6l0 Fragmentation

Thomas Watteyne (Chair)
Carsten Bormann
Rahul Jadhav
Gorry Fairhurst
Pascal Thubert
Gabriel Montenegro

DT

Context & Agenda

* pre-IETF99: fragmentation comes up regularly in 6lo WG meetings

e [ETF99: 6lo chairs ask for volunteers to create a DT

* [ETF1
* IETF1

00: DT meets
01:

Problem Statement & Goal

* draft-watteyne-6lo-minimal-fragment
* draft-thubert-6lo-forwarding-fragments
* Q&A

(Thomas Watteyne)
(Carsten Bormann)
(Pascal Thubert)

10 min
10 min
10 min
10 min

Problem Statement & Goal
6lo Fragmentation DT

Thomas Watteyne

Outline

* Standardized per-hop reassembly solutions
« RFC4944
* RFC6282

* Problem statement

e Candidate fragment forwarding solutions

e Carsten’s book
 draft-thubert-6lo-forwarding-fragments-08

e Goal of the DT

* +1 on each new frag
* No initial value
specified

RFC4944

* Link-layer fragmentation only in route-over - reassembly at ea
* Fragment header

Units of 8 octets

1 2 3 1 2 3
0123456789 0123456789012345%672%8901 012345678 90123456789 01245678901
s T S o s s s s e e b el (TS i T S et e S e e E E aas s s S S e S
1100 0f datagram size datagram tag 0 0] datagram_size datagram_tag

e e e i et et S ket e e St e R R e T R e e S e et s et St Tt RS
|datagram offset |

First Fragment bbb —d—d—d—t—4

Figure 4:

Figure 5: Subsequent Fragments

Pattern Header Type
——
| 00 xxxxxx | NALP - Not a LoWPAN frame |
| 01 000001 | IPVE - Uncompressed IPvé Addresses |
01 000010 | LOWPAN_HC1 - LOWPBAN HC1 compressed IPvé
M ° 01 000011 | reserved - Reserved for future use
. ea Ssel I | tI l I Ie r | reserved - Reserved for future use
. 01 001111 | reserved - Reserved for future use
01 010000 | LOWPAN_BCO - LOWPAN_BCO broadcast
o . | 01 010001 | reserved - Reserved for future use |
) | | reserved - Reserved for future use |
a r S W e n no e rece Ives I rs ragl I le n | 01 111110 | reserved - Reserved for future use |
01 111111 | ESC - Additional Dispatch byte follows
10 xxxxxx | MESH - Mesh Header
L 11 000xxx | FRAGL - Fragmentation Header (first)
[J TI meo ut Va I ue M UST be <60$ 11 001000 | reserved - Reserved for future use
| reserved - Reserved for future use
11 011111 | reserved - Reserved for future use
. | 11 100xxx | FRAGN - Fragmentation Header (subsequent) |
* When times out, buffer cleared, packet dropped =
)) p p p | | reserved - Reserved for future use |
| 11 111111 | reserved - Reserved for future use |
rmmmmmmemeeee R e T T +

Figure 2: Dispatch Value Bit Pattern

RFC62382

Section 5.3 of [RFC4944] also defines how to fragment compressed IPvé6
datagrams that do not fit within a single link frame. Section 5.3 of
[RFC4944] defines the fragment header’s datagram size and

datagram offset values as the size and offset of the IPvé datagram
before compression. As a result, all fragment payload outside the
first fragment must carry their respective portions of the IPveé
datagram before compression. This document does not change that
requirement. When using the fragmentation mechanism described in
Section 5.3 of [RFC4944], any header that cannot fit within the first
fragment MUST NOT be compressed.

Problem statement

* Per-hop fragmentation and reassembly has 2 issues:

* Latency:
* Increases end-to-end latency as you need to wait for each fragment at each hop
* Reliability:

* Limited memory =2 limited number of buffers (1-2?) = packet dropped when new frag
received and old not fully reassembled yet

* No frag recovery: 1 frag loss == packet dropped

* Proposed solution:

* Fragment forwarding:
* Source fragments
* Intermediate nodes relays
* LBR reassembles

6LOWPAN: The Wireless Embedded Internet

a.k.a. “Carsten’s book”

2.5.2 L3 routing (‘‘Route-Over”’)

Layer-3 Route-Over forwarding is illustrated in Figure 2.6. In contrast to layer-2 mesh
forwarding, layer-3 Route-Over forwarding does not require any special support from the
adaptation layer format. Before the layer-3 forwarding engine sees the packet, the adaptation
layer has done its work and decapsulated the packet — at least conceptually (implementations
may be able to perform some optimizations by keeping the encapsulated form if they know

