
Token Binding Working Group G. Mandyam

Internet-Draft Qualcomm Technologies Inc.

Intended status: Standards Track L. Lundblade

Expires: July 28, 2019 Security Theory LLC

 J. Azen

 Qualcomm Technologies Inc.

 January 24, 2019

 Attested TLS Token Binding

 draft-mandyam-tokbind-attest-07

Abstract

 Token binding allows HTTP servers to bind bearer tokens to TLS

 connections. In order to do this, clients or user agents must prove

 possession of a private key. However, proof-of-possession of a

 private key becomes truly meaningful to a server when accompanied by

 an attestation statement. This specification describes extensions to

 the existing token binding protocol to allow for attestation

 statements to be sent along with the related token binding messages.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 28, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

Mandyam, et al. Expires July 28, 2019 [Page 1]

Internet-Draft TokBindAttest January 2019

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Attestation Enhancement to TLS Token Binding Message 3

 2.1. KeyStore Attestation 4

 2.1.1. Verification Procedures 4

 2.2. TPMv2 Attestation . 5

 2.2.1. Verification Procedures 6

 3. Extension Support Negotiation 6

 3.1. Negotiating Token Binding Protocol Extensions 7

 4. Example - Platform Attestation for Anomaly Detection 7

 5. IANA Considerations . 8

 5.1. TLS Extensions Registry 8

 5.2. Token Binding Extensions for Attestation 8

 6. Security and Privacy Considerations 9

 6.1. Attestation Privacy Considerations 9

 7. Acknowledgments . 9

 8. References . 9

 8.1. Normative References 9

 8.2. Informative References 10

 Authors’ Addresses . 10

1. Introduction

 [RFC8471] and [RFC8472] describe a framework whereby servers can

 leverage cryptographically-bound authentication tokens in part to

 create uniquely-identifiable TLS bindings that can span multiple

 connections between a client and a server. Once the use of token

 binding is negotiated as part of the TLS handshake, an application

 layer message (the Token Binding message) may be sent from the client

 to the relying party whose primary purpose is to encapsulate a

 signature over a value associated with the current TLS session. The

 payload used for the signature is the token binding public key (see

 [RFC8471]). Use of the token binding public key allows for

 generation of the attestation signature once over the lifetime of the

 public key.

 Proof-of-possession of a private key is useful to a relying party,

 but the associated signature in the Token Binding message does not

 provide an indication as to how the private key is stored and in what

 kind of environment the associated cryptographic operation takes

 place. This information may be required by a relying party in order

Mandyam, et al. Expires July 28, 2019 [Page 2]

Internet-Draft TokBindAttest January 2019

 to satisfy requirements regarding client platform integrity.

 Therefore, attestations are sometimes required by relying parties in

 order for them to accept signatures from clients. As per the

 definition in [I-D.birkholz-tuda], "remote attestation describes the

 attempt to determine the integrity and trustworthiness of an endpoint

 -- the attestee -- over a network to another endpoint -- the verifier

 -- without direct access." Attestation statements are therefore

 widely used in any server verification operation that leverages

 client cryptography.

 TLS token binding can therefore be enhanced with remote attestation

 statements. The attestation statement can be used to augment Token

 Binding message. This could be used by a relying party for several

 different purpose, including (1) to determine whether to accept token

 binding messages from the associated client, or (2) require an

 additional mechanism for binding the TLS connection to an

 authentication operation by the client.

2. Attestation Enhancement to TLS Token Binding Message

 The attestation statement can be processed ’in-band’ as part of the

 Token Binding Message itself. This document leverages the

 TokenBinding.extensions field of the Token Binding Message as

 described in Section 3.4 of [RFC8471], where the extension data

 conforms to the guidelines of Section 6.3 of the same document. The

 value of the extension, as required by this same section, is assigned

 per attestation type. The extension data takes the form of a CBOR

 (compact binary object representation) Data Definition Language

 construct, i.e. CDDL.

 extension_data = {attestation}

 attestation = (

 attestation_type: tstr,

 attestation_data: bstr,

)

 The attestation data is determined according to the attestation type.

 In this document, the following types are defined: "KeyStore" (where

 the corresponding attestation data defined in [Keystore]) and "TPMv2"

 (where the corresponding attestation data defined in [TPMv2]).

