Multi Provider DNSSEC

draft-huque-dnsop-multi-provider-dnssec-02

Shumon Huque
March 22nd 2018
Note to the DNS Camel*

• This document does not propose any new extensions to the DNS protocol.
• It merely outlines operational deployment models for DNSSEC with multiple providers.

Note to the DNS Camel*

• This document does not propose any new extensions to the DNS protocol.
• It merely outlines operational deployment models for DNSSEC with multiple providers.

Problem statement

• Many organizations employ the services of multiple DNS providers to distribute their authoritative DNS service.
• We want to successfully deploy DNSSEC in such an environment.
• Certain types of DNS configuration/features pose challenges.
Deployment models

• Serve Only
• Sign and Serve
• Inline Signing
• Hybrid

• Last two models are really variations/combinations of the first two, and are not ideal because they combine the weaknesses of both.
Serve Only

• Zone owner runs master server that signs zone data.
• Pushes out zone to multiple providers via DNS zone transfer.
• Providers serve the zone to the world.
• Zone owner holds signing keys: so managed DNS providers cannot serve false data, without detection by validating resolvers.

• Well understood model. Has been deployed in the field. Works.
Serve Only

• Zone owner runs master server that signs zone data.
• Pushes out zone to multiple providers via DNS zone transfer.
• Providers serve the zone to the world.
• Zone owner holds signing keys: so managed DNS providers cannot serve false data, without detection by validating resolvers.

• Well understood model. Has been deployed in the field. Works.

• **Notable limitation:** doesn’t work with non-standardized DNS features that are fairly widely used in the DNS industry today.
Non-standard response mechanisms

• Sometimes called “Traffic management”:
 • Global Server Load Balancing, Probe and Failover records, custom scripted responses, etc.
• These types of responses are often querier-specific or dependent on inspecting dynamic state in the network
 • So answer and signature typically have to be determined at the authoritative server itself, at the time of the query, or both.

• Also known by other colorful names:
 • P. Vixie, “What the DNS is not”, acmqueue, November 2009
 • DNS protocol purity vs. the reality of how extensively these mechanisms are already deployed.
Sign and Serve

• Each provider independently signs and serves zone data.
• Zone owner typically uses provider specific zone management API’s to update zone content.

• This model presents some novel challenges, and is essentially the primary focus of this document.
Sign and Serve

• Can support the non-standard DNS features *if* the provider is capable of signing the response data generated by these features.
• Common strategies for doing so:
 • On-the-fly signing
 • Pre-compute & sign all possible response sets, and then algorithmically determine at query time which response + signature needs to be returned.
Sign and Serve

• Key requirement: manage the contents of the DNSKEY and DS RRsets such that validation is always possible, not matter which provider you query and obtain the response from.

• Strategy: each provider has to import the zone signing (public) keys of the other providers into their DNSKEY RRset.
Sign and Serve models

• Probably a range of possible models

• We focus on a small set (currently 2) that we’ve deemed to be operationally viable and palatable, based on discussion with actual managed DNS providers.

• Constraint: providers only want to directly interact with the zone owner and not with other providers (contractual reasons).

• Model descriptions assume 2 providers (but generalizable to more).
Model 1: Common KSK, Unique ZSK per prov

- Common KSK; Unique ZSK per provider.
- Zone Owner holds the KSK and manages the DS record.
- Each provider uses their own ZSK to sign zone data.
- Zone owner uses provider APIs to extract ZSKs, assemble them into a common DNSKEY RRset, signs it, and distributes it to the providers.
- Key rollovers need coordinated participation of the Zone Owner to update the DNSKEY RRset (KSK and ZSK) and DS RRset (KSK).
Model 2: Unique KSK & ZSK per provider

- Unique KSK and ZSK per provider.
- Each provider has their own KSK and ZSK.
- Zone Owner uses provider API to import the ZSKs of other providers into the DNSKEY RRset.
- DNSKEY RRset is independently signed by each provider’s KSK.
- Zone Owner manages the DS RRset that includes both provider’s KSKs.
- Key Rollovers need coordinated participation of the Zone Owner to update the DS (KSK) and DNSKEY (for ZSK).
Validating Resolver Behavior

• Read this section to understand some of the subtleties of this configuration and why ZSK cross sharing is needed to ensure that all answers are validatable.
Questions/Discussion/Feedback

• Is this a useful document for the DNSOP working group?
• If we ask for adoption, what category should be aimed for?
 • Informational? BCP? Something else?
• Are there other models that should be documented?
• For Sign and Serve, should we recommend one specific model?