ATELLTE A=A (L e Drone] o H IR = (]] (] T AV = ATRTN

Note that this in particular means that fragmentation and reassembly are performed at each
hop in Route-Over forwarding — it 1s hard to imagine otherwise, as the layer-3 addresses are
part of the initial bytes of the IPv6 header, which is present only in the first fragment of a
larger packet. Again, implementations may be able to optimize this process by keeping virtual

reassembly buffers that remember just the IPv6 header including the relevant addresses (and
the contents of any fragments that arrived out of order before the addresses).

draft-thubert-6lo-forwarding-fragments-07

* Fragment forwarding
* Locally unique label, swapped at each hop

e End-to-end ACK

* ACK requested by source
e for any fragment

 ACK travels reverse LSP
* Fragment recovery

* Flow control capabilities
* Different size per frag

| sequence |

e

Index of fragment

Has experienced congestion at
one of the hops

|1 1101 0 0 X|E|fragment size|
e e T e T Tk Tt T T St T T T s e S S s
fragment offset |
R Rt) ot ettt et et et _ 4

: RFRAG Dispatch

Pattern Header Type
Fommmmm - Rl +
11 101000	RFRAG - Recoverable Fragment
11 101001	RFRAG-ARQ - RFRAG with Ack Request
11 101010	RFRAG-ACK - RFRAG Acknowledgment
11 101011	RFRAG-ECHO - RFRAG Ack with ECN Echo
Fomm - Fom e e s — +

1l Dispatch Value Bit Patterns

locally unique and

swapped
Bytes (frags can have

different sizes)

I e i T T e ok o e
datagram tag |

X set == Ack Requested

* or size of packet when seqg=0

* orabortis seq>0 and offset=0

Goal of the DT

* Produce 2 documents (to be submitted to 6lo WG):

* informational document
* summarize fragmentation as standardized now
* describes Carsten's virtual reassembly buffer implementation
 discusses its limits

 standards-track document
e builds upon the first one
e adds fragment recovery

* Philosophy
» keep activity as swift as possible

* small DT, but regular information to WGs
* ideally close the DT after London (to be discussed)

draft-watteyne-6lo-
minimal-fragment-00

Thomas Watteyne
Carsten Bormann
Pascal Thubert

ToC

context

VRB

N

O 1 o U1 b W

Overview of 6LOWPAN Fragmentation e
Limits of Per-Hop Fragmentation and Reassembly

.1. Latency . e e e e e e e
.2. Memory Management and Reliability ..
Virtual Reassembly Buffer (VRB) Implementation

Critique of VRB
Security Considerations
TIANA Considerations
Acknowledgments
Informative References

Authors' Addresses

00 O J J JdJoy b Db WIN

Context: typical fragmentation implementation

+———+ +-———+
-—=] A |—-————— e —————— > B |—-—-
+———+ +-———+
(frag. 5)
123456789 123456789
- + - +
| # HHH | ### # |
- + - +
outgoing incoming
fragmentation reassembly
buffer buffer

Figure 1: Fragmentation at node A, reassembly at node B.

- Limits: latency, end-to-end reliability (see preliminary simulation results)

Virtual Reassembly Buffer (VRB) Implementation

+-——+ +-——+
| A |-———- >| B | to—m to—m +
t——=+ #(5) +-——+\ #(2) | incoming | outgoing |
\ te————— e te————— e +
t———+ #(8) +-——+ | L2 src | tag |L2 dest| tag |
| E |-————- > F | t=======+4=====t=======t=====+
+-——+ 3 (5) +--——-+ | B | 2 | E 8 |
/ | D | 2 | E S5 |
/ %(2) | empty |
+-—-—+ %5(1) +-———-+ | empty |
| C |—-————- >| D | to—————- e t-—————- t————= +
t——=+ t———+ Node E's VRB table.

Figure 3: Illustrating VRB. #(5) and %(1) are fragments from packets
coming from nodes A and C, with datagram tag set to 5 and 1,
respectively.

