
hacspec
towards verifiable cryptographic specifications

Karthikeyan Bhargavan
IETF 101

Implementing crypto correctly is hard

● Memory safety bugs
● Side channel leaks
● Functional correctness bugs

● Testing is inadequate for low-probability bugs
● Formal verification can provide high assurance

… but it requires effort and expertise

High Assurance Crypto Software
● Verification results for C implementations

○ Primitives: SHA-2, Chacha20, Poly1305, AES-GCM, MEE-CBC,
 Curve25519, Ed25519, NIST P-256, RSA-OAEP

○ Tools: Cryptol/SAW, Coq (VST, Fiat-Crypto), F*, EasyCrypt

● Verification results for assembly implementations
○ Primitives: SHA-2, Poly1305, AES-GCM, Curve25519
○ Tools: Vale, Boolector, Cryptol/SAW, Jasmin

● Research now applied to mainstream libraries
○ Mozilla NSS, Google boringssl, Amazon s2n, Microsoft Everest

How do you verify crypto code?

● Write a formal specification that states desired goals
○ correctness, memory safety, side-channels, crypto security, …

● Prove that your implementation meets this spec

Verification Methods Implementation Specification

Cryptol/SAW C, Java, assembly Cryptol

HACL*, Vale C, x86/arm assembly F*

VST, Fiat-Crypto C Coq

EasyCrypt C EasyCrypt

Writing formal crypto specifications

● HACS Workshop 2016-2018
○ Co-located with Real World Crypto
○ Discussions between crypto developers and verification experts

● Difficult for developers to understand, compare,
compose proofs based on “obscure” spec languages

● We need specs that crypto designers can read/write
○ A single target for verification, in a well-understood syntax

hacspec: a new specification language

Design Goals:

● Succinct and readable
○ Can be integrated into RFCs as pseudocode

● Executable
○ Can be treated as a reference implementation

● Compact formal semantics
○ Can be used as a formal spec for verification

hacspec: a new specification language

Version 1 (feedback needed):

● A subset of python 3.6 (with type annotations)
○ Native bignums and arrays, not much else
○ Types enable static checking and precise translations

● Compilers to various formal languages
○ Translations to F*, EasyCrypt, Cryptol, Coq

● Library of specifications and common constructions
○ AEAD-Chacha20-Poly1305, SHA-2, (kyber, xmss, blake2,...)

Example: poly1305

Example: chacha20

Example: chacha20 compiled to F*

Example: verified chacha20 in C

Can also verify optimized vectorized code in C or assembly against same spec

We need you

● Interested in using hacspec in your next RFC?
○ As a formal specification and prototype implementation
○ Help promote high-assurance implementations

● Give us feedback on the hacspec language/specs
○ What features are we missing? What will make it more usable?

○ Ongoing compilers to EasyCrypt, Cryptol, Coq
○ Ongoing specs for SHA-3, PQ crypto, argon2, …

● Code: https://github.com/HACS-workshop/hacspec
● List: https://moderncrypto.org/mailman/listinfo/hacspec

https://github.com/HACS-workshop/hacspec
https://moderncrypto.org/mailman/listinfo/hacspec

