
6lo Fragmentation DT

Thomas Watteyne (Chair)

Carsten Bormann

Rahul Jadhav

Gorry Fairhurst

Pascal Thubert

Gabriel Montenegro

Context & Agenda

• pre-IETF99: fragmentation comes up regularly in 6lo WG meetings

• IETF99: 6lo chairs ask for volunteers to create a DT

• IETF100: DT meets

• IETF101:
• Problem Statement & Goal (Thomas Watteyne) 10 min

• draft-watteyne-6lo-minimal-fragment (Carsten Bormann) 10 min

• draft-thubert-6lo-forwarding-fragments (Pascal Thubert) 10 min

• Q&A 10 min

Problem Statement & Goal
6lo Fragmentation DT

Thomas Watteyne

Outline

• Standardized per-hop reassembly solutions
• RFC4944

• RFC6282

• Problem statement

• Candidate fragment forwarding solutions
• Carsten’s book

• draft-thubert-6lo-forwarding-fragments-08

• Goal of the DT

RFC4944
• Link-layer fragmentation only in route-over reassembly at each hop

• Fragment header

• Reassembly timer:
• Starts when node receives first fragment

• Timeout value MUST be <60s

• When times out, buffer cleared, packet dropped

Units of 8 octets

bytes

• +1 on each new frag
• No initial value

specified

RFC6282

Problem statement

• Per-hop fragmentation and reassembly has 2 issues:
• Latency:

• Increases end-to-end latency as you need to wait for each fragment at each hop

• Reliability:
• Limited memory limited number of buffers (1-2?) packet dropped when new frag

received and old not fully reassembled yet
• No frag recovery: 1 frag loss == packet dropped

• Proposed solution:
• Fragment forwarding:

• Source fragments
• Intermediate nodes relays
• LBR reassembles

6LoWPAN: The Wireless Embedded Internet
a.k.a. “Carsten’s book”

Has experienced congestion at
one of the hops

draft-thubert-6lo-forwarding-fragments-07
• Fragment forwarding

• Locally unique label, swapped at each hop

• End-to-end ACK
• ACK requested by source

• for any fragment

• ACK travels reverse LSP

• Fragment recovery
• bitmap in RFRAG-ACK, one bit per fragment

• Flow control capabilities

• Different size per frag

Bytes (frags can have
different sizes)

locally unique and
swapped

Index of fragment

• or size of packet when seq=0
• or abort is seq>0 and offset=0

Goal of the DT

• Produce 2 documents (to be submitted to 6lo WG):
• informational document

• summarize fragmentation as standardized now

• describes Carsten's virtual reassembly buffer implementation

• discusses its limits

• standards-track document
• builds upon the first one

• adds fragment recovery

• Philosophy
• keep activity as swift as possible

• small DT, but regular information to WGs

• ideally close the DT after London (to be discussed)

draft-watteyne-6lo-
minimal-fragment-00

Thomas Watteyne

Carsten Bormann

Pascal Thubert

ToC

1. Overview of 6LoWPAN Fragmentation 2

2. Limits of Per-Hop Fragmentation and Reassembly 3

2.1. Latency . 4

2.2. Memory Management and Reliability 4

3. Virtual Reassembly Buffer (VRB) Implementation 4

4. Critique of VRB . 6

5. Security Considerations 7

6. IANA Considerations . 7

7. Acknowledgments . 7

8. Informative References 8

Authors' Addresses . 8

context

VRB

Context: typical fragmentation implementation

+---+ +---+

... ---| A |-------------------->| B |--- ...

+---+ +---+

(frag. 5)

123456789 123456789

+---------+ +---------+

| # ###| |### # |

+---------+ +---------+

outgoing incoming

fragmentation reassembly

buffer buffer

Figure 1: Fragmentation at node A, reassembly at node B.

 Limits: latency, end-to-end reliability (see preliminary simulation results)

Virtual Reassembly Buffer (VRB) Implementation

+---+ +---+

| A |----->| B | +-------------+-------------+

+---+ #(5) +---+\ #(2) | incoming | outgoing |

\ +-------+-----+-------+-----+

+---+ #(8) +---+ |L2 src | tag |L2 dest| tag |

| E |----->| F | +=======+=====+=======+=====+

+---+ %(5) +---+ | B | 2 | F | 8 |

/ | D | 2 | F | 5 |

/ %(2) | empty |

+---+ %(1) +---+ | empty |

| C |----->| D | +-------+-----+-------+-----+

+---+ +---+ Node E's VRB table.

Figure 3: Illustrating VRB. #(5) and %(1) are fragments from packets

coming from nodes A and C, with datagram_tag set to 5 and 1,

respectively.

