
INTERNET-DRAFT R. Housley
Intended Status: Proposed Standard Vigil Security
Expires: 1 January 2019 1 July 2018

 Use of the Hash-based Merkle Tree Signature (MTS) Algorithm
 in the Cryptographic Message Syntax (CMS)
 <draft-housley-cms-mts-hash-sig-10>

Abstract

 This document specifies the conventions for using the Merkle Tree
 Signatures (MTS) digital signature algorithm with the Cryptographic
 Message Syntax (CMS). The MTS algorithm is one form of hash-based
 digital signature.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

Housley [Page 1]

INTERNET-DRAFT July 2018

Copyright and License Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. ASN.1 . 3
 1.2. Terminology . 3
 2. MTS Digital Signature Algorithm Overview 3
 2.1. Hierarchical Signature System (HSS) 3
 2.2. Leighton-Micali Signature (LMS) 4
 2.3. Leighton-Micali One-time Signature Algorithm (LM-OTS) . . 5
 3. Algorithm Identifiers and Parameters 6
 4. Signed-data Conventions 6
 5. Security Considerations 7
 5.1. Implementation Security Considerations 7
 5.2. Algorithm Security Considerations 8
 6. IANA Considerations . 9
 7. Acknowledgements . 9
 8. Normative References . 9
 9. Informative References . 9
 Appendix: ASN.1 Module . 11
 Author’s Address . 12

Housley [Page 2]

INTERNET-DRAFT July 2018

1. Introduction

 This document specifies the conventions for using the Merkle Tree
 Signatures (MTS) digital signature algorithm with the Cryptographic
 Message Syntax (CMS) [CMS] signed-data content type. The MTS
 algorithm is one form of hash-based digital signature that can only
 be used for a fixed number of signatures. The MTS algorithm is
 described in [HASHSIG]. The MTS algorithm uses small private and
 public keys, and it has low computational cost; however, the
 signatures are quite large.

1.1. ASN.1

 CMS values are generated using ASN.1 [ASN1-B], using the Basic
 Encoding Rules (BER) and the Distinguished Encoding Rules (DER)
 [ASN1-E].

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. MTS Digital Signature Algorithm Overview

 Merkle Tree Signatures (MTS) are a method for signing a large but
 fixed number of messages. An MTS system depends on a one-time
 signature method and a collision-resistant hash function.

 This specification makes use of the MTS algorithm specified in
 [HASHSIG], which is the Leighton and Micali adaptation [LM] of the
 original Lamport-Diffie-Winternitz-Merkle one-time signature system
 [M1979][M1987][M1989a][M1989b].

 As implied by the name, the hash-based signature algorithm depends on
 a collision-resistant hash function. The hash-based signature
 algorithm specified in [HASHSIG] currently uses only the SHA-256 one-
 way hash function [SHS], but it also establishes an IANA registry to
 permit the registration of additional one-way hash functions in the
 future.

2.1. Hierarchical Signature System (HSS)

 The MTS system specified in [HASHSIG] uses a hierarchy of trees. The
 Hierarchical N-time Signature System (HSS) allows subordinate trees
 to be generated when needed by the signer. Otherwise, generation of

Housley [Page 3]

INTERNET-DRAFT July 2018

 the entire tree might take weeks or longer.

 An HSS signature as specified in specified in [HASHSIG] carries the
 number of signed public keys (Nspk), followed by that number of
 signed public keys, followed by the LMS signature as described in
 Section 2.2. Each signed public key is represented by the hash value
 at the root of the tree, and it also contains information about the
 tree structure. The signature over the public key is an LMS
 signature as described in Section 2.2.

 The elements of the HSS signature value for a stand-alone tree can be
 summarized as:

 u32str(0) ||
 lms_signature /* signature of message */

 The elements of the HSS signature value for a tree with Nspk levels
 can be summarized as:

 u32str(Nspk) ||
 signed_public_key[1] ||
 signed_public_key[2] ||
 ...
 sigend_public_key[Nspk-1] ||
 signed_public_key[Nspk] ||
 lms_signature_on_message

 where, as defined in Section 7 of [HASHSIG], a signed_public_key is
 the lms_signature over the public key followed by the public key
 itself.

2.2. Leighton-Micali Signature (LMS)

 Each tree in the system specified in [HASHSIG] uses the Leighton-
 Micali Signature (LMS) system. LMS systems have two parameters. The
 first parameter is the height of the tree, h, which is the number of
 levels in the tree minus one. The [HASHSIG] specification supports
 five values for this parameter: h=5; h=10; h=15; h=20; and h=25.
 Note that there are 2^h leaves in the tree. The second parameter is
 the number of bytes output by the hash function, m, which the amount
 of data associated with each node in the tree. The [HASHSIG]
 specification supports only the SHA-256 hash function [SHS], with
 m=32.