 Additional attestation types may be accepted by the token binding

 implementation (for instance, see Section 8 of [webauthn]).

 The attestation data will likely include a signature over a challenge

 (depenting on the attestation type). The challenge can be used to

 prevent replay of the attestation. However since the attestation is

Mandyam, et al. Expires July 28, 2019 [Page 3]

Internet-Draft TokBindAttest January 2019

 itself part of the token binding message (which has its own anti-

 replay protection mechanism), the attestation signature need only be

 generated over a known payload associated with the TLS token binding

 session - the token binding public key. As a result, the token

 binding client only needs to send the attestation once during the

 lifetime of the token binding public key. In other words, if an

 attestation is included in the token binding message, it should only

 be sent in the initial token binding message following the creation

 of the token binding key pair.

2.1. KeyStore Attestation

 KeyStore attestation is relevant to the Android operating system.

 The Android Keystore mechanism allows for an application (such as a

 browser implementing the Token Binding stack) to create a key pair,

 export the public key, and protect the private key in a hardware-

 backed keystore. The Android Keystore can then be used to verify a

 keypair using the Keystore Attestation mechanism, which involves

 signing a payload according to a public key that chains to a root

 certificate signed by an attestation root key that is specific to the

 device manufacturer.

 The octet value of the token binding extension that serves as

 identifiaction for the Keystore attestation type is requested to be

 0.

 KeyStore attestation provides a signature over a payload generated by

 the application. The payload is a SHA-256 hash of the token binding

 public key corresponding to the current TLS connection (see

 Section 3.3 of [RFC8471]). Then the attestation takes the form of a

 signature, a signature-generation algorithmic identifier

 corresponding to the COSE algorithm registry ([cose_iana]), and a

 chain of DER-encoded x.509 certificates:

 attestation_data = (

 alg: int,

 sig: bytes,

 x5c: [credCert: bytes, *(caCert: bytes)]

)

2.1.1. Verification Procedures

 The steps at the server for verifying a Token Binding KeyStore

 Attestation are:

Mandyam, et al. Expires July 28, 2019 [Page 4]

Internet-Draft TokBindAttest January 2019

 o Retrieve token binding public key for the current TLS connection,

 and compute is SHA-256 hash.

 o Verify that attestation_data is in the expected CBOR format.

 o Parse the first certificate listed in x5c and extract the public

 key and challenge. If the challenge does not match the SHA-256

 hash of the token binding public key then the attestation is

 invalid.

 o If the challenge matches the expected hash of the token binding

 public key, verify the sig with respect to the extracted public

 key and algorithm from the previous step.

 o Verify the rest of the certificate chain up to the root. The root

 certificate must match the expected root for the device.

2.2. TPMv2 Attestation

 Version 2 of the Trusted Computing Group’s Trusted Platform Module

 (TPM) specification provides for an attestation generated within the

 context of a TPM. The attestation then is defined as

 attestation_data = (

 alg: int,

 tpmt_sig: bytes,

 tpms_attest: bytes,

 x5c: [credCert: bytes, *(caCert: bytes)]

)

 The tpmt_sig is generated over a tpms_attest structure signed with

 respect to the certificate chain provided in the x5c array, and the

 algorithmic identifier corresponding to the COSE algorithm registry

 ([cose_iana]). It is derived from the TPMT_SIGNATURE data structure

 defined in Section 11.3.4 of [TPMv2]. tpms_attest is derived from the

 TPMS_ATTEST data structure in Section 10.2.8 of [TPMv2], specifically

 with the extraData field being set to a SHA-256 hash of the token

 binding public key.

 The octet value of the token binding extension that serves as

 identifiaction for the TPMv2 attestation type is requested to be 1.

Mandyam, et al. Expires July 28, 2019 [Page 5]

Internet-Draft TokBindAttest January 2019

2.2.1. Verification Procedures

 The steps for verifying a Token Binding TPMv2 Attestation are:

 o Extract the token binding public key for the current TLS

 connection.

 o Verify that attestation_data is in the expected CBOR format.

 o Parse the first certificate listed in x5c and extract the public

 key.

 o Verify the tpms_attest structure,which includes

 * Verify that the type field is set to TPM_ST_ATTEST_CERTIFY.

