ALTO Use Case: Resource Orchestration for Multi-Domain, Geo-Distributed Data Analytics

draft-xiang-alto-multidomain-analytics-01

Qiao Xiang¹,², Franck Le³, Y. Richard Yang¹,², Harvey Newman⁴, Haizhou Du¹, J. Jensen Zhang¹

¹ Tongji University, ² Yale University,
³ IBM Watson Research Center,
⁴ California Institute of Technology

March 19, 2018, IETF 101 ALTO
Takeaway from IETF 100 Interim

• Unicorn design.
 – Three-phase resource discovery, i.e., storage/computation resource discovery, path discovery and networking resource discovery.

• Unicorn development.
Updates for IETF 101

• Substantial updates since version-00.

• Goals:
 – Better prepare for document review.
 – Propose an ALTO extension to support accurate, privacy-preserving resource discovery across multiple domains.
Updates for IETF 101

- Key updates:
 - Add an overview of the characteristics of multi-domain, geo-distributed data analytics.
 - Add the design requirements of the resource orchestration for multi-domain, geo-distributed data analytics.
 - Add a review of existing resource orchestration system designs for data analytics systems.
 - Update the motivation of using ALTO as the key information model in Unicorn.
 - Update the architecture of the Unicorn and the three-phase resource discovery in Unicorn.
 - Design an ALTO extension for privacy-preserving interdomain resource information aggregation.
Recap: Multi-Domain, Geo-Distributed Data Analytics

- **Settings**: Different organizations contribute various resources (e.g., sensing, computation, storage and networking resources) to collaboratively collect, share and analyze extremely large amounts of data.

 - Example: the CMS experiment, coalitions between different organizations, cloud exchange, etc.
Characteristics of Multi-Domain, Geo-Distributed Data Analytics

• Dynamic Data Analytics Workload
 – Highly dynamic, in terms of the number of users, the types of applications, the number of jobs, the decomposition of jobs and the resource requirements of tasks.

• Dynamic Resource Availability
 – Each member network provides different types of resources with different amounts.
 – Many member networks are interconnected with high bandwidth-delay-product links.
Design Requirements

• **Users' perspective**
 – REQ1: Provide *performance predictability* for data analytics jobs.
 – REQ2: Achieve the *efficient resource sharing* among data analytics jobs.

• **Member networks' perspective**
 – REQ3: Achieve the *high utilization* of different types of resources in member networks.
 – REQ4: Maintain the *autonomy and privacy* of member networks.
 – REQ5: Provide *compatibility* with different data analytics applications and resource management systems to maximize the deployment.
Review of Existing Designs

• Centralized resource-graph-based orchestration
 – Examples: Mesos, Borg and etc.

• Centralized ClassAds-based orchestration
 – Examples: HTCondor.

• Distributed opportunistic orchestration
 – Examples: Sparrow, Apollo and etc.

• Existing designs do not satisfy REQ1-4 due to the lack of an information model to support the accurate, yet privacy-preserving resource discovery across different member networks.
Fundamental Design Decision: Choose ALTO as the Resource Information Model

• Reasons
 – The use of different abstract maps in ALTO supports member networks to provide accurate information on different types of resources, e.g., the endpoint-property service.

 – The ALTO abstract maps provide a simplified view of member networks' resources, protecting the private information of networks, e.g., the network map.

 – Applications can use ALTO clients to accurately describe their requirements of different types of resources, e.g., the multi-cost service.
Architecture of Unicorn

- Application 1
- ...
- Application N

Unicorn

Resource Orchestrator

- ALTO Client

- ALTO Server 1
- Execution Agents
- Site 1

- ALTO Server M
- ...
- Site N

Distributed Hash Table of Computing and Storage Resources
Three-Phase Resource Discovery

• Phase 1: Endpoint Property Discovery
 – Discover the locations and properties of computing and storage resources via ALTO EPS service.

• Phase 2: Endpoint Path Discovery
 – Discover the connectivity between computing and storage resources via network map and ECS service.
Three-Phase Resource Discovery

- **Phase 3: Resource State Abstraction Discovery**
 - Discover the networking resource sharing between flows via ALTO multipart cost property (MCP) service.
 - **Option 1**: Each ATLO server independently sends the responses to the ALTO client.
 - **Drawback**: expose the private capacity region of each network.
Three-Phase Resource Discovery

- **Phase 3: Resource State Abstraction Discovery**
 - Discover the networking resource sharing between flows via multipart cost property service.
 - **Option 2**: an ALTO-extension for privacy-preserving interdomain resource information aggregation (see the detailed algorithm in the draft), which returns the **intersected** capacity region of all networks.
Summary

• Importance to the ALTO WG:
 – Unicorn provides a generic design for large-scale, multi-domain data center resource optimization, a major use case of ALTO listed in the WG Charter.
 – The implementation and deployment experience of Unicorn provides practice guidelines for the use of multiple ALTO services.

• Next steps:
 – Large-scale demonstration and deployment trials by IETF 103.