Optimized Mobile User Plane Solutions for 5G

draft-bogineni-dmm-optimized-mobile-user-plane-00.txt

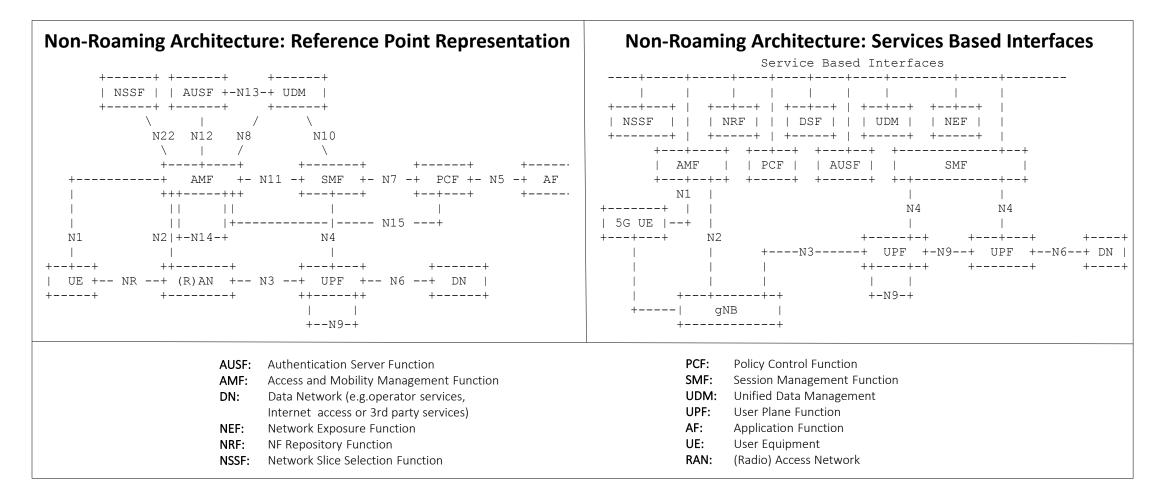
IETF 101 London 17th – 23rd March, 2018

K. Bogineni, A. Akhavain, T. Herbert, D. Farinacci, A. Rodriguez-Natal

Acknowledgements

The authors would like to thank the 3GPP delegates from various companies who participated on the Conference Calls and provided constructive feedback on the content development.

The authors would like to thank Farooq Bari, Devaki Chandramouli, Ravi Guntupalli, Sri Gundavelli, Peter Ashwood Smith, Satoru Matsushima, Michael Mayer, Vina Ermagan, Fabio Maino, Albert Cabellos, Cameron Byrne, Uma Chunduri, and Padma Pillay-Esnault for reviewing various iterations of the document and for providing content into various sections.


Background

 3GPP CT4 has initiated a study item to study different mobility management protocols for potential replacement of GTP tunnels between UPFs (N9 Interface) in the 3GPP 5G system architecture of Release 16 (5G Phase 2)

• References

- 3GPP TS 29.281 (V15.1.0): GPRS Tunnelling Protocol User Plane (GTPv1-U)
- 3GPP TR 29.891 (V15.0.0): 5G System Phase 1; CT4 Aspects
- 3GPP TS 23.501 (V15.0.0): System Architecture for the 5G System
- 3GPP TS 23.503 (V15.0.0): Policy and Charging Control Framework for the 5G System, Stage 2
- ETSI GR NGP 004 (V1.1.1): Next Generation Protocol (NGP): Evolved Architecture for mobility using Identity Oriented Networks
- Several protocol candidates in IETF: SRv6, LISP, ILA, etc
- Document being prepared in DMM WG as submission to CT4 for consideration