VRB: Gotchas and Limits

e Gotchas

* Long headers (e.g. source routing) = receive multiple fragments before forwarding
* Out-of-order fragments = receive multiple fragments before forwarding
* Changing header length = put all slack in the frame sizes into the _first_fragment

* Security

* DoS attack by “fragment 1” flood to overflow VRB
* Limits

* Non-zero Packet Drop Probability

* No Fragment Recovery
* No Per-Fragment Routing

-2 If limits are not acceptable you need an actual protocol (such as draft-
thubert-6lo-fragment-recovery)

Preliminary Simulation Results

Yasuyuki Tanaka

packets
dropped
here

traffic

Using 6TiSCH simulator
(https://bitbucket.org/6tis
ch/simulator/src)
topology shown on the left
RFC8180 with 101 slot
slotframe, sufficient
bandwidth, no 6P, no RPL
all nodes generate data
pkPeriod = U[54s,665]
One data point = 100 runs
95% confidence intervals

End-to-End Reliability (%)

100 ~

90

80

70

60 A

50 A

40 ~

draft-watteyne-6lo-
minimal-fragment

y
/ 240 bytes of RAM
/
RFC4944
1,280 bytes of RAM
—}— Fragment Forwarding (12 VRB Table Entries)
Per-hop reassembly, 1 reassembly buffer
2 4 6 8 10

Number of fragments per packet

https://bitbucket.org/6tisch/simulator/src

6lo vs. Iwig

e same content was first published as
draft-bormann-lwig-6lowpan-virtual-reassembly

* Then, IETF loT Directorate call and follow-up e-mails with 6lo chairs
* Plan is to:

* submit both informational and standards-track drafts to 6lo
* Present at IETF 101

* Get reviews on both from the 6lo WG

* Discuss which WG final version belongs to

6LOWPAN Selective Fragment
Recovery

draft-thubert-6lo-fragment-recovery-00

P.Thubert

IETF 101

London

https://tools.ietf.org/html/draft-thubert-6lo-fragment-recovery-00

Features

* New formats for the fragment header

» Selective Fragments Recovery
— Expects but does not depend on IOD

 Window-based Flow Control
— ACK at the end of the window

* Explicit Congestion Notification
— ECN flag echoed to the source

 Explicit Signaling to both set up and clean up
— Including Abort and Fin

Status

 Draft -00

— Based on draft-thubert-6lo-forwarding-fragments

— Same operation as / limited diffs from it:
https://tools.ietf.org/rfcdiff?url2=draft-thubert-6lo-
fragment-recovery-00.txt

« Summary of the changes
— Removed description of the forwarding, same as VRB
— Complements draft-watteyne-6lo-minimal-fragment
— Introduces the concept of 2 LSPs for one VRB

https://tools.ietf.org/html/draft-thubert-6lo-forwarding-fragments
https://tools.ietf.org/rfcdiff?url2=draft-thubert-6lo-fragment-recovery-00.txt

Past IETF presentation

P.Thubert
IETF

Prague

History

- Presented 6lo Fragmentation issues in Chicago
— In appendix of this slideware
— Mostly issues for route-over
— Summarized in next slide

* Work on fragmentation at LPWAN
— As part of the SCHC IP/UDP draft

— Optional: Windowing/individual retry of fragments
— Does not need to support multihop

Context

- TCP rarely used,
— Pro is MSS to avoid fragmentation

* 6LoWPAN applications handle their reliability
— UDP
— to get exactly what they need
— They also expect very long round trips.
* Time gained by streamlining fragments is available

for retries without a change in the application
behavior.

6lo Route-Over fragmentation issues

 Recomposition at every L3 hop
— Cause latency and buffer overutilization

« Uncontrolled sending of multiple fragments
— Interferences in single frequency meshes

* Fragment flows interfere with one another
— Buffer bloat / congestion loss

* Loss locks buffers on receiver till time out
— Readily observable, led to RFC 7388

6lo Fragmentation regs

* Provide Fragment Forwarding

— There are pitfalls, better specify one method

— E.g. datagram tag switching ala MPLS

— Stateful => state maintenance protocol
* Provide pacing/windowing capabilities

— Mesh awareness? (propagation delay, nb hops)
* Provide fragment reliability

— Individual ack/retry/reset, e.g. ala SCHC

* Provide congestion control for multinop
— E.g. ECN

Path Forward

 Solutions exist (as shown by draft-thubert..):

1. Produce a problem statement at 6lo
- Based on this slideware

2. Form a design team
— Need TSV skills to solve the problem
— Also MPLS and radio skill, CoAP, CoCoA

3. Find a host WG and produce a std track
—at TSVWG?

4. Also recommendations for application design

APPENDIX

10

Backup slides
The problem with fragments
In 6lo mesh networks

P.Thubert
IETF 99

Prague

draft-thubert-6lo-forwarding-fragments-04

https://tools.ietf.org/html/draft-thubert-6lo-forwarding-fragments-04

Recomposition at every hop

« Basic implementation of RFC 4944 would cause
reassembly at every L3 hop

* In a RPL/ 6TiISCH network that's every radio hop

* In certain cases, this blocks most (all?) of the buffers
— Buffer bloat

« And augments latency dramatically

Research was conducted to forward fragments at L3.

