
The Stellar Consensus Protocol
(SCP)
dra�-mazieres-dinrg-scp-00

Nicolas Barry, David Mazières, Jed McCaleb, Stanislas Polu

IETF101

Monday, March 19, 2018



An open Byzantine agreement protocol
Majority-based voting doesn’t work against Sybil attacks
Instead, determine quorums in decentralized way based on trust
- Let V be all nodes in the world
- Each v ∈ Vwould accept any ofQ(v) = {q1, . . . ,qn} as a quorum
- But qi is not a quorum—it is a quorum slice
- A quorummust (transitively) satisfy all of its members

Definition (Quorum)
A quorum U ⊆ V is a set of nodes that contains at least one slice of
each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

Assumes trust overlaps transitively. Analogies:
- Transitive reachability on the Internet
- Rough agreement on who constitutes a tier-1 ISP
- Overlapping notions of valid certificate authorities

2 / 20



Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

3 / 20



Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

3 / 20



Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

3 / 20



Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

3 / 20



Quorum slice representation

union PublicKey switch (PublicKeyType type) {
case PUBLIC_KEY_TYPE_ED25519:
uint256 ed25519;

};

// supports things like: A,B,C,(D,E,F),(G,H,(I,J,K,L))
// only allows 2 levels of nesting
struct SCPQuorumSet {
uint32 threshold; // the k in k-of-n
PublicKey validators<>;
SCPQuorumSet innerSets<>;

};

Can’t represent arbitrary quorum slices compactly

Instead, use two-levels of k-of-n configuration

4 / 20



Federated voting

v
vote a, slices = {q1, . . . ,qn}

Nodes exchanges vote messages to agree on statements
- Well-behaved nodes cannot vote for contradictory statements
- Every vote specifies quorum slices
- Allows dynamic quorum discovery while assembling votes
Two important thresholds for statement a at node v:
- quorum threshold – a quorum containing v unanimously votes for a
- blocking threshold – ∀q ∈ Q(v),∃v′ ∈ q such that v′ voted for a
(no contradictory a 6= a can reach quorum threshold w/o illegal votes)

v ratifies a i� a reaches quorum threshold at v
- Can’t ratify contradictory statements if you have quorum intersection
despite [i.e., a�er deleting] ill-behaved nodes (qidin)

5 / 20



Votemessages

typedef opaque Hash[32]; // SHA-256
struct SCPStatement {
PublicKey nodeID; // v (node signing message)
uint64 slotIndex;
Hash quorumSetHash;
SCPStatement pledges;

};

typedef opaque Signature<64>;
struct SCPEnvelope {
SCPStatement statement;
Signature signature;

};

Transmit quorum slices as SHA-256 hash of SCPQuorumSet
- Use side protocol to request preimage if not cached

6 / 20



Federated voting outcomes

bivalent

a-valent a agreed

a-valent

stuck

a agreed

Before any node votes, system is bivalent
- Any value may be ratified
If a node ratifies a, system is a-valent
- With qidin, no contradictory a can be ratified
If every node learns system a-valent, then system agrees on a
System can also get stuck at any point along the way
- Non-faulty node can’t ratify a because voting for a
- Or ratified a and don’t know it because of crash &message loss 7 / 20



When have we reached agreement?

bivalent

a-valent a agreed

a-valent

stuck

a agreed

Reached here
if you saw T
votes for a.

How do you
know if you
reached here?

Centralized protocols (e.g., PBFT) accept statement if quorum
intersection says ratified
- Centralized systems care about whole-system failure, not per-node
- Now can’t assume correctness of quorums you don’t belong to

First-hand ratification now the only way to know system a-valent
- How to agree on statement a even a�er voting against it?
- How to know everyone else will learn system agreed on a?

8 / 20



When have we reached agreement?
Quorum A Quorum B

v0 . . . vN−T . . . vT−1 . . . vN−1

We saw a quorum
vote for a

Who cares?
Quorum A = Sybil?

Centralized protocols (e.g., PBFT) accept statement if quorum
intersection says ratified
- Centralized systems care about whole-system failure, not per-node
- Now can’t assume correctness of quorums you don’t belong to

First-hand ratification now the only way to know system a-valent
- How to agree on statement a even a�er voting against it?
- How to know everyone else will learn system agreed on a?

8 / 20



When have we reached agreement?
Quorum A Quorum B

v0 . . . vN−T . . . vT−1 . . . vN−1

We saw a quorum
vote for a

Who cares?
Quorum A = Sybil?

Centralized protocols (e.g., PBFT) accept statement if quorum
intersection says ratified
- Centralized systems care about whole-system failure, not per-node
- Now can’t assume correctness of quorums you don’t belong to

First-hand ratification now the only way to know system a-valent
- How to agree on statement a even a�er voting against it?
- How to know everyone else will learn system agreed on a?