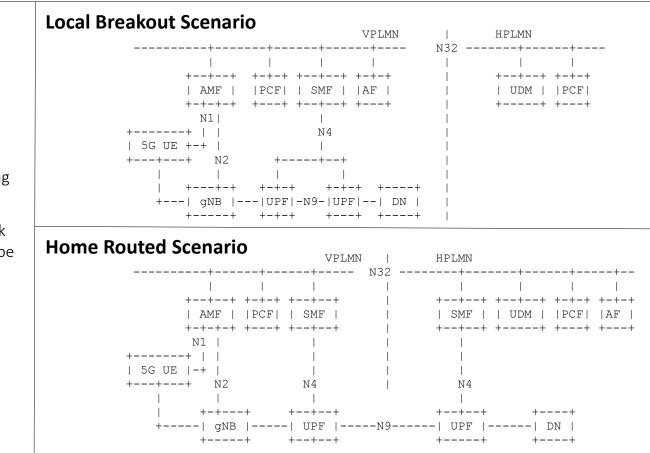
3GPP Release 15 5G NGC Architecture

Roaming Architectures

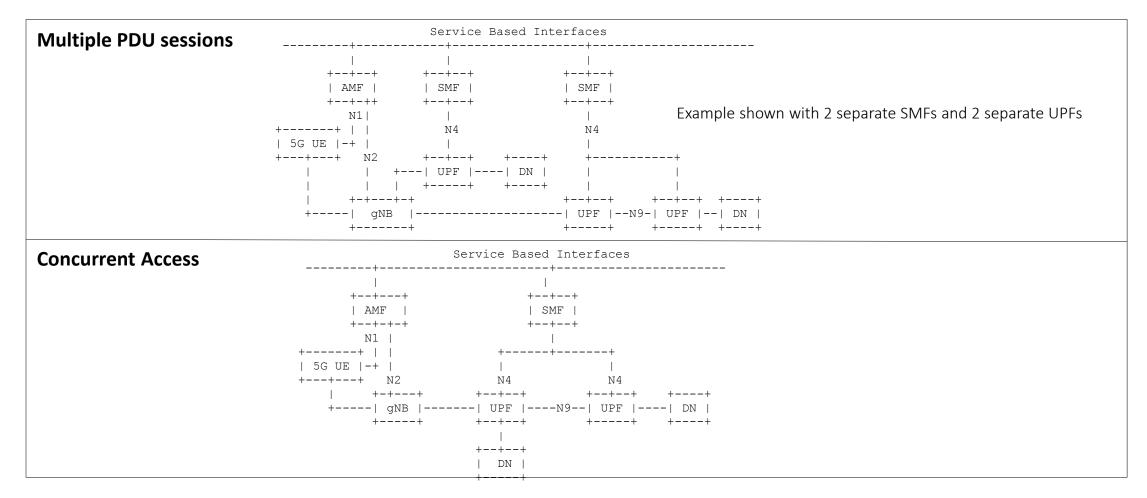
Acronymns:

HPLMN:Home Public Land Mobile Network**VPLMN:**Visited PLMN

Defnitions (3GPP TS 21.905)


Mobility: The ability for the user to communicate whilst moving independent of location.

Roaming: The ability for a user to function in a serving network different from the home network. The serving network could be a shared network operated by two or more network operator.

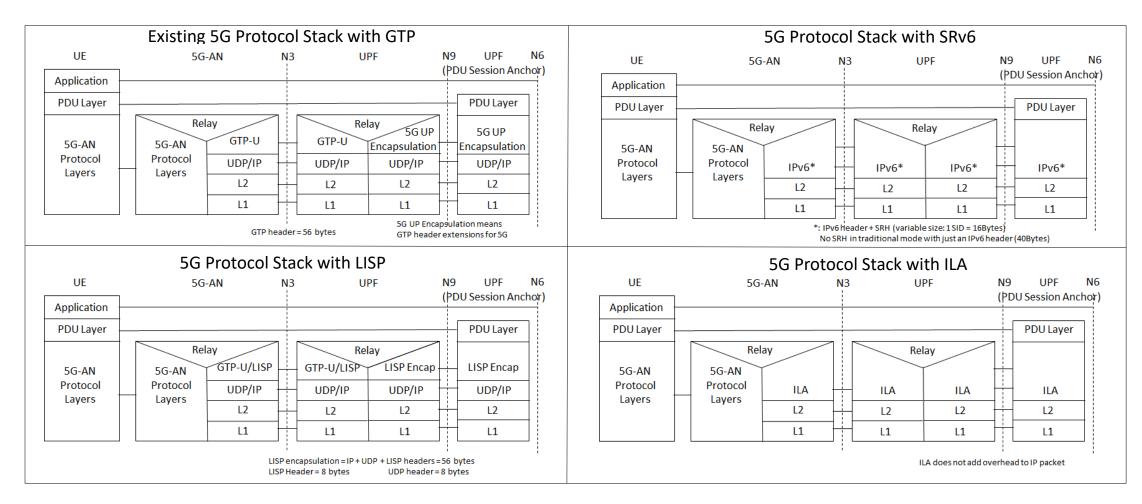

Requirements:

