Routing State Abstraction
Algorithms for Compressing Path Vectors

draft-gao-alto-routing-state-abstraction-08

Jensen

K.Gao® X. Wangz'4 QXiangZ'4 C.Gu* Y.R. Yangz'4 G.Chen?

LHuawei 2Tongji University 3Tsinghua University ~ *Yale University

Mar 19,2018 @ IETF 101

Overview

What is RSA?
» Routing State Abstraction is a set of algorithms to provide the
information for a set of correlated flows, encoded as the ALTO
path vector extension.

How is RSA related to ALTO WG items?

» RSA provides a concrete implementation of the path vector
extension.

» RSA can be used to 1) compress and 2) improve the privacy of an
existing path vector response, without loss of information.

Changes

Since -06

» Improve the clarity of the algorithms

> Split the algorithms into small pieces

> Add an example for each piece

» Include the algorithms to interact with the path vector extension
(encoding/decoding)

> Remove some extensions (i.e., client side bandwidth constraints)
that are specific to the algorithms

Since -07

» Simplify the descriptions of the algorithms
» Extend the examples to include intermediate state
» Improve the wording

Table of Contents

Core Algorithms

» Equivalent Aggregation
» Redundant Constraint Identification
» Equivalent Decomposition

Interaction with the Path Vector Extension

» Decoding from PV
» Encoding to PV

Example

PID1 +----- +
eh1__| |

| swl |\ +-——--—-

o= + \

_| sws +

PID3 +----- + /
eh3__| l__/ ===

| sw3 |

B +
Link	Description
11	swl <==> sw5
12	sw2 <==> sw6
13	sw3 <==> swb
14	sw4 <==> sw6
15	swb <==> sw6

e + PID2
o |__eh2

R +/ | sw2 |

| 1/ Ao +

--------- + swé |

| A oo + PID4
Ao + ____I |__ehd

| swd |

Fm———— +

path vectors:
ehl: [eh2:
eh3: [eh4:

[ane:11, ane:15, ane:12]]
[ane:13, ane:15, ane:14]]

abstract network element property map:

ane:11 : 100 Mbps, 1
ane:12 : 100 Mbps, 2
ane:13 : 100 Mbps, 1
ane:14 : 100 Mbps, 1
ane:15 : 100 Mbps, 1

Equivalent Aggregation

Merge the links which have the same set of source-destination pairs.

%\B@% - ;%\T\}é

To guarantee “no loss of information”: properties of the resultant
link are calculated by “summing” the properties using UPDATE
function.

metric | UPDATE(x, y) | default |

hopcount	x +y	0
routingcost	x +y	o
bandwidth	min(x, y)	+infinity
	0	

loss rate l1-Q-x*x -y

Example 1

Original:
set of pairs:
ane:11 : { ehl->eh2 }
ane:12 : { ehl->eh2 }
ane:13 : { eh3->eh4 }
ane:14 : { eh3->eh4 }
ane:15 : { ehl->eh2, eh3->eh4 }
properties:

ane:11 : 100 Mbps,
ane:12 : 100 Mbps,
ane:13 : 100 Mbps,
ane:14 : 100 Mbps,
ane:15 : 100 Mbps,

Bl

Merge ane:ll and ane:l2 as ane:a, merge ane:l3 and ane:l4 as ane:b.

set of pairs:
ane:a : { ehl->eh2 } (same as ane:11 and ane:12)
ane:b : { eh3->eh4 } (same as ane:13 and ane:14)
ane:15 : { ehl->eh2, eh3->eh4 }

properties:
ane:a : 100 Mbps, 3 (100 = min(100, 100), 3 1+ 2)
ane:b : 100 Mbps, 2 (100 = min(100, 100), 2 = 1 + 1)
ane:15 : 100 Mbps, 1

Redundant Constraint Identification

Each link represents a linear bandwidth constraint. IS_REDUNDANT is
an algorithm to find all redundant bandwidth constraints.

(A direct use case) Consider the bandwidth-only requests, if a
constraint is redundant, the corresponding link can be removed too.

