High-Level Goals

• Greatly **Simplify** the Mobile Network:
 • To meet new latency and bandwidth demands (**VR/AR**)
 • To address newer and more demanding applications (**IoT**)

• Pull Based Mapping Database System **Control-Plane**:
 • To Scale and Secure Mobility
 • To Reduce OpEx through Incremental Deployability

• Dynamic Encapsulating Overlay Based **Data-Plane**:
 • Address Management greatly simplified
 • Fast Mobility Handoffs
 • Roaming across Mobile Networks and WiFi

Endpoint IDs (EIDs)

Routing Locators (RLOCs)
How it Works

- UEs are assigned EID addresses
- gNBs and UPFs are LISP xTRs with RLOC addresses
- The Underlay is the existing EPC or Next-Gen Core (NGC) IP network
- The Overlay runs over the NGC and the Internet
- LISP Mapping System can run anywhere in NGC
- Encapsulation occurs over NGC *and not the RAN*
- Encapsulation format is GTP or LISP with real-time setup (on demand)
A Word about Encapsulation

“It’s just an encapsulation, get over it” :-)

• **Pros** for encapsulation:
 - Does not change user’s packet header
 - Identity of user is always maintained while staying private
 - Middle boxes can maintain flow state due to no header translation
 - Overlay and Underlay address families can be different
 - Debugging and Monitoring always tells you:
 - *From who, from where, to who, to where*

• **Cons** for encapsulation:
 - Packet overhead - but you can decide where you spend it
LISP Encapsulation Format

- Outer Header
- UDP Header
- LISP Header

16 bytes

- Inner Header
- Payload

LISP xTR Prepend

Host Built

Ciphertext

Underlay Dictates Length

16 bytes

Host Dictates Length
LISP Inside a 3GPP Diagram

Blue: LISP components
Green: packet forwarding
Red: control messages
Bold White: 3GPP Spec Interfaces
Example Packet Flow

NGC does not route EIDs

No packet overhead on RAN

UE to UE

Green = EIDs
Green Node = Unmodified Host
Green Arrow = Not Encapsulated

Red = RLOCs
Red Node = LISP xTR
Red Arrow = Encapsulated
Example Packet Flow

Green = EIDs
Green Node = Unmodified Host
Green Arrow = Not Encapsulated

Red = RLOCs
Red Node = LISP xTR
Red Arrow = Encapsulated

UE to non-EID Server
Example Packet Flow

UPFs don't need to be in the encapsulated data path

Red = RLOCs
Red Node = LISP xTR
Red Arrow = Encapsulated

Green = EIDs
Green Node = Unmodified Host
Green Arrow = Not Encapsulated

UE to EID Server

Internet

xTR

NGC

mapping system

UPF

UPF

RAN

UE

UE
Mobility Example

UPFs track current location of UEs without the NGC core storing UE state.

Green = EIDs
Green Node = Unmodified Host
Green Arrow = Not Encapsulated

Red = RLOCs
Red Node = LISP xTR
Red Arrow = Encapsulated

UE roams to gNB
Mobility Example

Mapping System notifies UPFs about new UE location without NGC knowing or caring.

Green = EIDs
Green Node = Unmodified Host
Green Arrow = Not Encapsulated

Red = RLOCs
Red Node = LISP xTR
Red Arrow = Encapsulated

UE roams to gNB

UEs never change their IP address (EID)
Branch-Point Example

RLOC-record for default-EID: ELP \{gNB, BP-UPF, UPF\}

BP-UPF is RTR

Session Anchoring

Green = EIDs
Green Node = Unmodified Host
Green Arrow = Not Encapsulated

Red = RLOCs
Red Node = LISP xTR
Red Arrow = Encapsulated
Hand-Off Performance

- Signaling Approach - LISP PubSub
 - RLOC-set change notifications go to ITR/RTR map-caches
 - *draft-rodrigueznatal-lisp-pubsub-02*

- Non-Signaling Approach - Predictive RLOCs
 - No interaction with mapping system
 - Data packets find roaming EIDs via shortest path to predictive-RLOCs
 - *draft-ietf-lisp-predictive-rlocs-01*
IETF and SDOs

Network Working Group
Internet-Draft
Intended status: Experimental
Expires: September 7, 2018

D. Farinacci
lispers.net
P. Pillay-Esnault
U. Chunduri
Huawei Technologies
March 6, 2018

LISP for the Mobile Network
draft-farinacci-lisp-mobile-network-03

Abstract

This specification describes how the LISP architecture and protocols can be used in a LTE/5G mobile network to support session survivable EID mobility. A recommendation is provided to SDOs on how to integrate LISP into the mobile network.