Roaming Requirements: 3GPP TS 22.011 Section 2

Mobility Requirements: 3GPP TS 22.278 Section 7

Sample Configurations for Access to Two DNs

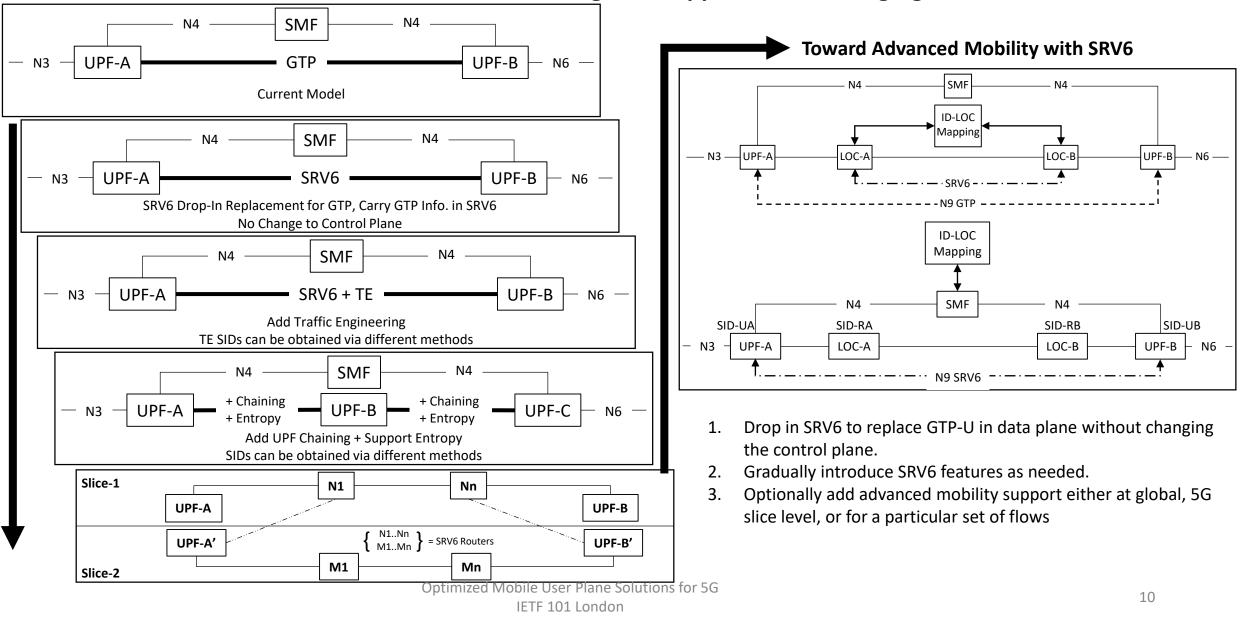
Requirements


- UPF Requirements: 3GPP TS 23.501 Section 6.2.3
- N9 Requirements: 3GPP TR 29.891 Section 5.1.1

