| The Stellar Consensus Protocol
(SCP)

draft-maZ|eres-dinrg4scp-00

Nicolas Barry, David Maziéres, Jed McCaleb, Stanislas Polu
ETFION

- Monday, March 19, 2018

An open Byzantine agreement protocol

Majority-based voting doesn’t work against Sybil attacks
Instead, determine quorums in decentralized way based on trust
Let V be all nodes in the world

Each v € Vwould accept any of Q(v) = {qg1,...,gn} as a quorum

- Butg;is notaquorum—itisaquorum s slice

- A quorum must (transitively) satisfy all of its members

Definition (Quorum)

A quorum U C Vs a set of nodes that contains at least one slice of
each of its members: Vv € U,3q € Q(v) such thatg C U

Assumes trust overlaps transitively. Analogies:
- Transitive reachability on the Internet
- Rough agreement on who constitutes a tier-1 ISP
- Overlapping notions of valid certificate authorities

2/20

Definition (Quorum)

A quorum U C Vis a set of nodes that encompasses at least one
slice of each of its members: Vv € U,3q € Q(v) such thatg C U

— {{,v2,v3}}
@‘—>@ Q (w)vz V3(va) = {{va, v3, va}}
@

Visualize quorum slice dependencies with arrows

Vo, V3, V4 is @ quorum—contains a slice of each member
V1, Vo, v3 is a slice for v;, but not a quorum
- Doesn’t contain a slice for v, v3, who demand v,’s agreement

Vi, ..., Vs is the smallest quorum containing v,

3/20

Definition (Quorum)

A quorum U C Vis a set of nodes that encompasses at least one
slice of each of its members: Vv € U,3q € Q(v) such thatg C U

quorum for v,, v3, vy

@<—>@
~_

B

Visualize quorum slice dependencies with arrows

Vo, V3, V4 is @a quorum—contains a slice of each member
V1, Vo, v3 is a slice for v;, but not a quorum

- Doesn’t contain a slice for v, v3, who demand v,’s agreement

Vi, ..., Vs is the smallest quorum containing v,

Q(v1) = {{w1,v2,v3}}
Q(v2) = Q(v3) = Q(va) = {{va,v3,v4}}

3/20

Definition (Quorum)

A quorum U C Vis a set of nodes that encompasses at least one
slice of each of its members: Vv € U,3q € Q(v) such thatg C U

AN

@—@
@

Visualize quorum slice dependencies with arrows

Vo, V3, V4 is @ quorum—contains a slice of each member
V1, Vp, vz is a slice for v4, but not a quorum

- Doesn’t contain a slice for v, v3, who demand v,’s agreement

Vi, ..., Vs is the smallest quorum containing v,

Q(v1) = {{w1,v2,v3}}
Q(v2) = Q(v3) = Q(va) = {{va,v3,v4}}

quorum slice for v4, but not a quorum

3/20

Definition (Quorum)

A quorum U C Vis a set of nodes that encompasses at least one
slice of each of its members: Vv € U,3q € Q(v) such thatg C U

Q(vy) = {{w1,v2,v3}}
Q(v2) = Q(v3) = Q(va) = {{va,v3,v4}}

quorum forvy, ..., vy

Visualize quorum slice dependencies with arrows

Vo, V3, V4 is @ quorum—contains a slice of each member
V1, Vo, v3 is a slice for v;, but not a quorum
- Doesn’t contain a slice for v, v3, who demand v,’s agreement

Vi, ..., Vs is the smallest quorum containing v,

3/20

Quorum slice representation

union PublicKey switch (PublicKeyType type) {
case PUBLIC_KEY_TYPE_ED25519:

uint256 ed25519;
3

// supports things like: A,B,C,(D,E,F), (G,H,(I,],K,L))
// only allows 2 levels of nesting
struct SCPQuorumSet {
uint32 threshold; // the k in k-of-n
PublicKey validators<>;
SCPQuorumSet innerSets<>;

1

Can’t represent arbitrary quorum slices compactly

Instead, use two-levels of k-of-n configuration

4/20

Federated voting

@% vote a, slices = {q1,...,qn}

Nodes exchanges vote messages to agree on statements
- Well-behaved nodes cannot vote for contradictory statements
- Every vote specifies quorum slices
- Allows dynamic quorum discovery while assembling votes
Two important thresholds for statement a at node v:
- quorum threshold - a quorum containing v unanimously votes for a

- blocking threshold - Vg € Q(v), 3v’ € g such that v’ voted for a
(no contradictory @ # a can reach quorum threshold w/o illegal votes)

v ratifies a iff a reaches quorum threshold at v

- Can’tratify contradictory statements if you have quorum intersection
despite [i.e., after deleting] ill-behaved nodes (gidin)

5/20

Vote messages

typedef opaque Hash[32]; // SHA-256
struct SCPStatement {
PublicKey nodelID; // v (node signing message)
uint64 slotIndex;
Hash quorumSetHash;
SCPStatement pledges;
b

typedef opaque Signature<64>;

struct SCPEnvelope {
SCPStatement statement;
Signature signature;

};

Transmit quorum slices as SHA-256 hash of SCPQuorumSet
- Use side protocol to request preimage if not cached

6/20

Federated voting outcomes

Before any node votes, system is bivalent
- Any value may be ratified
If a node ratifies a, system is a-valent
- With qgidin, no contradictory @ can be ratified
If every node learns system a-valent, then system agreeson a
System can also get stuck at any point along the way
- Non-faulty node can’t ratify a because voting for @
- Or ratified a and don’t know it because of crash & message loss

7/20

When have we reached agreement?