VRB: Gotchas and Limits

• Gotchas
• Long headers (e.g. source routing) receive multiple fragments before forwarding
• Out-of-order fragments receive multiple fragments before forwarding
• Changing header length put all slack in the frame sizes into the _first_ fragment

• Security
• DoS attack by “fragment 1” flood to overflow VRB

• Limits
• Non-zero Packet Drop Probability
• No Fragment Recovery
• No Per-Fragment Routing

 If limits are not acceptable you need an actual protocol (such as draft-
thubert-6lo-fragment-recovery)

Preliminary Simulation Results
Yasuyuki Tanaka

RFC4944

draft-watteyne-6lo-
minimal-fragment

240 bytes of RAM

• Using 6TiSCH simulator
(https://bitbucket.org/6tis
ch/simulator/src)

• topology shown on the left
• RFC8180 with 101 slot

slotframe, sufficient
bandwidth, no 6P, no RPL

• all nodes generate data
pkPeriod = U[54s,66s]

• One data point = 100 runs
• 95% confidence intervals

0

1

2

5

3

4

6

9

7

8

tr
af

fi
c

packets
dropped
here

root

1,280 bytes of RAM

https://bitbucket.org/6tisch/simulator/src

6lo vs. lwig

• same content was first published as
draft-bormann-lwig-6lowpan-virtual-reassembly

• Then, IETF IoT Directorate call and follow-up e-mails with 6lo chairs

• Plan is to:
• submit both informational and standards-track drafts to 6lo

• Present at IETF 101

• Get reviews on both from the 6lo WG

• Discuss which WG final version belongs to

1

6LoWPAN Selective Fragment

Recovery

IETF 101

London

P.Thubert

draft-thubert-6lo-fragment-recovery-00

https://tools.ietf.org/html/draft-thubert-6lo-fragment-recovery-00

Features

• New formats for the fragment header

• Selective Fragments Recovery

– Expects but does not depend on IOD

• Window-based Flow Control

– ACK at the end of the window

• Explicit Congestion Notification

– ECN flag echoed to the source

• Explicit Signaling to both set up and clean up

– Including Abort and Fin

Status

• Draft -00

– Based on draft-thubert-6lo-forwarding-fragments

– Same operation as / limited diffs from it:

https://tools.ietf.org/rfcdiff?url2=draft-thubert-6lo-

fragment-recovery-00.txt

• Summary of the changes

– Removed description of the forwarding, same as VRB

– Complements draft-watteyne-6lo-minimal-fragment

– Introduces the concept of 2 LSPs for one VRB

https://tools.ietf.org/html/draft-thubert-6lo-forwarding-fragments
https://tools.ietf.org/rfcdiff?url2=draft-thubert-6lo-fragment-recovery-00.txt

4

Past IETF presentation

IETF

Prague

P.Thubert

History

• Presented 6lo Fragmentation issues in Chicago

– In appendix of this slideware

– Mostly issues for route-over

– Summarized in next slide

• Work on fragmentation at LPWAN

– As part of the SCHC IP/UDP draft

– Optional: Windowing/individual retry of fragments

– Does not need to support multihop

Context

• TCP rarely used,

– Pro is MSS to avoid fragmentation

• 6LoWPAN applications handle their reliability

– UDP

– to get exactly what they need

– They also expect very long round trips.

• Time gained by streamlining fragments is available
for retries without a change in the application
behavior.

6lo Route-Over fragmentation issues

• Recomposition at every L3 hop

– Cause latency and buffer overutilization

• Uncontrolled sending of multiple fragments

– Interferences in single frequency meshes

• Fragment flows interfere with one another

– Buffer bloat / congestion loss

• Loss locks buffers on receiver till time out

– Readily observable, led to RFC 7388

6lo Fragmentation reqs

• Provide Fragment Forwarding

– There are pitfalls, better specify one method

– E.g. datagram tag switching ala MPLS

– Stateful => state maintenance protocol

• Provide pacing/windowing capabilities

– Mesh awareness? (propagation delay, nb hops)

• Provide fragment reliability

– individual ack/retry/reset, e.g. ala SCHC

• Provide congestion control for multihop

– E.g. ECN

Path Forward

• Solutions exist (as shown by draft-thubert..):

1. Produce a problem statement at 6lo

- Based on this slideware

2. Form a design team

– Need TSV skills to solve the problem

– Also MPLS and radio skill, CoAP, CoCoA

3. Find a host WG and produce a std track

– at TSVWG?

4. Also recommendations for application design

APPENDIX

10

11

Backup slides

The problem with fragments

in 6lo mesh networks

IETF 99

Prague

P.Thubert

draft-thubert-6lo-forwarding-fragments-04

https://tools.ietf.org/html/draft-thubert-6lo-forwarding-fragments-04

Recomposition at every hop

• Basic implementation of RFC 4944 would cause

reassembly at every L3 hop

• In a RPL / 6TiSCH network that’s every radio hop

• In certain cases, this blocks most (all?) of the buffers

– Buffer bloat

• And augments latency dramatically

Research was conducted to forward fragments at L3.

