Finite state machine YANG model augmentation for Transponder Reconfiguration

draft-sambo-ccamp-yang-fsm-transponder-reconf-00

N. Sambo¹, P. Castoldi¹, A. Sgambelluri¹, G. Fioccola², F. Cugini³, D. Ceccarelli⁴, H. Song⁵, T. Zhou⁵

¹: Scuola Superiore Sant’Anna, Italy
²: Telecom Italia, Italy
³: CNIT, Italy
⁴: Ericsson, Sweden
⁵: Huawei, China

IETF Meeting 101, London, March 2018
Proposal

- YANG models for finite state machine to program recovery actions in flexible transponders
- Augmentation of the model in draft-sambo-netmod-yang-fsm-02
- Use case:
 - Flexible transponders in elastic optical networks: multiple rates, multiple modulation formats, multiple FECs
 - Format and FEC can be set based on optical physical layer (e.g., PM-QPSK more robust than PM-16QAM)
 - If physical conditions change (e.g., soft failure: BER increase), format or FEC can be adapted to get more robust transmission
State of the art

- Active service connection
- Degradation
- OAM H
- Alarm
- Transmission parameter computation
- SDN controller
- Configuration
- Recovery

Time consuming
Use case of application for FSM YANG model

Active service connection

SDN controller

Instructions

Instructions

Degradation

Fast reaction based on instructions

Faster
YANG model

module: ietf-treconf
 +---rw current-state? leafref
 +---rw states
 +---rw state [id]
 +---rw id state-id-type
 +---rw description? string
 +---rw transitions
 +---rw transition [name]
 +---rw name string
 +---rw description? string
 +---rw threshold-parameter? decimal64
 +---rw threshold-operator? string
 +---rw transition-action
 +---rw action [id]
 +---rw id transition-id-type
 +---rw type enumeration
 +---rw simple
 +---rw execute
 +---rw next-action? transition-id-type
 +---rw next-state?
Implementation

- Event: BER > BER_{th}
 - Reaction: e.g., format adaptation

- Event: BER < BER_{th}
 - Reaction: format adaptation
email: nicola.sambo@sssup.it