
1

Flow-based	Cost	Query
draft-gao-alto-fcs-05

Mar 19,	2018@IETF	101

Presenter: Jensen Zhang

2

Updates:	Overview
• Many	updates	from	-04 (Dec 13,	2017,	IETF	100
Interim)	to	-05 (Mar 5,	2017,	IETF	101)
– Improve	the	clarity	of	the	document	by	explicitly	
stating	the	problems.

– Make terms	used in this document clear.
– Move	Section	6	“Advanced	Flow-based	Query”	out	
of	this	document.

– Change	“ALTO	Address	Type	Conflicts	Registry”	to	
“ALTO	Address	Type	Compatibility	Registry”.

3

Review Flow-based Query Design
General Requirements on ALTO for the Unified Interface:
● More flexible input: Target of FCS
● More flexible output: Target of Path Vector, Unified

Property, Multi-Cost (RFC8189), Cost Calendar

Requirements on the Input Flexibility:
● #1 More flexible shape of query space
● #2 More expressive encoding of query entry

Basic Proposal of FCS:
● Arbitrary end-to-end query
● Expressive endpoint address
● Extensible flow description and arbitrary flow query

4

Remaining Issues
• Q1: How to achieve a unified query model?

– We have two design options for the querymodel:
• Partial mesh src-dst pairs
• Extensible header space set

• Q2: How to resolve the flow attribute conflicts?
– A flow definitionmay be invalid: A TCP socket source address
cannot establish a valid connectionwith a UDP socket
destination address.

– Allow the server to notify this invalidity to the client as early as
possible.

5

Q1: Unified Query Model
Design
Option

Partial Mesh Src-Dst Pairs
(CurrentOption)

Extensible Header Space Set
(AnotherOption)

Example [{"srcs": [addr1],
"dsts": [addr3, addr4]},

{"srcs": [addr2],
"dsts": [addr3, addr5]}]

{"f1": {"ipv4:destination": v1,
"ethernet:vlan-id": v2},

"f2": {"ipv4:destination": v3,
"ipv4:source": v4},

"f3": {"ipv4:destination": v5,
"ipv4:source": v6,
"ethernet:vlan-id": v7}}

Compatibility Response can be compatible Incompatible

Request Size Can be reduced Cannot be reduced

Extensibility Can introduce new endpoint
address types

Can introduce new flow attributes

Flexibility Cannot request non-endpoint
flow attributes

Can support arbitrary flow attributes

Complexity Validation is simple (Only need to
check source and destination)

Validation is complex (Need to check
every shown attributes)

Comparison between two design options

6

New Registered Address Types
Address
Type

Encoding Semantics PotentialUse Cases

eth MAC Address (EUI-48 or
EUI-64)

The ethernet address Layer2 flows between
inter DCNs

domain
Domain Name (RFC2181)

Can be resolved by an A record
CDNdomain6 Can be resolved by an AAAA

record

tcp

IPv4 Socket Address

The client/server address of a
tcp socket with an IPv4 address

Flow-level scheduling

udp The client/server address of a
udp socket with an IPv4
address

tcp6

IPv6 Socket Address

The client/server address of a
tcp socket with an IPv6 address

udp6 The client/server address of a
udp socket with an IPv6
address

7

Q2: Flow Attribute Conflicts
• Original Design:

– Declare	conflicts of	new address	type with each existingaddress types.
– For example: tcp and udp
– Some	network	with	special	technologies	(e.g.	NAT)	may	avoid	some	

conflicts. So a server can declare the capability disagreewith the conflicts
defined in the registry.

• Key observation: Most of address types conflict with others.
• Current Design:

– Declare compatibility instead of conflicts.
– If the address type combination of a src-dst pair is not defined in the

compatibility registry, it SHOULD be regarded as invalid.
– A server can extend compatible address type combinations into its own

capability.

8

• Request for reviews/comments
• WG item?