> <>

Reached here How do you
if you saw T know if you
votes for a. reached here?

Centralized protocols (e.g., PBFT) accept statement if quorum
intersection says ratified

- Centralized systems care about whole-system failure, not per-node

- Now can’t assume correctness of quorums you don’t belong to
First-hand ratification now the only way to know system a-valent

- How to agree on statement a even after voting against it?

- How to know everyone else will learn system agreed on a?

8/20

When have we reached agreement?

QuorumA Quorum B

[[v,,_, e @]

We saw a quorum
vote for a

| S

Centralized protocols (e.g., PBFT) accept statement if quorum
intersection says ratified

- Centralized systems care about whole-system failure, not per-node

- Now can’t assume correctness of quorums you don’t belong to
First-hand ratification now the only way to know system a-valent

- How to agree on statement a even after voting against it?

- How to know everyone else will learn system agreed on a?

8/20

When have we reached agreement?

QuorumA Quorum B
- g -

Who cares?

| S

We saw a quorum
vote for a

Quorum A = Sybil?

Centralized protocols (e.g., PBFT) accept statement if quorum
intersection says ratified

- Centralized systems care about whole-system failure, not per-node

- Now can’t assume correctness of quorums you don’t belong to
First-hand ratification now the only way to know system a-valent

- How to agree on statement a even after voting against it?

- How to know everyone else will learn system agreed on a?

8/20

Accepting statements

systemis | | systemis
3/4 a-valent | | a-valent
e

@ B F) @) oot

What if “system is a-valent” reaches blocking threshold at v;?

- Either true or v; not member of any well-behaved quorum (no liveness)

Node v accepts a statement a consistent with history iff either:
1. “lvote a or | accept a” reaches quorum threshold, or

2. “l accept a” reaches blocking threshold

#2 lets nodes accept statements they voted against, but

- Nodes can accept contradictory statements in cases with no fully
honest quorum but where you still have qidin

- No guarantee all nodes in non-faulty quorum will accept a

9/20

Accepting statements

3/40
{@ @ IE " Q(v1) = {{v1,v2,v3}, {v1, v, Va},

{v1,v3,va}}
What if “system is a-valent” reaches blocking threshold at v;?
- Either true or v; not member of any well-behaved quorum (no liveness)

Node v accepts a statement a consistent with history iff either:

. “lvote a or | accept a” reaches quorum threshold, or
2. “l accept a” reaches blocking threshold
#2 lets nodes accept statements they voted against, but

- Nodes can accept contradictory statements in cases with no fully
honest quorum but where you still have qidin

- No guarantee all nodes in non-faulty quorum will accept a

9/20

Confirming statements

accepta | |accepta || accepta

\/ \/ \/
[@ @ @] Quorum

Idea: Hold a second vote on the fact that the first vote succeeded

Node v confirms a by ratifying “l accepted a.”
Solves safety through quorum threshold of ratification

Also solves nodes in honest quorum being unable to accept

- Nodes in well-behaved quorum may vote against accepted statements
- Won’t vote against the fact that those statements were accepted

Theorem: If 1 node in well-behaved quorum confirms a, all will

10/20

Summary of federated voting process

vote a Vv accepta accepta
quorum thresh. quorum thresh.

voted a accepted a

accepta
blocking thresh.

aisvalid

voted a

A node v that locally confirms a knows system has agreed on a

- 1f Q() admits any safe protocol, well-behaved nodes can’t contradict a
- If vin well-behaved quorum, whole quorum will eventually confirm a

11/20

SCP nomination message
typedef opaque Value<>;

struct SCPNomination {
Value votes<>; // vote to nominate these values
Value accepted<>; // assert that these are accepted

1

union SCPStatement switch (SCPStatementType type) {
case SCP_ST_NOMINATE:
SCPNomination nominate;
/7': :':/
Nodes broadcast nominated values in votes
- Initially vote values in all received votes (ignoring optimization here)
Upon accepting nomination of a, move from votes to accepted
Stop voting for new values when any confirmed nominated

- But continue accepting and repeating votes already cast

12/20

Nomination flow

NOMINATE NOMINATE NOMINATE
X, tXo %3 0

/ / /
B B B

Nodes nominate values and re-nominate any nominations seen

Stop adding to votes once any value confirmed nominated
Converge on set of nominated values
Deterministically combine nominations into composite value x

All nodes guaranteed to converge on same value x!
- Complication: impossible to know when protocol has converged [FLP]
- c.f. asynchronous reliable broadcast

