact of ICANN processes on human rights will not be discussed here.

6.3.2. Autonomous Systems

In order for edge-users to connect to the Internet, they need to be connected to an Autonomous System (AS) which, in turn, has peering or transit relations with other AS’es. This means that in the process of accessing the Internet, edge-users need to accept the policies and practices of the intermediary that provides them access to the other networks. In other words, for users to be able to join the ‘network of networks’, they always need to connect through an intermediary.

While accessing the Internet through an intermediary, the user is forced to accept the policies, practices and principles of a network. This could impede the rights of the edge-user, depending on the implemented policies and practices on the network and how (if at all) they are communicated to them. For example: filtering, blocking, extensive logging, slowing down connection or specific services, or other invasive practices that are not clearly communicated to the user.

In some cases it also means that there is no other way for the edge-user to connect to the network of networks, and is thus forced into accepting the policies of a specific network, because it is not trivial for an edge-user to operate an AS and engage in peering
relation with other ASes. This design, combined with the increased importance of the Internet to make use of basic services, forces edge-user to engage in association with a specific network even though the user does not consent to the policies of the network.

It can be noted also that there is no standard and deployed way for the edge-user to choose the routes her packets will go through. [RFC0791], section 3.1, standardized "source routing" but it was never deployed, mostly because of serious security issues. There is not even a way for the edge-user to know about the routes that packets have actually taken, and which ASes a packet has traversed. [RFC0791], section 3.1, standardized "record route" but it was never deployed. In practice, the user must accept policies of ASes he has no relationship with, and didn’t choose. For instance, there is no way to direct the packets to avoid the Five Eyes, not even to know after the fact where the packet went. [FiveEyes] [SchengenRouting] (Traceroutes give you an idea but the path may change before and after the traceroute.)

7. Discussion: Protocols vs Platforms

The Internet is increasingly becoming a vehicle for commercial, proprietary, non-interoperable platforms. The Internet has always allowed for closed-off networks, but the current trend show the rise of a small number of very large non-interoperable platforms. Chat has moved from XMPP and IRC to Facebook Messenger, WhatsApp and WeChat and there has been a strong rise of social media networks with large numbers of users, such as Facebook, Twitter and Instagram. A similar trend can be found among e-mail providers, with the significant difference that e-mail is interoperable.

Often these non-interoperable platforms are built on open-protocols but do not allow for inter-operability or data-portability. In the case of these large platforms this leads to strong network externalities, also know as a network effect; because the users are there, users will be there. The use of social-media platforms has enabled groups to associate, but is has also led to a 'tactical freeze' because of the inability to change the platforms [Tufekci]. Whereas these networks are a ready-to-hand networked public sphere, they do not allow their inhabitants to change, or fully understand, their workings.

This potentially has a significant impact on the distributed nature of the Internet [RFC1287].
8. Conclusions

This document scopes the relation between Internet protocols and the right to freedom of assembly and association. For this reason, the current research started out with two main questions. First, how does the internet architecture enable and/or inhibit freedom of association and assembly? And secondly: if the Internet is used to exercise the right to freedom of association, what are the implications for its architecture and infrastructure?

Communities, collaboration and joint action lie at the heart of the Internet. Even at a linguistic level, the words "networks" and "associations" are close synonyms. Both interconnected groups and assemblies of people depend on "links" and "relationships" [Swire]. Taking legal definitions given in international human rights law jurisprudence, we could assert that the right to freedom of assembly and association protect collective expression. These rights protect any collective, gathered either permanently or temporarily for "peaceful" purposes. It is voluntary and uncoerced.

Regarding the first question, we argued that given that the Internet itself was originally designed as a medium of communication for machines that share resources with each other as equals, the Internet is one of the most basic infrastructures for the right to freedom of assembly and association. Since Internet protocols play a central role in the management, development and use of the Internet, we established the relation between some protocols and the right to freedom of assembly and association.

Regarding the second question, after reviewing protocols that allow mailing lists, to multi-party video conferencing, IRC, peer-to-peer architectures, version control or the functioning of autonomous systems, we can conclude that the way in which infrastructure is designed and implemented impacts the exercise of freedom of assembly and association. This is because different architectural designs come with different affordances, or characteristics. If a decentralized architecture protects anonymity and privacy, both freedoms in the online environment will be enabled. On the other hand, centralized solutions have allowed users to group together and visualise groups. enabled people to group together in recognizable places and helped the visibility of groups.

