Let a Thousand Filters Bloom:
privacy-preserving long-term collection of DNS queries

IETF 101, London, UK

Roland van Rijswijk-Deij
Introduction

• Privacy of DNS traffic between client and resolver rightly is a concern

• DNS-over-TLS goes a long way to protecting this privacy for queries in flight

• Resolver operators, however, can still observe and log traffic

• And may have legitimate reasons to do so, for example, for security reasons (detecting indicators of compromise)
Goal

• Privacy is a strongly held value at SURFnet

• Yet we also need to ensure the security of our network and the users on it

• Simply logging DNS queries on our resolvers is unacceptable

• So we asked ourselves:

How can we detect if certain DNS queries were performed, while respecting the privacy of users?
Approach

• We worked with Dutch security company Quarantainenet to develop a possible solution

• We want to use Bloom filters as a privacy-preserving means to record all DNS queries

• The rest of this talk explains what Bloom filters are, how we plan to use them, and what we are currently doing to study this
What is a Bloom filter?

- Bloom filters were originally designed in 1970 as a space-efficient way to optimise indexing of data.
- Think of Bloom filters as an unordered set of unique elements with probabilistic membership tests.
- For a Bloom filter B and an element n, if we test membership:

 - $n \notin B$ → n is guaranteed not to be in B
 - $n \in B$ → n is highly likely in B, with a small probability p_ε of this being a false positive.
Bloom filter in pictures

www.example.com

(set of) hash function(s)

a029e8a9 c3faa9f8 cb745caa 8136503e 3a6dcaa c9f4c130 574c0e58 7235970e

index #1 index #2 index #3 index #4 index #5 index #6 index #7 index #8

set bits to 1 in bit array using indices
Bloom filter in pictures

(legit.org, evil.com) -> Bloom filter -> true-negative.name, false-positive.net

(image courtesy of Quarantainenet)
Bloom filter parameters

- Tune to achieve a certain (low) false positive rate

- Parameters:
 - Size of bit array
 - Number of hash functions → number of indexes
 - Expected number of distinct elements

- Performance influenced by number of distinct items entered into the filter; the formula below approximates the probability of a false positive p_ε:

$$p_\varepsilon \approx \left(1 - e^{-\frac{kn}{m}}\right)^k$$
Privacy properties

• Filters do not store original query names and are non-enumerable; lookup only possible if you know exactly what you are looking for

• By mixing queries from multiple users in a single filter, tracking individual users becomes even hard(er)

• We can combine that state of filters with the same parameters into a new, aggregated filter (with possibly a higher false positive, but also more users in the same filter)
Other considerations

• Privacy risk: if I know a query that unambiguously identifies a certain user (e.g. name of personal server), I can still track them, but hard to correlate with other queries if more than one user in the filter

• Bloom filters have additional benefits:
 • Space efficient (filters have a fixed, reasonable size)
 • Time efficient (lookups are fast)
Grouping users into filters

• One of our challenges is how we will group users into filters

• Current thinking: group all users in certain prefixes that belong to specific connected institutions on our network (e.g. universities, teaching hospitals, ...)

• Open question: how many users should we combine in a filter? Does that matter very much for privacy? (since filters cannot be enumerated)
Grouping users into filters

network #1

network #2

network #n

resolver

filter for network #1

1 0 1 0 0 \ldots 0

filter for network #2

0 1 1 0 0 \ldots 1

filter for network #n

0 0 1 1 1 \ldots 1
We have a master student working on testing the use of Bloom filters for detection of indicators-of-compromise (IoCs) in DNS queries.

His main focus:

- What IoCs can we detect using this approach, but also: what can't we detect?

- Designing an architecture for filling and querying filters (e.g. how do we group users, how do we store and query filters?)
Work in Progress

• We will deploy Unbound with Bloom filter integration on SURFnet's production resolver infrastructure

• Relatively busy resolvers (order of 5-10k queries per second), that between them see roughly 150-200k unique client IPs per day

• Ideally, we want to group by customer, challenge: we have ±200 customers

• Goal is also to see how well all of this scales
Use Cases

• The master student will look at three use cases in particular:

1. Detection of (high value) IoCs that we receive from the Dutch National Detection Network (IoCs received from, a.o., intelligence agencies)

2. Detection of queries for "DDoS-as-a-Service" providers (aka Booters/Stressers)

3. Analysis of blacklist hits from our e-mail filtering service
Open source

• Bloom filter library we use developed as open source by Quarantainenet, funded by SURFnet (BSD 3-clause license)

• SURFnet also provided funding for integration in Unbound (will be DNSTAP), NLnet Labs is working on this

• Expecting to release code somewhere this year, no definitive data yet
Conclusions

• We set out to find a privacy-conscious way to collect information on DNS queries, with the goal of looking for certain queries for security purposes

• In collaboration with Quarantainenet and NLnet Labs, we are implementing a solution based on Bloom filters, that will be released in open source

• We currently have a master student integrating this and testing this in our DNS production environment
Thank you for your attention! Questions?

nl.linkedin.com/in/rolandvanrijswijk
@reseauxsansfil
roland.vanrijswijk@surfnet.nl