Early fragment forwarding issues #1

* Debugging issues due to Fragments led to RFC 7388
* Only one full packet buffer

 Blocked while timing out lost fragments

* Dropping all packets in the meantime

» Arguably there could be implementation tradeoffs
— but there is no good solution with RFC4944,
— either you have short time outs and clean up too early,
— or you lose small packets in meantime

Early fragment forwarding issues #1 c'd

* Need either to abandon fragmented packet
e or discover loss and retry quickly, both need signaling

 Solution is well-know:
— selective acknowledgement
— reset

* Requires new signaling

=> Implementation recommendations are not sufficient

Early fragment forwarding issues #2

* On a single channel multihop network (not 6TISCH):
Next Fragment interferes with previous fragment

* No end-to-end feedback loop

* Blind throttling can help

* New signaling can be better

Deeper fragment forwarding issues #3

* More Fragments pending than hops causes bloat
* No end-to-end feedback loop for pacing

* Best can do Is (again) blind throttling

 Solution is well-known, called dynamic windowing
* Need new signaling

=> Implementation recommendations are not sufficient

Deeper fragment forwarding issues #4

« Multiple flows through intermediate router cause
congestions

* No end-to-end feedback for Congestion Notification.
* Blind throttling doesn’t even help there

* Fragments are destroyed, end points time out,
packets are retried, throughput plummets

» Solution is well-known, called ECN
* Need new signaling

=> Implementation recommendations are not sufficient

Deeper fragment forwarding issues #5

* Route over => Reassembly at every hop creates a
moving blob per packet

* Changes the statistics of congestion in the network
* Augments the latency by preventing streamlining
* More In next slides

=> Need to forward fragments even in route over case

Current behaviour

Il
110
1(1)
(1)

110
10)
(1

(1) |
(1) [
(1) 1l

Window of 1 fragment

Il
110

I
10)

()

(1)

(1)

()

(1)

(1)

(1)

Streamlining with larger window

110
[

10)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

Even Deeper fragment forwarding issues #6

 Original datagram tag Is misleading

 Tag Is unique to the 6LoWPAN end point

* Not the IP source, not the MAC source

« 2 different flows may have the same datagram tag
* Implementations storing FF state can be confused
 Solution is well known, called label swapping

* An easy trap to fall in, need IETF recommendations

Datagram Tag Confusion

\ /

_ Fragmentation
& = L= &
IC @ @ SO pic
gatl;gram tag 5 %@E (<)) = Datag?zlslm fang
w I =
. &
Confused @
(=)
Kot @

Even Deeper fragment forwarding issues #6

* Forwarding Fragments requires state in intermediate
nodes

 This state has the same time out / cleanup issues as
In the receiver end node
« Solution is well known: Proper cleanup requires

— signaling that the flow is completely received
— orreset

Conclusion

* People are experiencing trouble that was predictable
from the art of Internet and Switching technologies

* The worst of it (collapse under load and hard-to-
debug misdirected fragments) was not even seen yet
but Is predictable

* Some Issues can be alleviated by Informational
recommendations

* Some require a more appropriate signaling
« Recommendation is rethink 6LoWPAN fragmentation

draft-thubert-6lo-forwarding-fragments

* Provides Label Switching

» Selective Ack

* Pacing and windowing + ECN

* Flow termination indication and reset

* Yes It Is transport within transport (usually UDP)

* Yes that is architecturally correct because fragment
re-composition is an endpoint function

* And No splitting the draft is not appropriate, because
the above functionalities depend on one another.

RFC 4944: 6LoWPAN
Fragmentation

Datagram Size 1st fragment

Datagram Tag

Datagram Size Next fragments

Datagram Tag

Datagram Offset

Size and offset from uncompressed form

1-hop technology

N

draft-thubert-6lo-forwarding-
fragments

Datagram Offset

Datagram Tag

Sequence 0..31

Datagram Size

Datagram Tag

Ack bitmap

Ack bitmap

fragment
X <= ack request

Size and offset from
compressed form

ACK
Y <= ECN

multi-hop technology

N

Hop #4

Hop #3

Hop #3

Heop #2

Hop #1

—_—

Current behaviour

Il
110
1(1)
(1)

110
10)
(1

(1) |
(1) [
(1) 1l

Single fragment

110

[0)

[

(1) |

| 0

|

(1) |
(N

(1)

(1)

(1)

Streamlining

Il
110

I(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