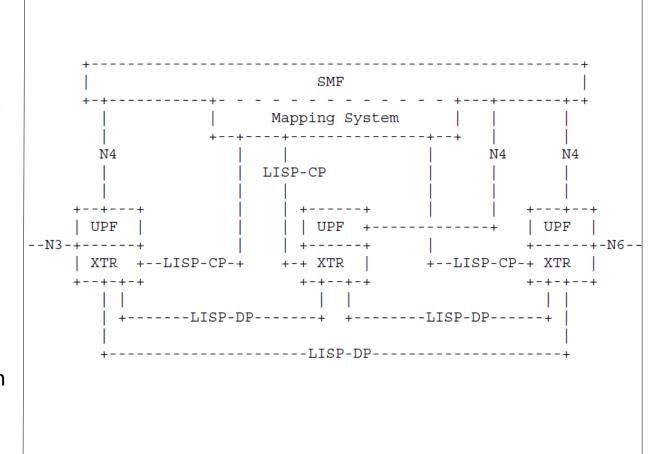
Reference Scenarios for Evaluation

 Non-Roaming Scenarios UE- Internet Connectivity (mobility cases) UE-UE IP Packet Flow (mobility cases) UE – 2 DNs with multiple PDU sessions UE – 2 DNs single PDU session Roaming Scenarios Local Break out Home routed 	 UE mobility SSC Mode 1 Single UPF Multiple UPF UE Mobility SSC Mode 2 Single UPF Multiple UPF UE Mobility SSC Mode 3 Single UPF Multiple UPF
---	--

- Support for independent slices using GTP and/or other protocol will be covered. Mobility Management will be within each slice.
- Support for one UE connected to multiple slices using different mobility protocols will be described.
- Impacts to N2, N3, N4, N6, gNB, AMF and SMF

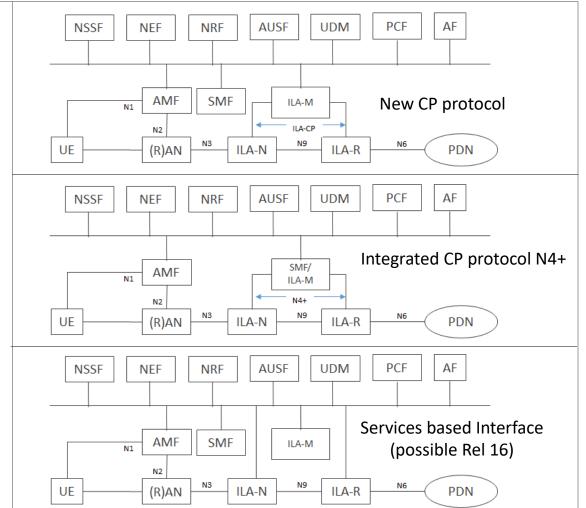

Protocol Stacks

Optimized Mobile User Plane Solutions for 5G IETF 101 London

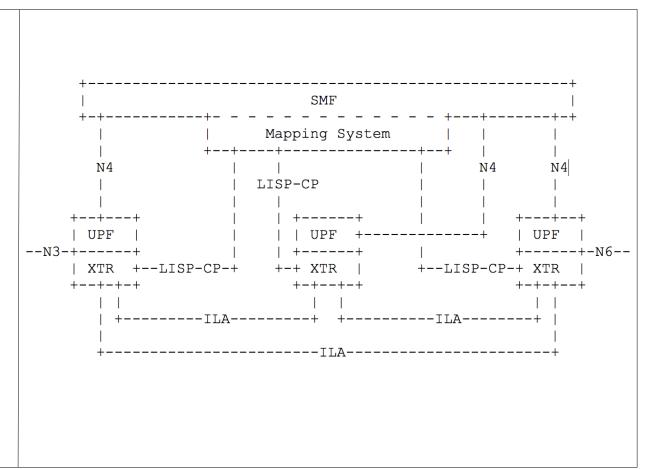

Segment Routing v6

Smooth Transition and Pragmatic Approach for Changing N9

LISP – Locator Identifier Separation Protocol


- LISP Control-Plane (RFC6833bis)
 - Supports many data planes: ILA, SRv6, VXLAN, LISP, GTP, ...
 - Mature mapping control-plane (10+ years) with large deployments
 - Mobility related drafts:
 - draft-ietf-lisp-eid-anonymity
 - draft-ietf-lisp-eid-mobility
 - draft-ietf-lisp-mn
 - draft-ietf-lisp-predictive-rlocs
- LISP Data-Plane (RFC6830bis)
 - Uses dynamic tunnel encapsulation
 - Fixed headers (16 bytes) are used between outer and inner IP headers

ILA – Identifier Locator Addressing


- Identifier Locator Addressing: Problem areas, Motivation, and Use Cases: draft-herbert-ila-motivation-00
- Identifier-locator addressing for IPv6: draft-herbertintarea-ila-00
- Identifier Locator Addressing Mapping Protocol: draftherbert-ila-ilamp-00
- Identifier Locator Addressing for Mobile User-Plane: draftherbert-ila-mobile-00
- Identifier groups: draft-herbert-idgroups-00
- Mobility Management Using Identifier Locator Addressing: draft-mueller-ila-mobility-02
- Use of BGP for dissemination of ILA mapping information: draft-lapukhov-bgp-ila-afi-02

