Setting the Scene

Reference: draft-arkko-arch-virtualization-01

Arkko, Tantsura, Halpern, Varga + numerous contributors

Starting Point

- There are a number of existing (and evolving) tools
- Virtual networks, network function virtualization, softwaredefined networking, service chaining, data models, traffic engineering, MPLS, QoS mechanisms, deterministic networking tools, orchestration, service-based architectures, application middleware, data center networking tools, ...
- Our day jobs are about building systems out of these lego bricks
- ... and we will also be providing "slices" in 5G networks
- Are these the same thing, or different, and if latter, how?

General Goals

Separation of concerns

•

- Providing tailored services
- Separation (of traffic, security, resources, ...)
- Resource allocation/reservation
- Independent technology evolution
- Ability to benefit from modern IT technology practises (cloud, virtualization, ...)

Ok, can this be achieved with what we have? What do we have?

Virtualization, Slicing & Protocols

- Virtualization does not generally affect TCP/IP or applications
- Some exceptions to this, when assumptions made somewhere are broken due to virtualization, leading to a need to add information to application protocols:
 - E.g., early HTTP versions assumed that 1 server = 1 website
 - With virtual hosting, modern HTTP versions carry intended web site name inside the protocol

Virtualization & Slicing Tech @ IETF

- Instance selection at lower layers
- Provider-based VPNs
 - MPLS, L2-3VPN, NVO3, ...
 - Traffic engineering, e.g., TEAS WG
- Service chaining SFC WG's NSH
- Management frameworks e.g., NETCONF, YANG
- Data models e.g., L2SM, L3SM

- Trend: Increasing role of software
 - In many cases, this replaces the need for protocol mechanisms
- Trend: **Centralization of functions** makes things easy
 - Still need to work even if the "center" is down
- Observation: Stark complexity contrast between selection/packet processing/networking and orchestration/creation/management
 - "Execution Plane" vs. "Creation Plane"
 - Example: 5G slice selection (NSSF selects and redirects to appropriate AMF) vs. actually setting up the slices

- Question: Tailored vs. general-purpose networking; what are the economics of special-purpose treatment and QoS?
 - It is possible that the industry at times gets over-excited about offering everyone added value... there's also a great economic benefit to bulk
 - Tuning one infrastructure to server multiple different categories of customers is fine, however
- Question: What needs require something new?
 - There are plenty of QoS tools, virtualisation platforms, orchestration mechanisms, and data models or other descriptions at varying levels. What's <u>missing</u>?
- Observation: new systems (like 5G) have specific goals, but ultimately, those goals are fulfilled through a combination of the current tools and (some) new mechanisms or enhancements... not through redesigning everything

- Advice: Think about data model layering! E.g., service vs. network/device data models
 - May need appropriate tools for different layers
 - And there are multiple tools, YANG, Tosca, ...
- Advice: Think about what is needed to for a working, interoperable system that maps layers of models to each other.
 - Merely the models + magic software? Or common software? Or common specification or data that the software can do its magic?

- Advice: General over specific does it make sense for IETF to do general designs or designs for someone's specifics requirements at specific time?
 - IETF probably wants to do tools that work across industry as opposed to only for 5G (no matter how important it is)
- Some terminology and conceptual alignment across industry would also be useful, e.g., to know what words to use in SLAs...

Some 5G Slicing Use Cases

- Many **simple cases** (QoS, access to specific networks, etc)
 - Existing tools often sufficient for these
- Everything runs on top of virtualisation and cloud platforms
 - Mobile networks running on the same tech as other applications
- One interesting case that demands interest tech is serving a factory that requires very low-latency network between its machines
 - May need to build a separate instance of 5G core on site, using virtualisation, cloud, orchestration and other similar tools + hardware on site

Some 5G Slicing Use Cases

- Another interesting case: for <these users>, run a completely new version of 5G core network
 - Important for evolving tech quickly
 - Also useful for using competing suppliers or providers
- Some more demanding cases
 - Have the ability to control resources for a slice in both radio and core network
 - Provision a network (slice) across administrative boundaries

Thoughts for Going Forward

- Consider **all the technology**!
 - Virtualization, separation, resources, management & orchestration; in and outside IETF
- Find the **concrete missing things** that still need doing
 - Connect the top-down and bottom-up way of thinking
- There are relevant existing and new topics to work on at the IETF:
 - **Data model** development e.g., work on commonly used data models at several layers of abstraction
 - End-to-end, heterogeneous networks, cross-domain
 - How our different pieces fit together

Reading List

• draft-irtf-nfvrg-gaps-network-virtualization

Good summary of the various technologies, plus a discussion areas that need further development

- RFC 8309
 - Service models explained
- draft-geng-coms-architecture

Architecture view to slicing as an orchestrator function, how slicing relates to NFV, etc.

• draft-netslices-usecases & draft-qiang-coms-use-cases

Use cases

• draft-wu-model-driven-management-virtualization

Model drive-management and layered data models

• draft-bryskin-teas-use-cases-sf-aware-topo-model

Good example of enhancing IETF-based management data models with additional information

• ...