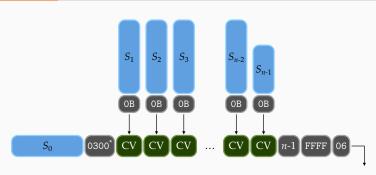


KANGAROOTWELVE draft-viguier-kangarootwelve-01

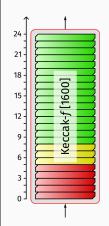
Benoît Viguier¹
CFRG Meeting, March 19, 2018


¹Radboud University, Nijmegen, The Netherlands

What is KANGAROOTWELVE?

- ► SHAKE128
 - eXtendable Output Function
 - Sponge construction
 - Uses Keccak- $p[1600, n_{\rm r}=24]$
 - BUT no parallelism

What is KANGAROOTWELVE?


- KangarooTwelve
 - eXtendable Output Function
 - Tree on top of sponge construction
 - KECCAK-p reduced from 24 to 12 rounds
 - Parallelism grows automatically with input size
 - No penalty for short messages

How secure is KANGAROOTWELVE?

- ▶ Same security claim as SHAKE128: 128 bits of security
- ► Sponge generic security

 [EuroCrypt 2008] On the Indifferentiability of the Sponge Construction
- ▶ Parallel mode with proven generic security
 [IJIS 2014] Sufficient conditions for sound tree and sequential hashing modes
 [ACNS 2014] Sakura: A Flexible Coding for Tree Hashing
- lacktriangle Sponge function on top of KECCAK- $p[1600, n_{
 m r}=12]$
 - Round function unchanged
 ⇒ cryptanalysis since 2008 still valid
 - Safety margin: from rock-solid to comfortable

Status of KECCAK cryptanalysis

- ► Collision attacks up to 5 rounds
 - Also up to 6 rounds, but for non-standard parameters (c=160)

[Song, Liao, Guo, CRYPTO 2017]

- ► Stream prediction
 - in 8 rounds (2¹²⁸ time, prob. 1)
 - in 9 rounds (2²⁵⁶ time, prob. 1)

[Dinur, Morawiecki, Pieprzyk, Srebrny, Straus, EUROCRYPT 2015]

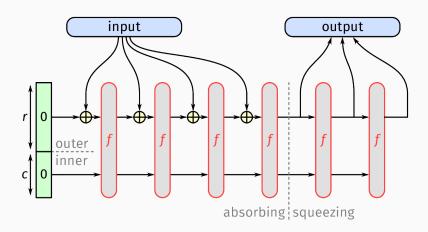
Lots of third party cryptanalysis available at:

https://keccak.team/third_party.html

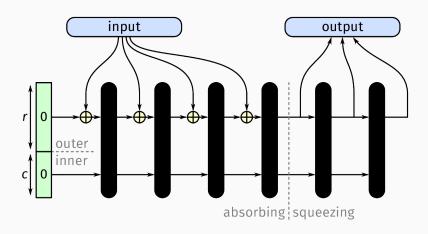
How fast is KANGAROOTWELVE?

- ▶ At least twice as fast as SHAKE128 on short inputs
- ▶ Much faster when parallelism is exploited on long inputs

	Short input	Long input	
Intel Core i5-4570 (Haswell)	3.68 c/b	1.44 c/b	
Intel Core i5-6500 (Skylake)	2.89 c/b	1.22 c/b	
Intel Core i7-7800X (Skylake-X)	2.35 c/b	0.55 c/b	
Single core only			



Why is it interesting for the IETF?


- ► Keccak/KangarooTwelve is an open design
 - Public design rationale
 - Result of an open international competition
 - Long-standing active scrutiny from the crypto community
- ▶ Best security/speed trade-off
 - Speed-up w/o wasting cryptanalysis resources (no tweaks)
 - Proven generic security
- Scalable parallelism
 - As much parallelism as the implementation can exploit
 - Without parameter

https://tools.ietf.org/html/draft-viguier-kangarootwelve-01

Analyzing the sponge construction

Analyzing the sponge construction

Generic security of the sponge construction

Theorem 2. A padded sponge construction calling a random permutation, $S'[\mathcal{F}]$, is (t_D, t_S, N, ϵ) -indistinguishable from a random oracle, for any t_D , $t_S = O(N^2)$, $N < 2^c$ and and for any ϵ with $\epsilon > f_P(N)$.