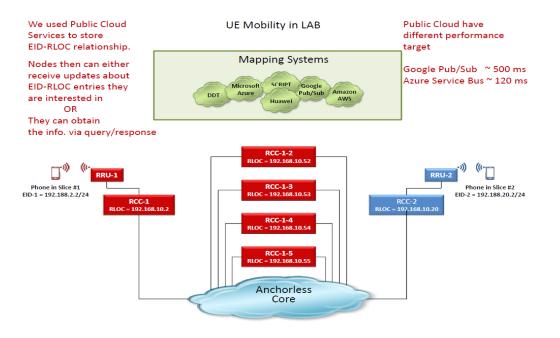
ILA BOF 22nd February 18:10 – 19:10

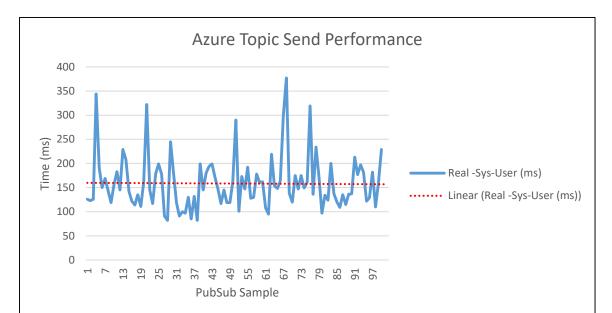
LISP Control Plane with ILA User Plane

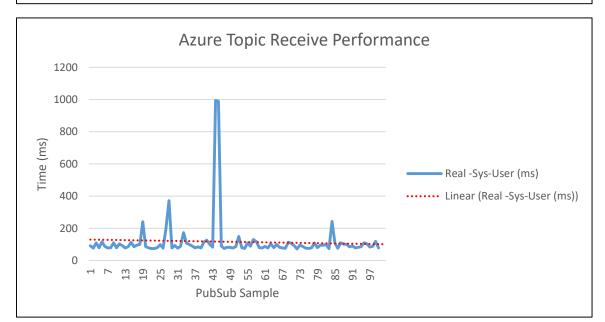
- LISP Control-Plane (RFC6833bis)
 - Supports many data planes: ILA, SRv6, VXLAN, LISP, GTP, ...
 - Mature mapping control-plane (10+ years) with large deployments
 - Mobility, traffic engineering, multihoming...
- ILA Data-Plane (draft-herbert-intarea-ila)
 Address transformation (no encapsulation)
- LISP Control-Plane with ILA Data-Plane
 - No ILA or LISP architectural changes
 - IETF draft for LISP+ILA specific details
 - draft-rodrigueznatal-ila-lisp

Next Steps

- This draft aims to provide a useful comparison among different contending options. Work will continue on roaming, charging, security, scalability, etc aspects.
- We would like to encourage interested members to work with us in an accelerated pace to complete this work in accordance with the deadlines put forward by 3GPP.
- We would like to ask the DMM WG to adopt the draft and incorporate it as part of the response back to 3GPP.
 - To attach this ongoing work to a formulated response LS back to CT4 and SA2.
 - Seek cooperation from interested teams in 3GPP to work with us in further development of this draft into a useful document to 3GPP.
 - Propose joint 3GPP-IETF meetings (CT and SA2).


Backup Slides


Some Test Results


Employed open source LTE in conjunction with public Cloud Pub/Sub service to demonstrate enhanced mobility and anchorless mobile core

These sort of distributed databases show very promising results for distributing ID/LOC relationship.

The performance can be further improved as public services are design to move large data. We deal with much smaller data for ID-LOC.

