RFC 6775 Extension

P.Thubert, E. Nordmark, S. Chakrabarti, C. Perkins

IETF 101

London

Unmet expectations

- Solicited node multicast requires highly scalable L2 multicast
 IEEE does not provide it => turns everything into broadcast
 IPv6 ND appears to work with broadcast on 802.1 fabrics up to some scale ~10K nodes
- IPv6 ND requires reliable and cheap broadcast
 Radios do not provide that => conserving 802.1 properties over wireless is illusory
 RFC 4862 cannot operate as designed on wireless
 Address uniqueness is an unguaranteed side effect of entropy
- 802.11 expects proxy operation and broadcast domain separation 802.11 provides a registration and proxy bridging at L2 Requires the same at L3, which does not exist Implementations provide proprietary techniques based on snooping => widely imperfect
 - ⇒ RFC 6775 solves the problem for DAD in one LL
 - ⇒ This update enable establishing proxy services directly (ND for now), over a LLN, across multiple LLNs

What are the 6LoWPAN ND extensions?

Provide for draft-thubert-6lo-rfc6775-update-reqs

- draft-ietf-6lo-rfc6775-update
 - Simplifies the protocol (no DAR/DAC for LL, no secondary NC)
 - Enables proxy registration
- draft-ietf-6lo-ap-nd
 - Protects addresses against theft (Crypto ID in registration)
- draft-ietf-6lo-backbone-router
 - Federates 6lo meshes over a high speed backbone
 - ND proxy that mimics 802.11 association but at Layer 3

RFC 6775 Update

P.Thubert, E. Nordmark, S. Chakrabarti, C. Perkins

What are the 6LoWPAN ND extensions?

- draft-ietf-6lo-rfc6775-update
 - Simplifies the protocol (no DAR/DAC for LL, no secondary NC)
 - Enables proxy registration
- draft-ietf-6lo-ap-nd
 - Protects addresses against theft (Crypto ID in registration)
- draft-ietf-6lo-backbone-router
 - Federates 6lo meshes over a high speed backbone
 - ND proxy that mimics 802.11 association but at Layer 3

RFC 6775 update new features: the Length

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Type | Length | Status | Reserved
 +-+ | Reserved |R|T| TID | Registration Lifetime
| + Registration Ownership Verifier
     +-+-+-+-+-+-+
```

Length: 8-bit unsigned integer. The length of the option in units of 8 bytes. It MUST be 2 when operating in backward-compatible mode. It MAY be 3, 4 or 5, denoting a ROVR size of 128, 192 and 256 bits respectively.

RFC 6775 update new features: the 'R' flag

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Type | Length | Status | Reserved
 +-+ | Reserved |\mathbf{R}|T| TID | Registration Lifetime
| + Registration Ownership Verifier
      +-+-+-+-+-+-+
```

R: One-bit flag. If the 'R' flag is **set**, the registering node expects that **the 6LR ensures reachability for the registered address**, e.g., by injecting the address in a Route-Over routing protocol or proxying ND over a Backbone Link.

RFC 6775 update new features: the Transaction ID

4.2.1. Comparing TID values: The TID is a sequence counter and its operation is the exact match of the path sequence specified in RPL, the IPv6 Routing Protocol for Low-Power and Lossy Networks [REC6550] specification.

RFC 6775 update new features: Registration Lifetime

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   Type | Length | Status | Reserved
 +-+ | Reserved |R|T| TID | Registration Lifetime
 Registration Ownership Verifier
         +-+-+-+-+-+-+
```

Registration Lifetime: 16-bit integer; expressed in minutes.

Registration Lifetime: 16-bit integer; expressed in minutes. 0 means that the registration has ended and the

RFC 6775 update new features: ROVR

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Type | Length | Status | Reserved
 Registration Ownership Verifier
```

Registration Ownership Verifier (ROVR): Enables the correlation between multiple attempts to register a same IPv6

Address. This can be a unique ID of the Registering Node, such as

IESG Review

RFC 6775 Update

Draft-...-12 to -16

INT-DIR (Tim Chown) => v-12

- Use of EUI-64, should it be deprecated (for privacy reasons)?
- Clarifications on privacy addresses
- Added a matrix matching specs and requirements in appendix
- Added a glossary
- Suggestion to ask 6MAN about the need for a LRU algorithm

OPS-DIR (Jürgen Schönwälder) + SEC-DIR (Chris Lonvick) => v-13

- Moved terminology up for readability
- Changed "legacy" to "RFC6775-only" referering to RFC 6775
- Changed OUI field to RUID
- Added Appendix B.7.
 - "Requirements Related to Operations and Management"

IOT-DIR (Dave Thaler) => v-14

- Reworded Intro (and many other things)
- Introduced the 'R' flag based on parallel discussion with ROLL
- Reworded RUID description
- Limiting the number of addresses => What is the minimum?
- Clarification on address duplication over backbone

RTG-DIR (Adrian Farrel) => v-15

- RUID => ROVR Registration Ownership Verifier; new text on ROVR functionality and collision scope and consequences
- 6CIO now the only way to discover 6LR capabilities. New flag for 6LBR capability to support extended DA messages
- Use of ICMP code: non-NULL code => Extended DA message
- EARO Length extended due to side discussion on AP-ND

GEN-ART (Peter Yee) => v-16

- Clarifications, e.g., RECOMMENDED for implementations
- How properties are discovered (completing Adrian's review)
- Review of the requirements and security section
- Clarified / fixed IEEE references
- A lot of editorials, syntax corrections

draft-ietf-6lo-ap-nd

P.Thubert, B. Sarikaya, M Sethi, (and expecting R. Struik but not there yet)

Unmet expectations

- First come first Serve address registration
 First registration for an address owns that address till it releases it
 The network prevents hijacking
- Source address validation
 Address must be topologically correct
 Source of the packet owns the source address
- First Hop Security only?