Housley [Page 4]

INTERNET-DRAFT July 2018

 Currently, the hash-based signature algorithm supports five tree
 sizes:

 LMS_SHA256_M32_H5;
 LMS_SHA256_M32_H10;
 LMS_SHA256_M32_H15;
 LMS_SHA256_M32_H20; and
 LMS_SHA256_M32_H25.

 The [HASHSIG] specification establishes an IANA registry to permit
 the registration of additional tree sizes in the future.

 An LMS signature consists of four elements: the number of the leaf
 associated with the LM-OTS signature, an LM-OTS signature as
 described in Section 2.3, a typecode indicating the particular LMS
 algorithm, and an array of values that is associated with the path
 through the tree from the leaf associated with the LM-OTS signature
 to the root. The array of values contains the siblings of the nodes
 on the path from the leaf to the root but does not contain the nodes
 on the path itself. The array for a tree with height h will have h
 values. The first value is the sibling of the leaf, the next value
 is the sibling of the parent of the leaf, and so on up the path to
 the root.

 The four elements of the LMS signature value can be summarized as:

 u32str(q) ||
 ots_signature ||
 u32str(type) ||
 path[0] || path[1] || ... || path[h-1]

2.3. Leighton-Micali One-time Signature Algorithm (LM-OTS)

 Merkle Tree Signatures (MTS) depend on a one-time signature method.
 [HASHSIG] specifies the use of the LM-OTS. An LM-OTS has five
 parameters.

 n - The number of bytes associated with the hash function.
 [HASHSIG] supports only SHA-256 [SHS], with n=32.

 H - A preimage-resistant hash function that accepts byte strings
 of any length, and returns an n-byte string.

 w - The width in bits of the Winternitz coefficients. [HASHSIG]
 supports four values for this parameter: w=1; w=2; w=4; and
 w=8.

Housley [Page 5]

INTERNET-DRAFT July 2018

 p - The number of n-byte string elements that make up the LM-OTS
 signature.

 ls - The number of left-shift bits used in the checksum function,
 which is defined in Section 4.5 of [HASHSIG].

 The values of p and ls are dependent on the choices of the parameters
 n and w, as described in Appendix A of [HASHSIG].

 Currently, the hash-based signature algorithm supports four LM-OTS
 variants:

 LMOTS_SHA256_N32_W1;
 LMOTS_SHA256_N32_W2;
 LMOTS_SHA256_N32_W4; and
 LMOTS_SHA256_N32_W8.

 The [HASHSIG] specification establishes an IANA registry to permit
 the registration of additional variants in the future.

 Signing involves the generation of C, an n-byte random value.

 The LM-OTS signature value can be summarized as:

 u32str(otstype) || C || y[0] || ... || y[p-1]

3. Algorithm Identifiers and Parameters

 The algorithm identifier for an MTS signature is id-alg-mts-hashsig:

 id-alg-mts-hashsig OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) alg(3) 17 }

 When the id-alg-mts-hashsig algorithm identifier is used for a
 signature, the AlgorithmIdentifier parameters field MUST be absent
 (that is, the parameters are not present; the parameters are not set
 to NULL).

 The signature values is a large OCTET STRING. The signature format
 is designed for easy parsing. Each format includes a counter and
 type codes that indirectly providing all of the information that is
 needed to parse the value during signature validation.

4. Signed-data Conventions

 As specified in [CMS], the digital signature is produced from the
 message digest and the signer’s private key. If signed attributes
 are absent, then the message digest is the hash of the content. If

Housley [Page 6]

INTERNET-DRAFT July 2018

 signed attributes are present, then the hash of the content is placed
 in the message-digest attribute, the set of signed attributes is DER
 encoded, and the message digest is the hash of the encoded
 attributes. In summary:

 IF (signed attributes are absent)
 THEN md = Hash(content)
 ELSE message-digest attribute = Hash(content);
 md = Hash(DER(SignedAttributes))

 Sign(md)

 When using [HASHSIG], the fields in the SignerInfo are used as
 follows:

 digestAlgorithms SHOULD contain the one-way hash function used to
 compute the message digest on the eContent value. Since the
 hash-based signature algorithms all depend on SHA-256, it is
 strongly RECOMMENDED that SHA-256 also be used to compute the
 message digest on the content.