Optimized Mobile User Plane Solutions for 5G IETF 101 London

LISP Control-Plane for other Data-Planes

LISP-MS Site Information:

Site Name	EID-Prefix or (S,G)	Registered	Last Registerer	Last Registered	First Registered	Registration Flags
SRv6	[1545]	(ams)	2	never	never	
	[1545]'facebook'	yes (dynamic)	[0]127.0.0.1	0:00:19	3:57:26	p-s-l-t-r-m-n
	[1545]2001:5:face:b00c::/64	yes (dynamic)	[0]127.0.0.1	0:00:19	3:57:26	p-s-l-t-r-m-n
	[1545]'google'	yes (dynamic)	[0]127.0.0.1	0:00:19	3:57:26	p-s-I-t-r-m-n
	[1545]2001:5:6006:1e00::/64	yes (dynamic)	[0]127.0.0.1	0:00:19	3:57:26	p-s-I-t-r-m-n
ila	[1540]	(ams)	-	never	never	
	[1540]2001:5:face:b00c::1/128	yes (dynamic)	[0]127.0.0.1	0:00:19	3:57:26	p-s-l-t-r-m-n
/	[1540]2001:5:face:b00c::2/128	yes (dynamic)	[0]127.0.0.1	0:00:19	3:57:26	p-s-I-t-r-m-n
/	[1540]'facebook-sir-prefixes'	yes (dynamic)	[0]127.0.0.1	0:00:19	3:57:26	p-s-I-t-r-m-n

ILA SIR-Prefix

Individual registrations: none

IPv6 EID

lispers .net Scalable Open Overlay Networking
Site name: i1a, EID-prefix: (1540)2001:5:face:b00c::1/128, registered: yes, dynamic Description: Last registerer: (0)127.0.0.1, xTR-ID: 0xda6fed03124e6bea, site-ID: 0 First registered: 3:59:42, last registered: 0:00:34, auth-type: sha2, registration flags: p-s-I=t=r=m=n Default registration timeout TTL: 100 seconds Forcing proxy Map-Repty: yes Forcing proxy Map-Repty to xTRs behind NATs: no Send drop-action proxy Map-Repty to PITR: no Proxy Map-Repty action: net_configured Allowed RLOC-set: any
Registered RLOC-set (replacement-semantics):

[0]2a03:2880:f10d:83:face:b00c:0:25de, state:up-state, up/uw/mp/mw:0/0/255/0/

ILA Locator

lispers.net Scalable Open Overlay Networking ma2 Site name: SRv6, EID-prefix: [1545]2001:5:face:b00c::/64, registered: yes, dynamic Description: Last registerer: (0)127.0.0.1, xTR-ID: 0xda6fed03124e6bea, site-ID: 0 First registered: 3:59:13, last registered: 0:00:06, auth-type: sha2, registration flags: p-s-I-t-r-m-n Default registration timeout TTL: 180 seconds Forcing proxy Map-Reply: yes Forcing proxy Map-Reply for xTRs behind NATs: no Send drop-action proxy Map-Reply to PITR: no Proxy Map-Reply action: not configured Allowed RLOC-set: any Registered RLOC-set (replacement-semantics): [0]no-address, state: up-state, up/uw/mp/mw: 0/0/255/0 ep: 2001:5:3:6666::1(Rps), 2001:5:3:6666::2(Rps), 2001:5:3:6666::3(Rps)

Mapping System - References

- Scalability
 - LISP Delegated Database Tree (LISP-DDT) RFC8111
 - Jakab, Loránd, et al. "LISP-TREE: a DNS hierarchy to support the lisp mapping system." *IEEE Journal on Selected Areas in Communications* 28.8 (2010): 1332-1343.
 - Mathy, Laurent, and Luigi Iannone. "LISP-DHT: Towards a DHT to map identifiers onto locators." *Proceedings of the 2008 ACM CoNEXT Conference*. ACM, 2008.
 - Hoefling, Michael, Michael Menth, and Matthias Hartmann. "A survey of mapping systems for locator/identifier split internet routing." *IEEE Communications Surveys & Tutorials* 15.4 (2013): 1842-1858.
- Security
 - LISP-Security (LISP-SEC) draft-ietf-lisp-sec-14
 - LISP Threat Analysis RFC7835
 - LISP Control-Plane ECDSA Authentication and Authorization draft-farinacci-lisp-ecdsa-auth-01
- Privacy
 - LISP EID Anonymity draft-ietf-lisp-eid-anonymity-01
 - Rodriguez-Natal, Alberto, et al. "Location and identity privacy for LISP-MN." *Communications (ICC), 2015 IEEE International Conference on*. IEEE, 2015.