Lastly, the increasing shift towards closed and non-interoperable platforms in chat and social media networks have a significant impact on the distributed and open nature of the Internet. Often these non-interoperable platforms are built on open-protocols but do not allow for interoperability or data-portability. The use of social-media platforms has enabled groups to associate, but is has also rendered
users unable to change platforms, therefore leading to a sort of "forced association" that stirs faraway from freedom.

9. Acknowledgements

- Fred Baker, Jefsey, and Andrew Sullivan for work on Internet definitions
- Stephane Bortzmeyer for several concrete text suggestions that found their way in this document (such as the AS filtering example)
- Mark Perkins for finding a lot of typos
- the hrpc mailinglist at large for a very constructive discussion on a hard topic.

10. Security Considerations

As this draft concerns a research document, there are no security considerations.

11. IANA Considerations

This document has no actions for IANA.

12. Research Group Information

The discussion list for the IRTF Human Rights Protocol Considerations Research Group is located at the e-mail address hrpc@ietf.org [1]. Information on the group and information on how to subscribe to the list is at https://www.irtf.org/mailman/listinfo/hrpc [2].

Archives of the list can be found at: https://www.irtf.org/mail-archive/web/hrpc/current/index.html [3]

13. References

13.1. Informative References

[AckermannKargerZhang]

[Anderson]

[AndersonGuarnieri]

[APC]

[Benkler]

[Bloketal]

[Bowker]

[Crawford]
[FiveEyes]

[GithubIETF]

[Haas]

[HafnerandLyon]

[HussainHoward]

[ICCPR]

[Mainwaringetal]

[Melucci]

ten Oever & Perez de AchExpires November 30, 2018[Page 18]

[Schleuder]
Nadir, "Schleuder - A gpg-enabled mailinglist with remailing-capabilities.", 2017,
https://schleuder.nadir.org/.

[Sink]
Sink, E., "Version Control by Example", 2011,
http://ericsink.com/vcbe/.

[Star]

[StarRuhleder]

[Swire]

[Tocqueville]

[Troncosoetal]

[Tufekci]
Tufekci, Z., "Twitter and Tear Gas: The Power and Fragility of Networked Protest", 2017,
https://www.twitterandteargas.org/.

[UDHR]
United Nations General Assembly, "The Universal Declaration of Human Rights", 1948,
13.2. URIs

[1] mailto:hrpc@ietf.org

Authors’ Addresses

Niels ten Oever
University of Amsterdam
EMail: mail@nielstenoever.net

Gisela Perez de Acha
Derechos Digitales
EMail: gisela@derechosdigitales.org
On the Politics of Standards
draft-tenoever-hrpc-political-05

Abstract

The IETF cannot ordain which standards or protocols are to be used on network, but the standards developing process in the IETF has a normative effect. Among other things the standardisation work at the IETF has implications on what is perceived as technologically possible and useful where networking technologies are being deployed, and its standards output reflect was is considered by the technical community as feasible and good practice. Because mediates many aspects of modern life, and therefore contributes to the ordering of societies and communities, the consideration of the politics and (potential) impact of protocols should be part of the standardization and development process.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 20, 2018.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents
1. Introduction

"Science and technology lie at the heart of social asymmetry. Thus technology both creates systems which close off other options and generate novel, unpredictable and indeed previously unthinkable, option. The game of technology is never finished, and its ramifications are endless.

- Michel Callon
The design of the Internet through protocols and standards is a technical issue with great political and economic impacts [RFC0613]. The early Internet community already realized that it needed to make decisions on political issues such as Intellectual Property, Internationalization [BramanI], diversity, access [RFC0101] privacy and security [RFC0049], and the military [RFC0164] [RFC0316], governmental [RFC0144] [RFC0286] [RFC0313] [RFC0542] [RFC0549] and non-governmental [RFC0196] uses, which has been clearly pointed out by Braman [BramanII].

Recently there has been an increased discussion on the relation between Internet protocols and human rights [RFC8280] which spurred the discussion on the political nature of standards. The network infrastructure is on the one hand designed, described, developed, standardized and implemented by the Internet community, but the Internet community and Internet users are also shaped by the affordances of the technology. Companies, citizens, governments, standards developing bodies, public opinion and public interest groups all play a part in these discussions. In this document we aim to outline different views on the relation between standards and politics and seek to answer the question whether standards are political, and if so, how.