Next Steps

9

Backup	Slides

10

Flexible Shape of Query Space
• Different flexibilities	of the query space

Full Mesh
Src-Dst Pairs

Partial Mesh
Src-Dst Pairs

Extensible
Header Space

srcs

addr1
addr2

dsts

addr3
addr4
addr5

id

f1
f2
f3

header-fields
k1 k2 k3 …
v11 * v13
v21 v22 *
v31 v32 v33

srcs

addr1
addr2

dsts

addr3
addr4
addr5

Lower Flexibility Higher Flexibility

Better Compatibility Worse Compatibility
Smaller Request Size Larger Request Size

11

Flexible Shape of Query Space
• Full Mesh Src-Dst Pairs (Base ALTO Protocol)

– {"srcs": [addr1, addr2]
"dsts": [addr3, addr4, addr5]}

• PartialMesh Src-Dst Pairs	(Section	5	of	FCS)
– Advantage:

• The response can be compatiblewith the base ALTO protocol
• The size of request can be reduced by using multiple smaller full meshes

– Drawback: Non-endpoint attributes cannot be supported
– [{"srcs": [addr1],

"dsts": [addr3, addr4]},
{"srcs": [addr2],
"dsts": [addr3, addr5]}]

• ExtensibleHeader Space	(Section	6	of	FCS)
– Advantage: non-endpoint attributes can be supported
– Drawback: The response is incompatible; the size of request cannot be reduced
– {"f1": {"ipv4:destination": v11, "ethernet:vlan-id": v13},

"f2": {"ipv4:destination": v21, "ipv4:source": v22},
"f3": {"ipv4:destination": v31, "ipv4:source": v32,

"ethernet:vlan-id": v33}}

Question: Can we achieve
a unified querymodel?

12

Expressive Query Entry Encoding
• Expressive EndpointAddress

– “An	endpoint	is	an	application	or	host	that	is	capable	of	communicating	
(sending	and/or	receiving	messages)	on	a	network.” (RFC7285 Sec 2.1)

– Encode 5-tuples to endpoint addresses
– New AddressTypes for ALTO Address Type Registry

• Use address type identifier to expressprotocol semantics
• Different address types can use the same address encodingwith
different semantics (e.g. “tcp” and “udp”)

• Extensible Flow Description
– ALTO Header Field Registry

• Current registry is a subset ofOpenFlowmatch fields
• Follow the TLV dependencies defined in OpenFlow
• Allowto register new header fields

13

The Key Remaining Issue
• Validation requirement

– Client: I want to query the cost of flow A
– Server: the descriptor of flow A is invalid
– “If the ALTO server does not define a cost value from a source endpoint to a

particular destinationendpoint, it MAY be omitted from the response”
(RFC7285 Sec 11.5.1.6)

– General Problem from Client:Which flows are available from this server?

• Case1: EndpointConflict
– {"srcs": ["tcp:203.0.113.45:54321"]

"dsts": ["udp:8.8.8.8:8080"]}

• Case2: Invalid FlowDescriptor
– {"flow1": {"ipv4:source": "203.0.113.45",
 "tcp:source": 54321,
 "udp:destination": 8080}}

14

Endpoint Conflict
• Declare conflicts of each address type

– The conflicting identifier list of the future registered address types could be
longer and longer

– Some network with special technologies (e.g. NAT) may avoid some
conflicts

15

Invalid Flow Descriptor
• Different cases of invalid flow descriptor

– Missing required header fields
• Validation:Declare “required” header fields list in “capabilities”

– Conflictingheader fields/values
• Validation:Apply the TLV format validationdefined in OpenFlow

– Unsupported header fields
• Validation:Check “required”and “optional”header fields list

• Limitation of a single “required” list
– Server: Each flowMUST contain “ipv4 source and destination”OR “ipv6

source and destination”
– A single “required”header fields list cannot express such a validator
– Introduce “or-required”:

• {"or-required":
[["ipv4:source", "ipv4:destination"],
["ipv6:source": "ipv6:destination"]]}

16

• Move “Address Type Registry” and “Address
Type Conflict Registry” to a new draft?
– Consider other drafts (e.g. cellular addresses)

have the same requirement
• Request for reviews/comments
• WG item?

Next Steps