8 / 20



Accepting statements

v1 v2 v3 v4

3/4

system is
a-valent

system is
a-valent

EVILEVIL EVILEVIL
Q(v1) = {{v1, v2, v3}, {v1, v2, v4},

{v1, v3, v4}}

What if “system is a-valent” reaches blocking threshold at v1?
- Either true or v1 notmember of any well-behaved quorum (no liveness)

Node v accepts a statement a consistent with history i� either:
1. “I vote a or I accept a” reaches quorum threshold, or

2. “I accept a” reaches blocking threshold

#2 lets nodes accept statements they voted against, but
- Nodes can accept contradictory statements in cases with no fully
honest quorum but where you still have qidin

- No guarantee all nodes in non-faulty quorumwill accept a

9 / 20



Accepting statements

v1 v2 v3 v4

3/4

system is
a-valent

system is
a-valent

EVILEVIL EVILEVIL
Q(v1) = {{v1, v2, v3}, {v1, v2, v4},

{v1, v3, v4}}

What if “system is a-valent” reaches blocking threshold at v1?
- Either true or v1 notmember of any well-behaved quorum (no liveness)

Node v accepts a statement a consistent with history i� either:
1. “I vote a or I accept a” reaches quorum threshold, or

2. “I accept a” reaches blocking threshold

#2 lets nodes accept statements they voted against, but
- Nodes can accept contradictory statements in cases with no fully
honest quorum but where you still have qidin

- No guarantee all nodes in non-faulty quorumwill accept a

9 / 20



Confirming statements

v1 v2 v3
Quorum

Quorum

accept a accept a accept a

Idea: Hold a second vote on the fact that the first vote succeeded

Node v confirms a by ratifying “I accepted a.”

Solves safety through quorum threshold of ratification
Also solves nodes in honest quorum being unable to accept
- Nodes in well-behaved quorummay vote against accepted statements
- Won’t vote against the fact that those statements were accepted

Theorem: If 1 node in well-behaved quorum confirms a, all will

10 / 20



Summary of federated voting process

vote a ∨ accept a
quorum thresh.

accept a
quorum thresh.

a is valid

accept a
blocking thresh.

uncommitted

voted a accepted a confirmed a

voted a

A node v that locally confirms a knows system has agreed on a
- IfQ() admits any safe protocol, well-behaved nodes can’t contradict a
- If v in well-behaved quorum, whole quorumwill eventually confirm a

11 / 20



SCP nominationmessage
typedef opaque Value<>;

struct SCPNomination {
Value votes<>; // vote to nominate these values
Value accepted<>; // assert that these are accepted
};

union SCPStatement switch (SCPStatementType type) {
case SCP_ST_NOMINATE:
SCPNomination nominate;
/* ... */
};

Nodes broadcast nominated values in votes
- Initially vote values in all received votes (ignoring optimization here)

Upon accepting nomination of a, move from votes to accepted
Stop voting for new values when any confirmed nominated
- But continue accepting and repeating votes already cast

12 / 20



Nomination flow

v1

NOMINATE
tx1, tx2

v2

NOMINATE
tx3

v3

NOMINATE
∅

Nodes nominate values and re-nominate any nominations seen

Stop adding to votes once any value confirmed nominated

Converge on set of nominated values

Deterministically combine nominations into composite value x
All nodes guaranteed to converge on same value x!
- Complication: impossible to know when protocol has converged [FLP]
- c.f. asynchronous reliable broadcast

13 / 20

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf


Nomination flow

v1

NOMINATE
tx1, tx2, tx3

v2

NOMINATE
tx1, tx2, tx3

v3

NOMINATE
tx3

Nodes nominate values and re-nominate any nominations seen

Stop adding to votes once any value confirmed nominated

Converge on set of nominated values

Deterministically combine nominations into composite value x
All nodes guaranteed to converge on same value x!
- Complication: impossible to know when protocol has converged [FLP]
- c.f. asynchronous reliable broadcast

13 / 20

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf


Nomination flow

v1

NOMINATE
tx1, tx2, tx3

v2

NOMINATE
tx1, tx2, tx3

v3

NOMINATE
tx1, tx2, tx3

Nodes nominate values and re-nominate any nominations seen

Stop adding to votes once any value confirmed nominated

Converge on set of nominated values

Deterministically combine nominations into composite value x
All nodes guaranteed to converge on same value x!
- Complication: impossible to know when protocol has converged [FLP]
- c.f. asynchronous reliable broadcast