To guarantee “no loss of information”: bandwidth-only requests

Example 2

bw(ehl->eh?2) <= 100 Mbps (ane:a)
bw(eh3->eh4) <= 100 Mbps (ane:b)
bw(eh1->eh2) + bw(eh3->eh4) <= 100 Mbps (ane:15)

The first two constraints are redundant.

bw(eh1->eh2) + bw(eh3->eh4) <= 100 Mbps (ane:15)

The corresponding PV result:

set of pairs:
ane:15 : { eh1-> eh2, eh3->eh4 }

properties:
ane:15 : 100 Mbps

Limitations

Before:

set of pairs:
ane:a : { ehl->eh2 }
ane:b : { eh3->eh4 }
ane:15 : { eh1->eh2, eh3->eh4 }

properties:
ane:a : 100 Mbps, 3 <- redundant

ane:b : 100 Mbps, 2 <- redundant
ane:15 : 100 Mbps, 1

After removing links with redundant constraints (ane:a and ane:b):

set of pairs:
ane:15 : { ehl->eh2, eh3->eh4d }

properties:
ane:15 : 100 Mbps, 1

Routing cost information is “lost”.

Equivalent Decomposition

In general cases links with redundant constraints cannot be
removed, but can be decomposed (which can be further aggregated).

Decomposition: split the set of pairs on a link, and treat the link as
multiple links traversed by different subsets of pairs.

e, € €
€c
>J< ><
ey ey e,

To guarantee “no loss of information”:
> Let P be the original set of pairs, P; be the set of pairs of the i-th
subset. The subsets should be disjoint (P; N P; = D if i # j) and
complete (UP; = P).
» The properties of each decomposed link are the same as the
properties of the original link.

Example 3

Before (bw for ane:l5 is changed for demonstration purpose):

set of pairs:
ane:a
ane:b
ane:15 :

properties:
ane:a
ane:b
ane:15

: { ehl->eh2 }
: { eh3->eh4d }

{ eh1->eh2, eh3->eh4d }

: 100 Mbps, 3
: 100 Mbps, 2
: 200 Mbps, 1 <- redundant

After decomposing ane:l5 to ane:c and ane:d:

set of pairs:
ane:a :
ane:b
ane:c
ane:d

properties:
ane:a
ane:b
ane:c
ane:d

e

eh1l->eh2 }
eh3->ehd }
ehl->eh2 }
eh3->eh4 }

: 100 Mbps, 3
: 100 Mbps, 2
: 200 Mbps, 1 (same as ane:15)
: 200 Mbps, 1 (same as ane:15)

Notes

» Equivalent aggregation and decomposition are discussed in our
IWQoS paper! but this document uses a new algorithm for
decomposition (included in an extended version). Various
algorithms exist to find redundant constraints in a set of
constraints. The one mentioned in the document is first
proposed by Telgen? (Benefits: simple and
multiprocessing-friendly).

> Since we always aggregate after decomposing a link. The
algorithm actually combines the aggregation step to reduce the
overhead of storing temporary results.

» “Perfect” decomposition which minimizes the number of links is
NP-hard (binary matrix factorization®) so the one proposed in
the document is actually a greedy algorithm.

of it) be included in the draft?

1Kai Gao et al. "NOVA: Towards on-demand equivalent network view abstraction for network
optimization”. In: 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS).
2017.

2Jan Telgen. “Identifying redundant constraints and implicit equalities in systems of linear
constraints”. In: Management Science 29.10 (1983).

3Stephen A. Vavasis. "On the Complexity of Nonnegative Matrix Factorization”. en. In: SIAM
Journal on Optimization 20.3 (2010).

Decoding & Encoding

The transformation between the internal link-oriented data structure
and the PV format. Please refer to the draft for more details.
path vectors (PV):

ehl: [eh2: [ane:11, ane:15, ane:12]]
eh3: [eh4: [ane:13, ane:15, ane:14]]

set of pairs (P):
ane:11 : { ehi->eh2 }

ane:12 : { ehl->eh2 }
ane:13 : { eh3->eh4d }
ane:14 : { eh3->eh4 }
ane:14 : { ehi->eh2, eh3->eh4 }

P = DECODE(PV)
PV = ENCODE(P)

Only extract the PV part so it is compatible with other extensions like
multi-cost.

Summary

Current status:

> Role: supplement of the PV extension with referenced
implementations.

> Better quality: cleaner descriptions and more examples.

» Target: Informational track (will be updated in the next revision)

Next steps:

» Adopt this document as a WG draft?
» Call for reviews from the WG

Q&A

Join the Discussion at alto@ietf.org!

Questions and Comments are Welcome!

alto@ietf.org