LISP Standards Track Status

The Locator/ID Separation Protocol (LISP)
draft-ietf-lisp-rfc6830bis-11

<table>
<thead>
<tr>
<th>Status</th>
<th>IESG evaluation record</th>
<th>IESG writeups</th>
<th>Email expansions</th>
<th>History</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Versions</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-farinacci-lisp-rfc6830bis</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>11</td>
</tr>
<tr>
<td>draft-ietf-lisp-rfc6830bis</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>11</td>
</tr>
</tbody>
</table>

Close to WG Last Call

Locator/ID Separation Protocol (LISP) Control-Plane
draft-ietf-lisp-rfc6833bis-08

<table>
<thead>
<tr>
<th>Status</th>
<th>IESG evaluation record</th>
<th>IESG writeups</th>
<th>Email expansions</th>
<th>History</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Versions</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-farinacci-lisp-rfc6833bis</td>
<td>00</td>
<td>01</td>
<td>03</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>draft-ietf-lisp-rfc6833bis</td>
<td>00</td>
<td>01</td>
<td>03</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LISP Standards Track Status

<table>
<thead>
<tr>
<th>RFCs (17 hits)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 6830 (was draft-ietf-lisp)</td>
<td>The Locator/ID Separation Protocol (LISP)</td>
<td>2013-01</td>
</tr>
<tr>
<td>RFC 6831 (was draft-ietf-lisp-multicast)</td>
<td>The Locator/ID Separation Protocol (LISP) for Multicast Environments</td>
<td>2013-01</td>
</tr>
<tr>
<td>RFC 6832 (was draft-ietf-lisp-interworking)</td>
<td>Interworking between Locator/ID Separation Protocol (LISP) and Non-LISP Sites</td>
<td>2013-01</td>
</tr>
<tr>
<td>RFC 6833 (was draft-ietf-lisp-ms)</td>
<td>Locator/ID Separation Protocol (LISP) Map-Server Interface</td>
<td>2013-01</td>
</tr>
<tr>
<td>RFC 6834 (was draft-ietf-lisp-map-versioning)</td>
<td>Locator/ID Separation Protocol (LISP) Map-Versioning</td>
<td>2013-01</td>
</tr>
<tr>
<td>RFC 6835 (was draft-ietf-lisp-lig)</td>
<td>The Locator/ID Separation Protocol Internet Groper (LIG)</td>
<td>2013-01</td>
</tr>
<tr>
<td>RFC 6836 (was draft-ietf-lisp-alt)</td>
<td>Locator/ID Separation Protocol Alternative Logical Topology (LISP+ALT)</td>
<td>2013-01</td>
</tr>
<tr>
<td>RFC 7052 (was draft-ietf-lisp-mib)</td>
<td>Locator/ID Separation Protocol (LISP) MIB</td>
<td>2013-10</td>
</tr>
<tr>
<td>RFC 7215 (was draft-ietf-lisp-deployment)</td>
<td>Locator-Identifier Separation Protocol (LISP) Network Element Deployment Considerations</td>
<td>2014-04</td>
</tr>
<tr>
<td>RFC 7854 (was draft-ietf-lisp-impact)</td>
<td>Locator/ID Separation Protocol (LISP) Impact</td>
<td>2016-04</td>
</tr>
<tr>
<td>RFC 7855 (was draft-ietf-lisp-threats)</td>
<td>Locator/ID Separation Protocol (LISP) Threat Analysis</td>
<td>2016-04</td>
</tr>
<tr>
<td>RFC 7954 (was draft-ietf-lisp-eid-block)</td>
<td>Locator/ID Separation Protocol (LISP) Endpoint Identifier (EID) Block</td>
<td>2016-09</td>
</tr>
<tr>
<td>RFC 7955 (was draft-ietf-lisp-eid-block-mgmt)</td>
<td>Management Guidelines for the Locator/ID Separation Protocol (LISP) Endpoint Identifier (EID) Block</td>
<td>2016-09</td>
</tr>
<tr>
<td>RFC 8060 (was draft-ietf-lisp-lcaf)</td>
<td>LISP Canonical Address Format (LCAF)</td>
<td>2017-02</td>
</tr>
<tr>
<td>RFC 8061 (was draft-ietf-lisp-crypto)</td>
<td>Locator/ID Separation Protocol (LISP) Data-Plane Confidentiality</td>
<td>2017-02</td>
</tr>
<tr>
<td>RFC 8111 (was draft-ietf-lisp-ddt)</td>
<td>Locator/ID Separation Protocol Delegated Database Tree (LISP-DDT)</td>
<td>2017-05</td>
</tr>
<tr>
<td>RFC 8113 (was draft-ietf-lisp-type-iana)</td>
<td>Locator/ID Separation Protocol (LISP): Shared Extension Message & IANA Registry for Packet Type Allocations</td>
<td>2017-03</td>
</tr>
</tbody>
</table>
Kudos

Appendix A. Acknowledgments

The authors would like to thank Gerry Foster and Peter Ashwood Smith for their expertise with 3GPP mobile networks and for their early review and contributions. The authors would also like to thank Fabio Maino, Malcolm Smith, and Marc Portoles for their expertise in both 5G and LISP as well as for their early review comments.

The authors would like to give a special thank you to Ryosuke Kurebayashi from NTT Docomo and Kalyani Bogineni from Verizon for their operational and practical commentary.

Plan is to evolve this design in 3GPP, IETF, ETSI and ITU at the same time!