If N is significantly smaller than 2^c , $f_P(N)$ can be approximated closely by:

$$f_P(N) \approx 1 - e^{-\frac{(1-2^{-r})N^2 + (1+2^{-r})N}{2^{c+1}}} < \frac{(1-2^{-r})N^2 + (1+2^{-r})N}{2^{c+1}}.$$
 (6)

[EuroCrypt 2008]

http://sponge.noekeon.org/SpongeIndifferentiability.pdf

Generic security of the sponge construction

Theorem 2. A padded sponge construction calling a random permutation, $S'[\mathcal{F}]$, is (t_D, t_S, N, ϵ) -indistinguishable from a random oracle, for any t_D , $t_S = O(N^2)$, $N < 2^c$ and and for any ϵ with $\epsilon > f_P(N)$.

If N is significantly smaller than 2^c , $f_P(N)$ can be approximated closely by:

$$f_P(N) \approx 1 - e^{-\frac{(1-2^{-r})N^2 + (1+2^{-r})N}{2^{c+1}}} < \frac{(1-2^{-r})N^2 + (1+2^{-r})N}{2^{c+1}}.$$
 (6)

[EuroCrypt 2008]

http://sponge.noekeon.org/SpongeIndifferentiability.pdf

Theorem, explained

$$\Pr[\text{attack}] \le \frac{N^2}{2^{c+1}} \text{ (or so)}$$

 \Rightarrow if $N \ll 2^{c/2}$, then the probability is negligible

- ▶ Generic security
 - Strong mathematical proofs

- ▶ Generic security
 - Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive

- ▶ Generic security
 - Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!

- ▶ Generic security
 - Strong mathematical proofs
 - ⇒ scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - ⇒ open design rationale

- ▶ Generic security
 - Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - ⇒ open design rationale
 - ⇒ cryptanalysis!

- ▶ Generic security
 - Strong mathematical proofs
 - \Rightarrow scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - ⇒ open design rationale
 - ⇒ third-party cryptanalysis!

- ▶ Generic security
 - Strong mathematical proofs
 - ⇒ scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - ⇒ open design rationale
 - ⇒ lots of third-party cryptanalysis!

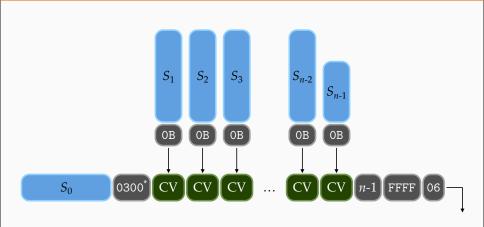
- ▶ Generic security
 - Strong mathematical proofs
 - ⇒ scope of cryptanalysis reduced to primitive
- Security of the primitive
 - No proof!
 - ⇒ open design rationale
 - ⇒ lots of third-party cryptanalysis!
 - Confidence
 - ← sustained cryptanalysis activity and no break
 - proven properties

Impact of parallelism

Keccak- $f[1600] imes 1$	1070 cycles
KECCAK- $f[1600] imes 2$	1360 cycles
$KECCAK ext{-}f[1600] imes 4$	1410 cycles

CPU: Intel Core i5-6500 (Skylake) with AVX2 256-bit SIMD

Tree hashing


Example: ParallelHash [SP 800-185]

function	instruction set	cycles/byte ¹
KECCAK[c=256] imes 1	x86_64	6.29
$KECCAK[c=256] \times 2$	AVX2	4.32
$KECCAK[c=256]\times 4$	AVX2	2.31

CPU: Intel Core i5-6500 (Skylake) with AVX2 256-bit SIMD

¹for long messages.

KANGAROOTWELVE's mode

Final node growing with kangaroo hopping and SAKURA coding [ACNS 2014]