2. Vocabulary Used

Politics (from Greek: Politika: Politika, definition "affairs of the commons") is the process of making decisions applying to all members of a diverse group with conflicting interests. More narrowly, it refers to achieving and exercising positions of governance or organized control over a community. Furthermore, politics is the study or practice of the distribution of power and resources within a given community as well as the interrelationship(s) between communities. (adapted from [HagueHarrop])

Affordances The possibilities that are provided to an actors through the ordering of an environment by a technology.

Protocols ‘Protocols are rules governing communication between devices or applications, and the creation or manipulation of any logical or communicative artifacts concomitant with such communication.’ [Sisson]

Standards ‘An Internet Standard is a specification that is stable and well-understood, is technically competent, has multiple, independent, and interoperable implementations with substantial operational experience, enjoys significant public support, and is
recognizably useful in some or all parts of the Internet.’
[RFC2026]

3. Research Question

Are protocols political? If so, should the politics of protocols need to be taken into account in their development process?

4. Technology and Politics: a literature review

In 1993 the Computer Professionals for Social Responsibility stated that ‘the Internet should meet public interest objectives’, similarly [RFC3935] states that 'The Internet isn’t value-neutral, and neither is the IETF.’. Ethics and the Internet was already a topic of an RFC by the IAB in 1989 [RFC1097]. Nonetheless there has been a recent uptick in discussions around the impact of Internet protocols on human rights [RFC8280] in the IETF and more general about the impact of technology on society in the public debate.

This document aims to provide an overview of the spectrum of different positions that have been observed in the IETF and IRTF community, during participatory observation, through 39 interviews with members of the community, the Human Rights Protocol Considerations Research Group mailinglist and during and after the Technical Plenary on Protocols and Human Rights during IETF98. Without judging them on their internal or external consistency they are represented here, where possible we sought to engage with academic literature on this topic.

4.1. Technology is value neutral

This position starts from the premise that the technical and political are differentiated fields and that technology is ‘value free’. This is also put more explicitly by Carey: "electronics is neither the arrival of apocalypse nor the dispensation of grace. Technology is technology; it is a means for communication and transportation over space, and nothing more." [Carey]. In this view protocols only become political when it is actually being used by humans. So the technology itself is not political, the use of the technology is. This view sees technology as instrument; "technologies are ‘tools’ standing ready to serve the purposes of their users. Technology is deemed ‘neutral,’ without valutative content of its own.’" [Feenberg]. Feenberg continues: "technology is not inherently good or bad, and can be used to whatever political or social ends desired by the person or institution in control. Technology is a ‘rational entity’ and universally applicable. One may make exceptions on moral grounds, but one must also understand
that the "price for the achievement of environmental, ethical, or religious goals...is reduced efficiency." [Feenberg].

4.2. Some protocols are political some times

This stance is a pragmatic approach to the problem. It states that some protocols under certain conditions can themselves have a political dimension. This is different from the claim that a protocol might sometimes be used in a political way; that view is consistent with the idea of the technology being neutral (for the human action using the technology is where the politics lies). Instead, this position requires that each protocol and use be evaluated for its political dimension, in order to understand the extent to which it is political.

4.3. All protocols are political sometimes

While not an absolutist standpoint it recognizes that all design decisions are subject to the law of unintended consequences. The system consisting of the Internet and its users is vastly too complex to be predictable; it is chaotic in nature; its emergent properties cannot be predicted. This concept strongly hinges on the general purpose aspect of information technology and its malleability. Whereas not all (potential) behaviours, affordances and impacts of protocols can possible be predicted, one could at least consider the impact of proposed implementations.

4.4. The network has its own logic and values

While humans create technologies, this does not mean that they are forever under human control. A technology, once created, has its own logic that is independent of the human actors that either create or use the technology.

From this perspective, technologies can shape the world. As Martin Heidegger says, "The hydroelectric plant is not built into the Rhine River as was the old wooden bridge that joined bank with bank for hundreds of years. Rather the river is dammed up into the power plant. What the river is now, namely, a water power supplier, derives from out of the essence of the power station." [Heidegger] (p 16) The dam in the river changes the world in a way the bridge does not, because the dam alters the nature of the river.