 * Verify that extraData is equivalent to the SHA-256 hash of the

 token binding public key for the current TLS connection.

 * Verify that magic is set to the expected TPM_GENERATED_VALUE

 for the expected command sequence used to generate the

 attestation.

 * Verification of additonal TPMS_ATTEST data fields is optional.

 o Verify tpmt_sig with respect to the public key provided in the

 first certifcate in x5c, using the algorithm as specified in the

 sigAlg field (see Sections 11.3.4, 11.2.1.5 and 9.29 of [TPMv2]).

3. Extension Support Negotiation

 Even if the client supports a Token Binding extension, it may not be

 desirable to send the extension if the server does not support it.

 The benefits of client-suppression of an extension could include

 saving of bits "over the wire" or simplified processing of the Token

 Binding message at the server. Currently, extension support is not

 communicated as part of the Token Binding extensions to TLS (see

 [RFC8472]).

 It is proposed that the Client and Server Hello extensions defined in

 Sections 3 and 4 of [RFC8472] be extended so that endpoints can

 communicate their support for specific TokenBinding.extensions. With

 reference to Section 3, it is recommended that the "token_binding"

 TLS extension be augmented by the client to include supported

 TokenBinding.extensions as follows:

Mandyam, et al. Expires July 28, 2019 [Page 6]

Internet-Draft TokBindAttest January 2019

 enum {

 attestation(0), (255)

 } TokenBindingExtensions;

 struct {

 TB_ProtocolVersion token_binding_version;

 TokenBindingKeyParameters key_parameters_list<1..2^8-1>;

 TokenBindingExtensions supported_extensions_list<1..2^8-1>

 } TokenBindingParameters;

 The "supported_extensions_list" contains the list of identifiers of

 all token binding message extensions supported by the client. A

 server supporting token binding extensions will respond in the server

 hello with an appropriate "token_binding" extension that includes a

 "supported_extensions_list". This list must be a subset of the the

 extensions provided in the client hello.

 Since a TLS extension cannot itself be extended, the "token_binding"

 TLS extension cannot be reused. Therefore it is proposed that a new

 TLS extension be defined - "token_binding_with_extensions". This TLS

 extension codepoint is identical to the existing "token_binding"

 extension except for the additional data structures defined above.

3.1. Negotiating Token Binding Protocol Extensions

 The negotation described in Section 4 of [RFC8472] still applies,

 except now the "token_binding_with_extensions" codepoint would be

 used if the client supports any token binding extension. In

 addition, a client can receive a "supported_extensions_list" from the

 server as part of the server hello. The client must terminate the

 handshake if the "supported_extensions_list" received from the server

 is not a subset of the "supported_extensions_list" sent by the client

 in the client hello. If the server hello list of supported

 extensions is a subset of the client supported extensions, then the

 client must only send those extensions specified in the server hello

 in the Token Binding protocol. If the server hello does not include

 a "supported_extensions_list", then the client must not send any

 extensions along with the Token Binding Message.

4. Example - Platform Attestation for Anomaly Detection

 An example of where a platform-based attestation is useful can be for

 remote attestation based on client traffic anomaly detection. Many

 network infrastructure deployments employ network traffic monitors

 for anomalous pattern detection. Examples of anomalous patterns

 detectable in the TLS handshake could be unexpected cipher suite

 negotiation for a given source/destination pairing. In this case, it

Mandyam, et al. Expires July 28, 2019 [Page 7]

Internet-Draft TokBindAttest January 2019

 may be desirable for a client-enhanced attestation reflecting for

 instance that an expected offered cipher suite in the client hello

 message is present or the originating browser integrity is intact

 (e.g. through a hash over the browser application package). If the

 network traffic monitor can interpret the atttestation included in

 the token binding message, then it can verify the attestation and

 potentially emit alerts based on an unexpected attestation.

5. IANA Considerations

 This memo includes the following requests to IANA.

