IETF 101, London
March 22, 2018
Paul Wouters
L. Xia (Frank)
Wes Hardaker
Two Parental Attacks

1) Serving data bypassing the child (split-DNS)

<table>
<thead>
<tr>
<th>Host Name</th>
<th>Record Type</th>
<th>TTL</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>powerbind.nohats.ca</td>
<td>NS</td>
<td>3600</td>
<td>1.2.3.4</td>
</tr>
<tr>
<td>powerbind.nohats.ca</td>
<td>DS</td>
<td>3600</td>
<td>17869 8 2 f22bb</td>
</tr>
<tr>
<td>powerbind.nohats.ca</td>
<td>RRSIG DS</td>
<td>3600</td>
<td></td>
</tr>
<tr>
<td>_443._tcp.powerbind.nohats.ca</td>
<td>TLSA</td>
<td></td>
<td>3 1 1 302BBDO</td>
</tr>
<tr>
<td>_443._tcp.powerbind.nohats.ca</td>
<td>RRSIG TSLA</td>
<td></td>
<td>8 3 3600 [..]</td>
</tr>
</tbody>
</table>

2) Parent replacing child DS with its own
Child zone requirements

1) Public commitment by parent being a delegation-only zone
 • Publish via DNSKEY flag

2) DNSSEC transparency that does not require logging ALL DNS records with public keys
 • With above flag, we only need to log DNSKEY / DS records or their NSECs
DELEGATION_ONLY DNSKEY flag

Traditional Key Signing KEY DNSKEY record:

```
powerbind.nohats.ca.  IN DNSKEY 257 3 8 (AwEAAAb+wQalXSsjykJ6uaIIGvHbzHZZDDeeexZNCYJJBa) ; KSK; alg = RSASHA256 ; key id = 17869
```

```
powerbind.nohats.ca.  IN DS 17869 8 2
f22bbb3315c48b719fb67da0fc019ae4af534143569f7a63022eba4d87c1f56d
```

DNSKEY with DELEGATION_ONLY flag set:

```
powerbind.nohats.ca.  IN DNSKEY 321 3 8 (AwEAAAb+wQalXSsjykJ6uaIIGvHbzHZZDDeeexZNCYJJBa) ; KSK; alg = RSASHA256 ; key id = 17933
```

```
powerbind.nohats.ca.  IN DS 17933 8 2
096749AAB0CFE225A3779AC7BD21EBDC1D8573511DD5AFA0889EB5E8A00B9AF9
```
Does this break current deployment?

- `powerbind.nohat.ca` is a real signed zone using `0x40` DNSKEY flag
- used a patched `dnssec-keygen` to create key
- "ods-ksmutil key import" ignored my new dnskey flag
- `dnssec-signzone` worked
- So far all tested DNS resolves validate properly
Pros & Cons

• Protects child zone data from parent
 • Including TLSA, SMIMEA, OPENPGPKEY

• Allows DNSSEC Transparency

• Very simple
 • No new RRTYPE
 • no changes required for authoritative servers
 • Only minimal changes in validator
Pros & Cons

- Does not allow exceptions for ENT ("co.uk")
- Does not protect child APEX data
 - A/AAAA, MX, IPSECKEY[*]
- Requires adding delegations for _prefix labels
 e.g. for TLSA:
 _tcp.powerbind.nohats.ca IN NS ...
 _tcp.powerbind.nohats.ca IN DS ...