13 / 20

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf


Nomination flow

v1

x =
⋃
i txi

v2

x =
⋃
i txi

v3

x =
⋃
i txi

Nodes nominate values and re-nominate any nominations seen

Stop adding to votes once any value confirmed nominated

Converge on set of nominated values

Deterministically combine nominations into composite value x
All nodes guaranteed to converge on same value x!
- Complication: impossible to know when protocol has converged [FLP]
- c.f. asynchronous reliable broadcast

13 / 20

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf


SCP ballots
struct SCPBallot {
uint32 counter; // n
Value value; // x
};

Composite nominatedmust be run through balloting
- Guarantees safety even if started before nomination converges

A ballot b is a pair 〈b.n,b.x〉where b.x is a candidate output value
- Ballots totally ordered with field nmore significant than x
- Nodes may vote to commit or abort a ballot, not both
- If federated voting confirms commit b for any b, can output value b.x

Let prepared(b) = {abort bold | bold < b and bold.x 6= b.x}

Invariant: cannot vote commit b unless federated voting has
confirmed every statement in prepared(b)

14 / 20



SCP preparemessage

struct SCPPrepare {
SCPBallot ballot; // b
SCPBallot *prepared; // p
SCPBallot *preparedPrime; // p’
uint32 nC; // c.n
uint32 nH; // h.n
};

union SCPStatement switch (SCPStatementType type) {
case SCP_ST_PREPARE:
SCPPrepare prepare;
/* ... */
};

15 / 20



Prepare fields

ballot.x starts at 1, increases w. timeouts, msg receipt

ballot.n b.x from highest b for which prepared(b) confirmed (if
any) otherwise composite nomination value

prepared highest b for which sender accepted prepared(b)

prepared′ highest bwith accepted prepared(b) and di�erent x
from prepared

nH b.n from highest bwith confirmed prepared(b), else 0

nC if not 0 and ballot.x = 1, implies votes for
commit 〈nC, x〉, commit 〈nC+ 1, x〉, . . . , commit 〈nH, x〉

16 / 20



SCP confirmmessage
struct SCPConfirm {
SCPBallot ballot; // b
uint32 nPrepared; // p.n
uint32 nCommit; // c.n
uint32 nH; // h.n

};

union SCPStatement switch (SCPStatementType type) {
case SCP_ST_CONFIRM:
SCPConfirm confirm;
/* ... */
};

Implies votes for all messages in the set
{accept(commit b′) | nCommit ≤ b′.n ≤ nH and b′.x = ballot.x}

Implies SCPPreparewith ballot 〈∞, confirm.ballot.x〉, prepared
〈confirm.nPrepared, confirm.ballot.x〉, and nH value∞.

17 / 20



SCP externalize message
struct SCPExternalize {
SCPBallot commit; // c
uint32 nH; // h.n

};

union SCPStatement switch (SCPStatementType type) {
case SCP_ST_EXTERNALIZE:
SCPExternalize externalize;
/* ... */
};

By the time you send this, already externalized commit.x
- Means you have confirmed committed a ballot with commit.x
- Goal is definitive record to help other nodes prove value/catch up
Implies SCPConfirmwith ballot 〈∞, externalize.commit.x〉,
nPrepared externalize.commit.n, and nH∞
Implies SCPConfirmwith ballot 〈∞, externalize.commit.x〉,
nPrepared externalize.commit.n, nH externalize.nH, and a
special quorum slice declaration of only the sending node

18 / 20



Balloting flow

v1

PREPARE 〈1, x〉
CONFIRM 〈1, x〉

v2

PREPARE 〈1, x〉
CONFIRM 〈1, x〉

v3

PREPARE 〈1, x〉
CONFIRM 〈1, x〉

In the common case, will prepare and commit nominated value
Else, arm timer when ballot counter reaches quorum threshold
Bump counter and restart with new ballot whenever
- Timer fires
- A blocking threshold is at a higher ballot counter
Nominationmay finish converging in background
Or if any value confirmed prepared, all nodes will eventually see
it confirmed prepared and start using that value

19 / 20



Balloting flow

v1

PREPARE 〈1, x〉
CONFIRM 〈1, x〉

v2

PREPARE 〈1, x〉
CONFIRM 〈1, x〉

v3

PREPARE 〈1, x〉
CONFIRM 〈1, x〉

In the common case, will prepare and commit nominated value
Else, arm timer when ballot counter reaches quorum threshold
Bump counter and restart with new ballot whenever
- Timer fires
- A blocking threshold is at a higher ballot counter
Nominationmay finish converging in background
Or if any value confirmed prepared, all nodes will eventually see
it confirmed prepared and start using that value

19 / 20



Questions?
20 / 20