5.1. TLS Extensions Registry

 This document proposes an update of the TLS "ExtensionType Values"

 registry. The following addition to the registry is requested:

 Value: TBD

 Extension name: token_binding_with_extensions

 Reference: this document

 Recommended: Yes

5.2. Token Binding Extensions for Attestation

 This document proposes two extensions conformant with Section 6.3 of

 [RFC8471], with the following specifics:

 Androoid Keystore Attestation:

 o Value: 0

 o Description: Android Keystore Attestation

 o Specification: This document

 TPM v2 Attestation:

 o Value: 1

 o Description: TPMv2 Attestation

 o Specification: This document

Mandyam, et al. Expires July 28, 2019 [Page 8]

Internet-Draft TokBindAttest January 2019

6. Security and Privacy Considerations

 The security and privacy considerations provided in Section 7 of

 [RFC8471] are applicable to the attestation extensions proposed in

 this document. Additional considerations are provided in this

 section.

6.1. Attestation Privacy Considerations

 The root signing key for the certificate chain used in verifying an

 attestation can be unique to the device. As a result, this can be

 used to track a device and/or end user. This potential privacy issue

 can be mitigated by the use of batch keys as an alternative to unique

 keys, or by generation of origin-specific attestation keys.

 The attestation data may also contain device-specific identifiers, or

 information that can be used to fingerprint a device. Sensitive

 information can be excluded from the attestation data when this is a

 concern.

7. Acknowledgments

 Thanks to Andrei Popov for his detailed review and recommendations.

8. References

8.1. Normative References

 [cose_iana]

 Internet Assigned Numbers Authority, "COSE Algorithms",

 <https://www.iana.org/assignments/cose/

 cose.xhtml#algorithms>.

 [I-D.greevenbosch-appsawg-cbor-cddl]

 Birkholz, H., Vigano, C., and C. Bormann, "Concise data

 definition language (CDDL): a notational convention to

 express CBOR data structures", draft-greevenbosch-appsawg-

 cbor-cddl-11 (work in progress), July 2017.

 [Keystore]

 Google Inc., "Verifying hardware-backed key pairs with Key

 Attestation",

 <https://developer.android.com/training/articles/

 security-key-attestation>.

Mandyam, et al. Expires July 28, 2019 [Page 9]

Internet-Draft TokBindAttest January 2019

 [RFC8471] Popov, A., Ed., Nystroem, M., Balfanz, D., and J. Hodges,

 "The Token Binding Protocol Version 1.0", RFC 8471,

 DOI 10.17487/RFC8471, October 2018,

 <https://www.rfc-editor.org/info/rfc8471>.

 [RFC8472] Popov, A., Ed., Nystroem, M., and D. Balfanz, "Transport

 Layer Security (TLS) Extension for Token Binding Protocol

 Negotiation", RFC 8472, DOI 10.17487/RFC8472, October

 2018, <https://www.rfc-editor.org/info/rfc8472>.

 [RFC8473] Popov, A., Nystroem, M., Balfanz, D., Ed., Harper, N., and

 J. Hodges, "Token Binding over HTTP", RFC 8473,

 DOI 10.17487/RFC8473, October 2018,

 <https://www.rfc-editor.org/info/rfc8473>.

 [TPMv2] The Trusted Computing Group, "Trusted Platform Module

 Library, Part 2: Structures", September 2016,

 <http://www.trustedcomputinggroup.org/wp-content/uploads/

 TPM-Rev-2.0-Part-2-Structures-01.38.pdf>.

 [webauthn]

 The Worldwide Web Consortium, "Web Authentication: An API

 for accessing Scoped Credentials",

 <https://www.w3.org/TR/webauthn/>.

8.2. Informative References

 [I-D.birkholz-tuda]

 Fuchs, A., Birkholz, H., McDonald, I., and C. Bormann,

 "Time-Based Uni-Directional Attestation", draft-birkholz-

 tuda-02 (work in progress), July 2016.

Authors’ Addresses

 Giridhar Mandyam

 Qualcomm Technologies Inc.

 5775 Morehouse Drive

 San Diego, California 92121

 USA

 Phone: +1 858 651 7200

 Email: mandyam@qti.qualcomm.com

 Laurence Lundblade

 Security Theory LLC

 Email: lgl@island-resort.com

Mandyam, et al. Expires July 28, 2019 [Page 10]

Internet-Draft TokBindAttest January 2019

 Jon Azen

 Qualcomm Technologies Inc.

 5775 Morehouse Drive

 San Diego, California 92121

 USA

 Phone: +1 858 651 9476

 Email: jazen@qti.qualcomm.com

Mandyam, et al. Expires July 28, 2019 [Page 11]