 Further, the same one-way hash function SHOULD be used to
 compute the message digest on both the eContent and the
 signedAttributes value if signedAttributes are present. Again,
 since the hash-based signature algorithms all depend on
 SHA-256, it is strongly RECOMMENDED that SHA-256 be used.

 signatureAlgorithm MUST contain id-alg-mts-hashsig. The algorithm
 parameters field MUST be absent.

 signature contains the single HSS signature value resulting from
 the signing operation as specified in [HASHSIG].

5. Security Considerations

5.1. Implementation Security Considerations

 Implementations must protect the private keys. Compromise of the
 private keys may result in the ability to forge signatures. Along
 with the private key, the implementation must keep track of which
 leaf nodes in the tree have been used. Loss of integrity of this
 tracking data can cause an one-time key to be used more than once.
 As a result, when a private key and the tracking data are stored on
 non-volatile media or stored in a virtual machine environment, care
 must be taken to preserve confidentiality and integrity.

 An implementation must ensure that a LM-OTS private key is used to
 generate a signature only one time, and ensure that it cannot be used

Housley [Page 7]

INTERNET-DRAFT July 2018

 for any other purpose.

 The generation of private keys relies on random numbers. The use of
 inadequate pseudo-random number generators (PRNGs) to generate these
 values can result in little or no security. An attacker may find it
 much easier to reproduce the PRNG environment that produced the keys,
 searching the resulting small set of possibilities, rather than brute
 force searching the whole key space. The generation of quality
 random numbers is difficult. RFC 4086 [RANDOM] offers important
 guidance in this area.

 The generation of hash-based signatures also depends on random
 numbers. While the consequences of an inadequate pseudo-random
 number generator (PRNGs) to generate these values is much less severe
 than the generation of private keys, the guidance in [RFC4086]
 remains important.

 When computing signatures, the same hash function SHOULD be used for
 all operations. In this specification, only SHA-256 is used. Using
 only SHA-256 reduces the number of possible failure points in the
 signature process.

5.2. Algorithm Security Considerations

 At Black Hat USA 2013, some researchers gave a presentation on the
 current sate of public key cryptography. They said: "Current
 cryptosystems depend on discrete logarithm and factoring which has
 seen some major new developments in the past 6 months" [BH2013].
 They encouraged preparation for a day when RSA and DSA cannot be
 depended upon.

 A post-quantum cryptosystem is a system that is secure against
 quantum computers that have more than a trivial number of quantum
 bits. It is open to conjecture when it will be feasible to build
 such a machine. RSA, DSA, and ECDSA are not post-quantum secure.

 The LM-OTP one-time signature, LMS, and HSS do not depend on discrete
 logarithm or factoring, as a result these algorithms are considered
 to be post-quantum secure.

 Today, RSA is often used to digitally sign software updates. This
 means that the distribution of software updates could be compromised
 if a significant advance is made in factoring or a quantum computer
 is invented. The use of MTS signatures to protect software update
 distribution, perhaps using the format described in [FWPROT], will
 allow the deployment of software that implements new cryptosystems.

Housley [Page 8]

INTERNET-DRAFT July 2018

6. IANA Considerations

 This document has no actions for IANA.

7. Acknowledgements

 Many thanks to Panos Kampanakis, Jim Schaad, and Sean Turner for
 their careful review and comments.

8. Normative References

 [ASN1-B] ITU-T, "Information technology -- Abstract Syntax Notation
 One (ASN.1): Specification of basic notation", ITU-T
 Recommendation X.680, 2015.

 [ASN1-E] ITU-T, "Information technology -- ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ITU-T Recommendation X.690, 2015.

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <http://www.rfc-editor.org/info/rfc5652>.

 [HASHSIG] McGrew, D., M. Curcio, and S. Fluhrer, "Hash-Based
 Signatures", Work in progress. <draft-mcgrew-hash-
 sigs-11>

 [RFC2219] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI
 10.17487/RFC2119, March 1997, <http://www.rfc-
 editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in
 RFC 2119 Key Words", BCP 14, RFC 8174, DOI
 10.17487/RFC8174, May 2017, <https://www.rfc-
 editor.org/info/rfc8174>.

 [SHS] National Institute of Standards and Technology (NIST),
 FIPS Publication 180-3: Secure Hash Standard, October
 2008.

