
Babel over DTLS
Security in babeld

Antonin Décimo
Joint work with Juliusz Chroboczek

Paris Diderot University

March 22, 2018

1 / 12



Security for Babel

We need security for Babel.
▶ lower-layer security (WPA2, OpenVPN, physical security)
▶ Babel security

▶ Babel HMAC Cryptographic Authentication [RFC7298]
▶ Babel over DTLS (TLS for datagrams) (this talk)

2 / 12

https://tools.ietf.org/html/rfc7298


Why DTLS?

▶ Authentication and confidentiality (protocol &
implementation) are somebody else’s problem

▶ Asymmetric keys
▶ Authentication & Confidentiality

3 / 12



Results

We use mbedTLS with babeld. We have a working prototype!

Discovery

Protected
Babel

4 / 12

https://tls.mbed.org/


User interface

babeld configuration file

default unicast true
default dtls true
cert-file ~/cert.pem
private-key-file ~/pkey.pem
cacert-file ~/cacert.pem
private-key-password 1234

5 / 12



Babel + DTLS

Babel is based on UDP, uses unicast and multicast, and is a pure
peer-to-peer protocol. The same port (6696) is used for source and
destination.
babeld uses a lot multicast, but DTLS can only protect unicast.

1. Juliusz rewrote the buffering mechanism in babeld.
2. Unicast is independent from DTLS.
3. We can protect Babel.

Routing information is protected.
Neighbour discovery and link-quality estimation packets (Hellos &
IHU) remain unprotected.

6 / 12



Handshake Asymmetry — Prototype

The DTLS handshake is asymmetric, whereas Babel is symmetric.
We have to break the symmetry. Classic technique: the peer with
the lowest link-local address becomes the DTLS handshake server.

7 / 12



Packet Reception 1 — Prototype

Babel structure is pure peer-to-peer. We would like to preserve
this structure with Babel-over-DTLS.
▶ Babel & DTLS traffic is received on the same socket
▶ We need to differentiate the packets

→ The DTLS library can do that for us

8 / 12



Packet Reception 2 — Prototype

insecure: we ignore all TLVs except Hello/IHU.
1. Babel & DTLS traffic is received on the same socket.
2. We try to decrypt the packet.
3. ▶ If we succeed, we tag it as secure.

▶ If we fail, we tag is as insecure.
4. We parse the packet.

Multicast is insecure by default.
This behaviour is interleaved with the DTLS handshake.

9 / 12



Packet Emission — Prototype

▶ All unicast packets are protected
▶ All multicast packets are sent in the clear

→ only Hello/IHU TLVs

10 / 12



Other Approaches

▶ Pure peer-to-peer on another port.
▶ Classic client-server model.
▶ Sub-TLV encapsulating protected data.

Not a serious proposal.
2 bits of disagreement:
▶ Is the server port the same as the Babel port?
▶ Is the client port the same as the server port?

11 / 12



What’s next?

1. Is parsing insecure packets a good idea?
2. What if a peer reboots after a successful DTLS handshake?

▶ Use same port and rely on the SHOULD in DTLS1 — most
implementations don’t

▶ Use different ports.
▶ Client or DTLS lib hacking…

3. PKey/Certificate installation & rollover? PKey password?
4. Will the DTLS overhead cause fragmentation?

▶ Babel is protected by DTLS.
We have a running implementation that protects data but not
discovery.
Available soon at https://github.com/jech/babeld.

1DTLS RFC6347 section-4.2.8
12 / 12

https://github.com/jech/babeld
https://tools.ietf.org/html/rfc6347#section-4.2.8