 Proxy ownership and routing advertisements not protected yet

AP-ND new features: 'C' flag

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Type | Length | Status | Reserved
  +-+ | Reserved|\mathbf{C}|\mathbf{R}|\mathbf{T}| TID | Registration Lifetime
 Registration Ownership Verifier
```

C: The "C" flag is set to indicate that the Registration Ownership Verifier field contains a Crypto-ID and that the 6LN MAY be

Recent changes

- Simplified the computation of the Crypto-ID
 - Digital signature (SHA-256 then either NIST P-256 or EdDSA) is executed on the concatenation of short modifier and public key
 - Modifier not used to make computation complex as opposed to CGA. This simplifies the operation of a constrained node
 - But 64 bits ROVR might not suffice for adequate protection => Longer ROVR
- Reuse options defined in RFC 3971 for SEND
 - Crypto-ID Parameters Option, a variation of the CGA Option
 - Nonce Option
 - NDP Signature Option, a variation of the RSA Signature Option the option is extended for non-RSA Signatures this specification defines an alias to avoid the confusion.

Security properties

- We made the size of the ROVR tunable so we can get high security
- At the moment a joining 6LN is challenge from the 6LR
 The 6LBR MUST trust the 6LR
 - A rogue 6LR may pretend that it represents a 6LN that passed the challenge
 - Should we challenge all the way from the 6LBR?
 - Can the Crypto-ID be used in routing protocols, how?

draft-ietf-6lo-backbone-router

P.Thubert

Unmet expectations

- Scale an IOT subnet to the tens of thousands
 With device mobility (no renumbering)
 Controlled Latency and higher Reliability using a backbone
- Deterministic Address presence
 Route towards the latest location of an address
 Remove stale addresses

Recent changes

- Uses of the 'R' flag
 Indicates the need for proxy operation
- Clarifications
- TBD : RPL Root / 6LBR separation

WGLC?

draft-thubert-roll-unawareleaves

P.Thubert

IETF 101

London

Terminology

- RFC 6550:
 - A RPL leaf may understands RPL
 - But does not Act as a router
- This draft: A RPL-unaware leaf does not implement anything specific to RPL, but it MUST support draft-rfc6775-update

Notes on the 'R' flag (defined in draft-rfc-6775-update)

- A RPL Unaware Leaf does not know that there is routing in place and that the routing is RPL; draft-thubert-roll-unaware-leaves does not require anything from the Leaf.
- draft-rfc-6775-update specifies a new flag in the EARO, the 'R' flag.
- If the 'R' flag is set, the Registering Node expects that the 6LR ensures reachability for the Registered Address, e.g., by means of routing or proxying ND.
- Conversely, when it is not set, the 'R' flag indicates that the Registering Node is a router, which for instance participates to RPL and that it will take care of injecting its Address over the routing protocol by itself.
- A 6LN that acts only as a host, when registering, MUST set the 'R' to indicate that it is not a router and that it will not handle its own reachability.
- A 6LR that manages its reachability SHOULD NOT set the 'R' flag; if it does, routes towards this router may be installed on its behalf and may interfere with those it injects.

RPL Unaware Leaf (RUL) operation

- Note: The RUL does not know that there is routing in place and that the routing is RPL; draft-thubert-roll-unaware-leaves does not require anything from the Leaf Node. The 'R' flag is defined in draft-rfc-6775-update and plain 6LNs MUST set it.
- A RPL-Unaware Leaf (RUL) sets the 'R' flag in the EARO to declare itself as a host with the expectation that the 6LR that accepts the registration injects routing information for the Registered Address in the RPL domain as described in draft-rfc-6775-update.
- The packet forwarding operation by the 6LR serving a Leaf 6LN is described in draft-ietf-roll-useofrplinfo.
- This doc draft-thubert-roll-unaware-leaves adds the capability by a 6LR to advertise the IPv6 address(es) of the 6LN in the RPL protocol.
- Examples of routing-agnostic 6LN may include lightly-powered sensors such as window smash sensor (alarm system), or the kinetically powered light switch.

First registration

- Upon the first registration, the EDAR / EDAC populates a state in the 6LBR including the ROVR field and the 6LR sends a first DAO message.
- The RPL Root acts as a proxy on behalf of the 6LR upon the reception of the DAO propagation initiated at the 6LR. Should we allow splitting from the 6LBR, e.g.:

EDA (DAR, DAC) message Proxying

- Upon the renewal of a 6lowPAN ND registration: if the 'R' flag is set, the 6LR injects a DAO targeting the Registered Address, and refrains from sending a DAR message.
- With a Root/6LBR split that could give:

Mapping Fields from RPL DAO to NS(EARO) and EDA

- The Registered Address in a RPL Target Option is a direct match to the Registered Address field of the EDAR message and in the Target field of the NS, respectively
- EARO's TID is a direct match to Path Sequence in Transit Information option (TIO)
- EARO's Lifetime unit is 60s. RPL uses Lifetime Units that is passed in the DODAG Configuration Option. Converting EARO to DAO and back requires mapping of units.
- The Registration Ownership Verifier (ROVR) field in keep-alive EDAR messages by the Root is set to 64-bits of all ones to indicate that it is not provided. It is obtained in the EDAC from the 6LBR and used in proxy registration.

Q: Should we carry it in a RPL option in DAO messages?