9. Informative References

 [BH2013] Ptacek, T., T. Ritter, J. Samuel, and A. Stamos, "The
 Factoring Dead: Preparing for the Cryptopocalypse", August
 2013. <https://media.blackhat.com/us-13/us-13-Stamos-The-
 Factoring-Dead.pdf>

Housley [Page 9]

INTERNET-DRAFT July 2018

 [CMSASN1] Hoffman, P. and J. Schaad, "New ASN.1 Modules for
 Cryptographic Message Syntax (CMS) and S/MIME", RFC 5911,
 DOI 10.17487/RFC5911, June 2010, <http://www.rfc-
 editor.org/info/rfc5911>.

 [CMSASN1U] Schaad, J. and S. Turner, "Additional New ASN.1 Modules
 for the Cryptographic Message Syntax (CMS) and the Public
 Key Infrastructure Using X.509 (PKIX)", RFC 6268, DOI
 10.17487/RFC6268, July 2011, <http://www.rfc-
 editor.org/info/rfc6268>.

 [FWPROT] Housley, R., "Using Cryptographic Message Syntax (CMS) to
 Protect Firmware Packages", RFC 4108, DOI
 10.17487/RFC4108, August 2005, <http://www.rfc-
 editor.org/info/rfc4108>.

 [LM] Leighton, T. and S. Micali, "Large provably fast and
 secure digital signature schemes from secure hash
 functions", U.S. Patent 5,432,852, July 1995.

 [M1979] Merkle, R., "Secrecy, Authentication, and Public Key
 Systems", Stanford University Information Systems
 Laboratory Technical Report 1979-1, 1979.

 [M1987] Merkle, R., "A Digital Signature Based on a Conventional
 Encryption Function", Lecture Notes in Computer Science
 crypto87, 1988.

 [M1989a] Merkle, R., "A Certified Digital Signature", Lecture Notes
 in Computer Science crypto89, 1990.

 [M1989b] Merkle, R., "One Way Hash Functions and DES", Lecture Notes
 in Computer Science crypto89, 1990.

 [PKIXASN1] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
 Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
 DOI 10.17487/RFC5912, June 2010, <http://www.rfc-
 editor.org/info/rfc5912>.

 [PQC] Bernstein, D., "Introduction to post-quantum
 cryptography", 2009.
 <http://www.pqcrypto.org/www.springer.com/cda/content/
 document/cda_downloaddocument/9783540887010-c1.pdf>

 [RANDOM] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005, <http://www.rfc-
 editor.org/info/rfc4086>.

Housley [Page 10]

INTERNET-DRAFT July 2018

Appendix: ASN.1 Module

 MTS-HashSig-2013
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 id-smime(16) id-mod(0) id-mod-mts-hashsig-2013(64) }

 DEFINITIONS IMPLICIT TAGS ::= BEGIN

 EXPORTS ALL;

 IMPORTS
 PUBLIC-KEY, SIGNATURE-ALGORITHM, SMIME-CAPS
 FROM AlgorithmInformation-2009 -- RFC 5911 [CMSASN1]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) }
 mda-sha256
 FROM PKIX1-PSS-OAEP-Algorithms-2009 -- RFC 5912 [PKIXASN1]
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-rsa-pkalgs-02(54) } ;

 --
 -- Object Identifiers
 --

 id-alg-mts-hashsig OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) alg(3) 17 }

 --
 -- Signature Algorithm and Public Key
 --

 sa-MTS-HashSig SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-alg-mts-hashsig
 PARAMS ARE absent
 HASHES { mda-sha256 }
 PUBLIC-KEYS { pk-MTS-HashSig }
 SMIME-CAPS { IDENTIFIED BY id-alg-mts-hashsig } }

 pk-MTS-HashSig PUBLIC-KEY ::= {
 IDENTIFIER id-alg-mts-hashsig
 KEY MTS-HashSig-PublicKey
 PARAMS ARE absent
 CERT-KEY-USAGE
 { digitalSignature, nonRepudiation, keyCertSign, cRLSign } }

 MTS-HashSig-PublicKey ::= OCTET STRING

Housley [Page 11]

INTERNET-DRAFT July 2018

 --
 -- Expand the signature algorithm set used by CMS [CMSASN1U]
 --

 SignatureAlgorithmSet SIGNATURE-ALGORITHM ::=
 { sa-MTS-HashSig, ... }

 --
 -- Expand the S/MIME capabilities set used by CMS [CMSASN1]
 --

 SMimeCaps SMIME-CAPS ::= { sa-MTS-HashSig.&smimeCaps, ... }

 END

Author’s Address

 Russ Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA

 EMail: housley@vigilsec.com

Housley [Page 12]