In the same way -in another and more recent example- the very existence automobiles impose physical forms on the world different from those that come from the electric tram or the horse-cart. The logic of the automobile means speed and the rapid covering of distance, which encourages suburban development and a tendency toward
conurbation. But even if that did not happen, widespread automobile use requires paved roads, and parking lots and structures. These are pressures that come from the automotive technology itself, and would not arise without that technology.

In much same way, then, networking technology, such as protocols, creates its own demands. One of the most important conditions for protocol success is its incremental deployability [RFC5218]. This means that the network already contains constrains on what can be deployed into it. In this sense the network creates its own paths, but also has its own objective. According to this view the goal of the network is interconnection and connectivity; more connectivity is good for the network. Proponents of this position also often describe the Internet as an organism with its own unique ecosystem.

In this position it is not necessarily clear where the ‘social’ ends and the ‘technical’ begins, and it could be argued that the distinction itself is a social construction [BijkerLaw] or that a real-life distinction between the two is hard to be made [Bloor].

4.5. Protocols are inherently political

This position argues the opposite of ‘technological neutrality’. This position can be illustrated with Postman where he writes: ‘the uses made of technology are largely determined by the structure of the technology itself’ [Postman]. He states that the medium itself ‘contains an ideological bias’. He continues to argue that technology is non-neutral:

(1) because of the symbolic forms in which information is encoded, different media have different intellectual and emotional biases; (2) because of the accessibility and speed of their information, different media have different political biases; (3) because of their physical form, different media have different sensory biases; (4) because of the conditions in which we attend to them, different media have different social biases; (5) because of their technical and economic structure, different media have different content biases.

Recent scholars of Internet infrastructure and governance have also pointed out that Internet processes and standards have become part and parcel of political processes and public policies. Several concrete examples are found within this approach, for instance, the IANA transition or global innovation policy [DeNardis]. The Raven process in which the IETF refused to standardize wiretapping -which resulted in [RFC2804]- was an instance where an international governance body took a position that was largely political, although driven by a technical argument. The process that led to [RFC6973] is similar: the Snowden disclosures which occurred in the political
space, engendered the IETF to act. This is summarized in [Abbate] who says: "protocols are politics by other means", emphasizing the interests that are at play in the process of designing standards.

This position further holds that protocols can never be understood without their contextual embeddedness: protocols do not exist solely by themselves but always are to be understood in a more complex context - the stack, hardware, or nation-state interests and their impact on civil rights. Finally, this view is that that protocols are political because they affect or sometimes effect the socio-technical ordering of reality. The latter observation leads Winner to conclude that the reality of technological progress has too often been a scenario where the innovation has dictated change for society. Those who had the power to introduce a new technology also had the power to create a consumer class to use the technology 'with new practices, relationships, and identities supplanting the old, --and those who had the wherewithal to implement new technologies often molded society to match the needs of emerging technologies and organizations.' [Winner].

5. IETF: Protocols as Standards

In the previous section we gave an overview of the different existing positions of the impact of Internet protocols in the Internet community. In the following section we will consider the standards setting process and its consequences for the politics of protocols.

Standards enabling interoperating networks, what we think of today as the Internet, were created as open, formal and voluntary standards. A platform for internet standardisation, the Internet Engineering Task Force (IETF), was created in 1992 to enable the continuation of such standardisation work. The IETF has sought to make the standards process transparent (by ensuring everyone can access standards, mailing-lists and meetings), predictable (by having clear procedures and reviews) and of high quality (by having draft documents reviewed by members from its own epistemic community). This is all aimed at increasing the accountability of the process and the quality of the standard.

The IETF implements what has been referred to as an "informal ex ante disclosure policy" for patents [Contreras], which includes the possibility for participants to disclose the existence of a patent relevant for the standard, royalty-terms which would apply to the implementors of that standard should it enter into effect, as well as other licensing terms that may be interesting for implementors to know. The community ethos in the IETF seems to lead to 100% royalty-free disclosures of prior patents which is a record number, even among other comparable standard organisations [Contreras].
5.1. Competition and collaboration

Standards exist for nearly everything: processes, technologies, safety, hiring, elections, and training. Standards provide blueprints for how to accomplish a particular task in a similar way for others that are trying to accomplish the same thing, while reducing overhead and inefficiencies. Although there are different types and configurations of standards, they all enhance competition by allowing different entities to work from a commonly accepted baseline.