13/20

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf

Nomination flow

NOMINATE NOMINATE NOMINATE
X, txo, tX3 X, txo, tX3 X3

/ / /
B B B

Nodes nominate values and re-nominate any nominations seen

Stop adding to votes once any value confirmed nominated

Converge on set of nominated values
Deterministically combine nominations into composite value x
All nodes guaranteed to converge on same value x!
- Complication: impossible to know when protocol has converged [FLP]
- c.f. asynchronous reliable broadcast

13/20

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf

Nomination flow

NOMINATE NOMINATE NOMINATE
X, txo, tX3 X, txo, tX3 X, txo, tX3

/ / /
B B B

Nodes nominate values and re-nominate any nominations seen

Stop adding to votes once any value confirmed nominated
Converge on set of nominated values
Deterministically combine nominations into composite value x

All nodes guaranteed to converge on same value x!
- Complication: impossible to know when protocol has converged [FLP]
- c.f. asynchronous reliable broadcast

13/20

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf

Nomination flow

(- (- (-
(=3 (=3 =

B B

Nodes nominate values and re-nominate any nominations seen
Stop adding to votes once any value confirmed nominated
Converge on set of nominated values

Deterministically combine nominations into composite value x

All nodes guaranteed to converge on same value x!
- Complication: impossible to know when protocol has converged [FLP]
- c.f. asynchronous reliable broadcast

13/20

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf

SCP ballots

struct SCPBallot {
uint32 counter; // n
Value value; // X

s
Composite nominated must be run through balloting

- Guarantees safety even if started before nomination converges
Aballot b is a pair (b.n, b.x) where b.x is a candidate output value

- Ballots totally ordered with field n more significant than x
- Nodes may vote to commit or abort a ballot, not both
- If federated voting confirms commit b for any b, can output value b.x

Let prepared(b) = {abort by g | boig < b and bgq.x # b.x}

Invariant: cannot vote commit b unless federated voting has
confirmed every statement in prepared(b)

14/20

SCP prepare message

struct SCPPrepare {

SCPBallot ballot; // b
SCPBallot *prepared; // D
SCPBallot *preparedPrime; // p’
uint32 nC; // c.n
uint32 nH; // h.n

};

union SCPStatement switch (SCPStatementType type) {
case SCP_ST_PREPARE:
SCPPrepare prepare;
/* %
3

15/20

Prepare fields

ballot.x starts at1,increases w. timeouts, msg receipt

ballot.n b.x from highest b for which prepared(b) confirmed (if
any) otherwise composite nomination value

prepared highest b for which sender accepted prepared(b)

prepared’ highest b with accepted prepared(b) and different x
from prepared

nH b.n from highest b with confirmed prepared(b), else 0

nC if not 0 and ballot.x = 1, implies votes for
commit (nC,x),commit (nC +1,x),...,commit (nH, x)

16/20

SCP confirm message

struct SCPConfirm {

SCPBallot ballot; // b

uint32 nPrepared; // p.-n
uint32 nCommit; // c.n
uint32 nH; // h.n

};

union SCPStatement switch (SCPStatementType type) {
case SCP_ST_CONFIRM:
SCPConfirm confirm;

JE o

Implies votes for all messages in the set
{accept(commit b’) | nConmit < b’.n < nH and b’.x = ballot.x}

Implies SCPPrepare with ballot (oo, confirm.ballot.x), prepared
(confirm.nPrepared, confirm.ballot.x), and nH value cc.

17/20

SCP externalize message

struct SCPExternalize {
SCPBallot commit; // ¢
uint32 nH; // h.n
3

union SCPStatement switch (SCPStatementType type) {
case SCP_ST_EXTERNALIZE:
SCPExternalize externalize;

/7\ .. .‘/

By the time you send this, already externalized commit.x

- Means you have confirmed committed a ballot with commit.x

- Goal is definitive record to help other nodes prove value/catch up
Implies SCPConfirm with ballot (oo, externalize.commit.x),
nPrepared externalize.commit.n, and nH oo
Implies SCPConfirm with ballot (oo, externalize.commit.x),
nPrepared externalize.commit.n, nH externalize.nH, and a
special quorum slice declaration of only the sending node

18/20

Balloting flow

PREPARE (1,Xx) PREPARE (1, X) PREPARE (1, X)

/ / /
B B =

In the common case, will prepare and commit nominated value

Else, arm timer when ballot counter reaches quorum threshold
Bump counter and restart with new ballot whenever

- Timer fires

- Ablocking threshold is at a higher ballot counter
Nomination may finish converging in background
Or if any value confirmed prepared, all nodes will eventually see
it confirmed prepared and start using that value

19/20

Balloting flow

PREPARE (1,Xx) PREPARE (1, X) PREPARE (1, X)
CONFIRM (1,X) CONFIRM (1,X) CONFIRM (1,X)

/ / /
B B =

In the common case, will prepare and commit nominated value

Else, arm timer when ballot counter reaches quorum threshold
Bump counter and restart with new ballot whenever

- Timer fires

- Ablocking threshold is at a higher ballot counter
Nomination may finish converging in background
Or if any value confirmed prepared, all nodes will eventually see
it confirmed prepared and start using that value

19/20

Y

.

' ‘Q’u»e“s"tions_? |