Early fragment forwarding issues #1

• Debugging issues due to Fragments led to RFC 7388

• Only one full packet buffer

• Blocked while timing out lost fragments

• Dropping all packets in the meantime

• Arguably there could be implementation tradeoffs

– but there is no good solution with RFC4944,

– either you have short time outs and clean up too early,

– or you lose small packets in meantime

Early fragment forwarding issues #1 c’d

• Need either to abandon fragmented packet

• or discover loss and retry quickly, both need signaling

• Solution is well-know:

– selective acknowledgement

– reset

• Requires new signaling

=> Implementation recommendations are not sufficient

Early fragment forwarding issues #2

• On a single channel multihop network (not 6TiSCH):

Next Fragment interferes with previous fragment

• No end-to-end feedback loop

• Blind throttling can help

• New signaling can be better

2 1

Deeper fragment forwarding issues #3

• More Fragments pending than hops causes bloat

• No end-to-end feedback loop for pacing

• Best can do is (again) blind throttling

• Solution is well-known, called dynamic windowing

• Need new signaling

=> Implementation recommendations are not sufficient

Deeper fragment forwarding issues #4

• Multiple flows through intermediate router cause

congestions

• No end-to-end feedback for Congestion Notification.

• Blind throttling doesn’t even help there

• Fragments are destroyed, end points time out,

packets are retried, throughput plummets

• Solution is well-known, called ECN

• Need new signaling

=> Implementation recommendations are not sufficient

Deeper fragment forwarding issues #5

• Route over => Reassembly at every hop creates a

moving blob per packet

• Changes the statistics of congestion in the network

• Augments the latency by preventing streamlining

• More in next slides

=> Need to forward fragments even in route over case

Sender Router 1 Router 2 Receiver

T=0 III

T=1 II(I) I

T=2 I(I) II

T=3 (I) III

T=4 II(I) I

T=5 I(I) II

T=6 (I) III

T=7 II(I) I

T=8 I(I) II

T=9 (I) III

Current behaviour

Sender Router 1 Router 2 Receiver

T=0 III

T=1 II(I) I

T=2 II (I) I

T=3 II (I) I

T=4 I(I) I I

T=5 I (I) I I

T=6 I (I) II

T=7 (I) I II

T=8 (I) I II

T=9 (I) III

Window of 1 fragment

Sender Router 1 Router 2 Receiver

T=0 III

T=1 II(I) I

T=2 II (I) I

T=3 I(I) I (I) I

T=4 I (I) I I

T=5 (I) I (I) II

T=6 (I) I II

T=7 (I) III

T=8

T=9

Streamlining with larger window

Even Deeper fragment forwarding issues #6

• Original datagram tag is misleading

• Tag is unique to the 6LoWPAN end point

• Not the IP source, not the MAC source

• 2 different flows may have the same datagram tag

• Implementations storing FF state can be confused

• Solution is well known, called label swapping

• An easy trap to fall in, need IETF recommendations

Datagram Tag Confusion

Fragmentation

Also pick

Datagram tag 5

Pick

Datagram tag 5

Confused

Even Deeper fragment forwarding issues #6

• Forwarding Fragments requires state in intermediate

nodes

• This state has the same time out / cleanup issues as

in the receiver end node

• Solution is well known: Proper cleanup requires

– signaling that the flow is completely received

– or reset

Conclusion

• People are experiencing trouble that was predictable

from the art of Internet and Switching technologies

• The worst of it (collapse under load and hard-to-

debug misdirected fragments) was not even seen yet

but is predictable

• Some issues can be alleviated by Informational

recommendations

• Some require a more appropriate signaling

• Recommendation is rethink 6LoWPAN fragmentation

draft-thubert-6lo-forwarding-fragments

• Provides Label Switching

• Selective Ack

• Pacing and windowing + ECN

• Flow termination indication and reset

• Yes it is transport within transport (usually UDP)

• Yes that is architecturally correct because fragment

re-composition is an endpoint function

• And No splitting the draft is not appropriate, because

the above functionalities depend on one another.

2

7

RFC 4944: 6LoWPAN

Fragmentation

1 0 0

Datagram Tag

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

10

Next fragments1 0

Datagram Offset

1 0 0

Datagram Tag

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

10

1st fragment1 0 Datagram Size

Datagram Size

Size and offset from uncompressed form

1-hop technology

2

8

draft-thubert-6lo-forwarding-

fragments

Datagram Tag

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

10

ACK

Y <= ECN

Ack bitmap Ack bitmap

1 0 Y1 1 101

1 0 X

Datagram Tag

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

10

fragment

X <= ack request

1 1 Datagram Offset

Sequence 0..31 Datagram Size

001

…

Size and offset from

compressed form

……
multi-hop technology

Sender Router 1 Router 2 Receiver

T=0 III

T=1 II(I) I

T=2 I(I) II

T=3 (I) III

T=4 II(I) I

T=5 I(I) II

T=6 (I) III

T=7 II(I) I

T=8 I(I) II

T=9 (I) III

Current behaviour

Sender Router 1 Router 2 Receiver

T=0 III

T=1 II(I) I

T=2 II (I) I

T=3 II (I) I

T=4 I(I) I I

T=5 I (I) I I

T=6 I (I) II

T=7 (I) I II

T=8 (I) I II

T=9 (I) III

Single fragment

Sender Router 1 Router 2 Receiver

T=0 III

T=1 II(I) I

T=2 II (I) I

T=3 I(I) I (I) I

T=4 I (I) I I

T=5 (I) I (I) II

T=6 (I) I II

T=7 (I) III

T=8

T=9

Streamlining