On the first types of standards than can be found are "informal" ones—agreed upon normal ways of interacting within a specific community. For example, the process through which greetings to a new acquaintance are expressed through a bow, a handshake or a kiss. On the other hand "formal" standards, are normally codified in writing. The next subsection will —-

Within economy studies, _de facto_ standards arise in market situations where one entity is particularly dominant; downstream competitors are therefore tied to the dominant entity’s technological solutions [Ahlborn]. Under EU anti-trust law, de facto standards have been found to restrict competition for downstream services in PC software products [CJEU2007], as well as downstream services dependent on health information [CJEU2004].

Even in international law, the World Trade Organisation (WTO) uses standards, although it recognises a difference between standards and technical regulations. The former are voluntary formal codes to which products or services may conform, while technical regulations are mandatory requirements to be fulfilled for a product to be accessible on one of the WTO country markets. These rules have implications for how nation states bounded by the WTO agreements can impose specific technical requirements on companies. Nonetheless, there are many standardisation groups that were originally launched by nation states or groups of nation states. ISO, BIS, CNIS, NIST, ABNT and ETSI are examples of institutions that are, wholly or partially, sponsored by public money in order to ensure smooth development of formal standards. Even if under WTO rules these organisations cannot create the equivalent of a technical regulation, they have important normative functions in their respective countries. No matter what form, all standards enhance competition and collaboration because they define a common approach to a problem. This potentially allows different instances to interoperable or be evaluated according to the same indicators.

The development of formal standards faces a number of economic and organisational challenges. Mainly, the cost and difficulty of organising many entities around a mutual goal, as well as the cost of
research and development leading up to a mutually beneficial
technological platform. In addition, deciding what the mutual goal is can also be a problem. These challenges may be described as inter-organisational costs. Even after a goal is decided upon, coordination of multiple entities requires time and money. One needs communication platforms, processes and a commitment to mutual investment in a higher good. They are not simple tasks, and the more different communities are affected by a particular standardisation process, the more difficult the organisational challenges become.

5.2. IETF standards setting externalities

In spite of a strong community ethos and transparent procedures, the IETF is not immune to externalities.

5.2.1. Finance

Sponsorship to the IETF is varied, but is also of the nature that ongoing projects that are in the specific interest of one or some group of corporations may be given more funding than other projects (see [draft-finance-thoughts]). The IETF has faced three periods of decreased commitment from participants in funding its meetings in the past ten years, leading, naturally, to self-scrutiny, see for instance [IAOC69], [IAOC77], [IAOC99].

5.2.2. Interoperability and backward compatibility

The need for interoperability, and backward compatibility makes engineering work harder. And once a standard is designed, it does not automatically mean it will be broadly adopted at a fast pace. Examples of this are IPv6, DNSSEC, DKIM, etc. The need for interoperability means that a new protocol needs to take into account a much more diverse environment than early protocols, and also be amendable to different needs: protocols needs to relate and negotiate in a busy agora, as do the protocol developers. This means that some might get priority, whereas others get dropped.

5.2.3. Competition between layers

There is a competition between layers, and even contestation about what the borders of different layers are. This leads to competition between layers and different solutions for similar problems on different layers, which in its turn leads to further ossification, which leads to more contestation.
5.3. How voluntary are open standards?

Coordinating transnational stakeholders in a process of negotiation and agreement through the development of common rules is a form of global governance [Nadvi]. Standards are among the mechanisms by which this governance is achieved. Conformance to certain standards is often a basic condition of participation in international trade and communication, so there are strong economic and political incentives to conform, even in the absence of legal requirements [Russell]. [RogersEden] argue:

"As unequal participants compete to define standards, technological compromises emerge, which add complexity to standards. For instance, when working group participants propose competing solutions, it may be easier for them to agree on a standard that combines all the proposals rather than choosing any single proposal. This shifts the responsibility for selecting a solution onto those who implement the standard, which can lead to complex implementations that may not be interoperable. On its face this appears to be a failure of the standardization process, but this outcome may benefit certain participants-- for example, by allowing an implementer with large market share to establish a de facto standard within the scope of the documented standard."

