Information Distribution in Autonomic Networking
(draft-liu-anima-grasp-distribution-05)

Bing Liu (Presenter), Sheng Jiang, Xun Xiao, Artur Hecker, Zoran Despotovic
@Anima WG, ietf101, March 2018
Reminder

• Information distribution is a function to handle different patterns of information exchange between autonomic nodes
 – Proposing GRASP as bearing protocol

• 05 version merged draft-xiao-anima-event-service
 – New co-authors
 – Comprehensive analysis on scenarios and requirements
 – Discussions of a GRASP extension to support information distribution
Basic Scenarios of Information Distribution

• One to One (1:1)
 – Request/Response (client server model)
 + Notification (agent manager model)
 • E.g. push something to the neighbors that were sleeping/offline

• One-to-Many (1:n)
 – Full distribution (n=N)
 • Some data that in principle all nodes are interested in (e.g. Policies, “Intent”)
 – Partial distribution (n<N)
 • To a subset of nodes (e.g. “shut down all the light bulbs”)
Two Communication Models

• Instant (Synchronous)
 – The sender delivers the message *directly* to the receiver(s) and **waits** for the response.

• Asynchronous
 – The sender delivers the message *directly* to the receiver(s) and **doesn’t wait** for any response.
 – The sender delivers the message *indirectly* to the receiver(s) via a certain module/struct (e.g. Event Queue).
Possible Asynchronous Scenarios in Autonomic Networking

- **Reply takes long time**
 - Node #1
 - Node #2
 - \(T \)
 - E.g. Performing database lookup
 - \(\text{REQ} \rightarrow \text{AF} \rightarrow \text{ANIMA} \)
 - \(\text{AF} \rightarrow \text{ANIMA} \)
 - \(\text{RSP} \)

- **Sharing common interests**
 - Node #1
 - Node #i
 - \(\text{Pub} \) (network intent)
 - \(\text{Sub} \) (network intent)
 - \(\text{Sub} \) (network intent)
 - \(\text{Sub} \) (network intent)

- **Established a common view among AFs**
 - Node #1
 - Node #2
 - Node #3
 - E.g. AFs as distributed schedulers
 - \(\text{DATA 1} \rightarrow \text{AF} \rightarrow \text{ANIMA} \)
 - \(\text{DATA 2} \rightarrow \text{AF} \rightarrow \text{ANIMA} \)
 - \(\text{DATA 3} \rightarrow \text{AF} \rightarrow \text{ANIMA} \)

- **Distributing synthetic/aggregated data**
 - Node #1
 - Node #k
 - \(\text{Pub} \) (event =
 \(\text{agg} \). Data, local data)
 - \(\text{AGGT. DATA} \)
 - \(\text{Sub} \) (event = aggt. data)
 - E.g.
 - Node \(k \) subscribes to some statistics of the network from other AFs.
 - Other AFs send local data to an aggt. node (event-/topic-based mapping) and publish
Node Requirements and GRASP Extension (1/3)

• On Instant Information Distribution
 – Instant P-to-P
 • GRASP M_Synchronization can already do this, no need for extension
On Asynchronous Information Distribution (1/2)

- Active P-2-P push
 - GRASP Extension: a new M_UnsolicitedSynch for actively push
- Flooding
 - GRASP M_Flood can already do this
- Selective Flooding
 - We need a selection mechanism to let the nodes pruning unnecessary flooding neighbors
 - GRASP Extention: defining a relevant GRASP Objective

Node Requirements and GRASP Extension (2/3)
Node Requirements and GRASP Extension (3/3)

• On Asynchronous Information Distribution (2/2)
 – A Distributed Data Layer (other than simply flooding)
 • In principle, a distributed storage system
 – Should be consistent with autonomic principles (e.g. dynamically discovered/updated/corrected)
 – Produced information will be stored somewhere “in the network” (e.g. “Intent”, “Policy”, “certificates”)
 – GRASP extension: Sub/Pub messaging
 • Event Queuing
 – Some information needs to be strictly queued. E.g. “Switch-on/off” signaling for light bulbs.
 – GRASP extension: TBD
 – API access:
 • ASAs simply access the API for asynchronous communication
Extended ANI with Info. Distribution Module

Node

Autonomic Control Plane (ACP)

Normal OS / Res

GRASP / BRSKI

Neighbor Disc/Neg.
Neighbor Selection
Channel Selection
Security Keys

Routing

AF

ASA

ASA

APIs

Node

Autonomic Control Plane (ACP)

Normal OS / Res

GRASP / BRSKI

Neighbor Disc/Neg.
Neighbor Selection
Channel Selection
Security Keys

Routing

AF

ASA

ASA

APIs

Info. Distribution (with Storage)
Event Queues
Comments?
Consider adoption?

Thank you!

IETF101, London