6. The need for a positioning

It is indisputable that the Internet plays an increasingly important role in the lives of individuals. The community that produces standards for the Internet therefore also has an impact on society, which it itself has recognised in a number of previously adopted documents [RFC1958].

The IETF cannot ordain which standards are to be used on the networks, and it specifically does not determine the laws of regions or countries where networks are being used, but it does set open standards for interoperability on the Internet, and has done so since the inception of the Internet. Because a standard is the blue-print for how to accomplish a particular task in a similar way to others, the standards adopted have a normative effect. The standardisation work at the IETF will have implications on what is perceived as technologically possible and useful where networking technologies are being deployed, and its standards output reflect was is considered by the technical community as feasible and good practice.

This calls for providing a methodology in the IETF community to evaluate which routes forward should indeed be feasible, what constitutes the "good" in "good practice" and what trade-offs between different feasible features of technologies are useful and should
therefore be made possible. Such an analysis should take societal implication into account.

The risk of not doing this is threefold: (1) the IETF might make decisions which have a political impact that was not intended by the community, (2) other bodies or entities might make the decisions for the IETF because the IETF does not have an explicit stance, (3) other bodies that do take these issues into account might increase in importance to the detriment of the influence of the IETF.

This does not mean the IETF does not have a position on particular political issues. The policies for open and diverse participation [RFC7704], the anti-harassment policy [RFC7776], as well as the Guidelines for Privacy Considerations [RFC6973] are proof of this. Nonetheless, these are all examples of positions about the IETF’s work processes or product. What is absent is a way for IETF participants to evaluate their role with respect to the wider implications of that IETF work.

7. Conclusion

Economics, competition, collaboration, openness, and political impact have been an inherent part of the work of the IETF since its early beginnings, by its nature as standards developing organization, through the contributions of the members of the Internet community, and because the ordering effect the Internet has on society. Whereas there might not be agreement in the Internet community on what the specific political nature is of technological development, it is undisputed that standards and protocols are both product of a political process, and they can also be used for political means. Whereas there is no need for a unified philosophy of Internet protocols, it is in the benefit of the IETF, the Internet and arguably society at large to take this into account in the standards development process.

8. The way forward

There are instruments that can help the IETF develop an approach to address the politics of standards. Part of this can be found in [RFC8280] as well as the United National Guiding Principles for Business and Human Rights [UNGP]. But there is not a one-size-fits-all solution. The IETF is a particular organization, with a particular mandate, and even if a policy is in place, its success depends on the implementation of the policy by the community.

Since ‘de facto standardization is reliant on market forces’ [Hanseth] we need to live with the fact standards bodies have a political nature [Webster]. This does not need to be problematic as
long as there are sufficient accountability and transparency mechanisms in place. The importance of these mechanisms increases with the importance of the standards and their implementations. The complexity of the work inscribes a requirement of competence in the work in the IETF, which forms an inherent barrier for end-user involvement. Even though this might not be intentional, it is a result of the interplay between the characteristics of the epistemic community in the IETF and the nature of the standard setting process.

Instead of splitting hairs about whether ‘standards are political’ [Winner] [Woolgar] we argue that we need to look at the politics of individual standards and invite document authors and reviewers to take these dynamics into account.

9. Security Considerations

As this draft concerns a research document, there are no security considerations as described in [RFC3552], which does not mean that not addressing the issues brought up in this draft will not impact the security of end-users or operators.

10. IANA Considerations

This document has no actions for IANA.

11. Acknowledgements

Thanks to Andrew Sullivan, Brian Carpenter, Mark Perkins and all contributors and reviewers on the hrpc mailinglist. Special thanks to Gisela Perez de Acha for some thorough editing rounds.

12. Research Group Information

The discussion list for the IRTF Human Rights Protocol Considerations working group is located at the e-mail address hrpc@ietf.org [1]. Information on the group and information on how to subscribe to the list is at: https://www.irtf.org/mailman/listinfo/hrpc [2]

Archives of the list can be found at: https://www.irtf.org/mail-archive/web/hrpc/current/index.html [3]

13. References

13.1. Informative References

[DeNardis]

[draft-finance-thoughts]

[Feenberg]

[HagueHarrop]

[Hanseth]

[Heidegger]

[Nadvi]

13.2. URIs

[1] mailto:hrpc@ietf.org

Authors’ Addresses