
Let a Thousand Filters Bloom:
privacy-preserving long-term collection of DNS queries

IETF 101, London, UK

Roland van Rijswijk-Deij

Introduction
• Privacy of DNS traffic between client and resolver

rightly is a concern

• DNS-over-TLS goes a long way to protecting this
privacy for queries in flight

• Resolver operators, however, can still observe and
log traffic

• And may have legitimate reasons to do so, for
example, for security reasons (detecting indicators
of compromise)

Goal
• Privacy is a strongly held value at SURFnet

• Yet we also need to ensure the security of our
network and the users on it

• Simply logging DNS queries on our resolvers is
unacceptable

• So we asked ourselves:

How can we detect if certain DNS queries were
performed, while respecting the privacy of users?

Approach

• We worked with Dutch security company
Quarantainenet to develop a possible solution

• We want to use Bloom filters as a privacy-
preserving means to record all DNS queries

• The rest of this talk explains what Bloom filters are,
how we plan to use them, and what we are
currently doing to study this

What is a Bloom filter?
• Bloom filters were originally designed in 1970 as a

space-efficient way to optimise indexing of data
• Think of Bloom filters as an unordered set of unique

elements with probabilistic membership tests
• For a Bloom filter 𝐵 and an element 𝑛, if we test

membership:

n 2 B?
no → 𝑛 is guaranteed not to be in 𝐵

yes → 𝑛 is highly likely in 𝐵, with a
 small probability 𝑝ε of this being  
 a false positive

Bloom filter in pictures
www.example.com

a029e8a9 c3faa9f8 cb745caa 8136503e 3a6dccaa c9f4c130 574c0e58 7235970e

(set of) hash function(s)

index #1 index #2 index #3 index #4 index #5 index #6 index #7 index #8

set bits to 1 in bit array using indices

Bloom filter in pictures

(image courtesy of Quarantainenet)

0

0

0

0

0

0

0

0

1

1

1

legit.org

evil.com

1

1

1

true-negative.name

false-positive.net

Bloom filter parameters
• Tune to achieve a certain (low) false positive rate

• Parameters:
• Size of bit array
• Number of hash functions → number of indexes
• Expected number of distinct elements

• Performance influenced by number of distinct
items entered into the filter; the formula below
approximates the probability of a false positive 𝑝ε:

p✏ ⇡ (1� e�
kn
m)k

Privacy properties
• Filters do not store original query names and are

non-enumerable; lookup only possible if you know
exactly what you are looking for

• By mixing queries from multiple users in a single
filter, tracking individual users becomes even
hard(er)

• We can combine that state of filters with the same
parameters into a new, aggregated filter (with
possibly a higher false positive, but also more
users in the same filter)

Other considerations

• Privacy risk: if I know a query that unambiguously
identifies a certain user (e.g. name of personal
server), I can still track them, but hard to correlate
with other queries if more than one user in the filter

• Bloom filters have additional benefits:
• Space efficient (filters have a fixed, reasonable

size)
• Time efficient (lookups are fast)

Grouping users into filters

• One of our challenges is how we will group users
into filters

• Current thinking: group all users in certain prefixes
that belong to specific connected institutions on
our network (e.g. universities, teaching
hospitals, ...)

• Open question: how many users should we
combine in a filter? Does that matter very much for
privacy? (since filters cannot be enumerated)

Grouping users into filters

network #1

network #2

network #n

resolver

1 0 1 0 0 0…
filter for network #1

0 1 1 0 0 1…
filter for network #2

0 0 1 1 1 1…
filter for network #n

Work in Progress
• We have a master student working on testing the

use of Bloom filters for detection of indicators-of-
compromise (IoCs) in DNS queries

• His main focus:

• What IoCs can we detect using this approach,
but also: what can't we detect?

• Designing an architecture for filling and querying
filters (e.g. how do we group users, how do we
store and query filters?)

Work in Progress
• We will deploy Unbound with Bloom filter

integration on SURFnet's production resolver
infrastructure

• Relatively busy resolvers (order of 5-10k queries
per second), that between them see roughly
150-200k unique client IPs per day

• Ideally, we want to group by customer, challenge:
we have ±200 customers

• Goal is also to see how well all of this scales

Use Cases
• The master student will look at three use cases in

particular:

1. Detection of (high value) IoCs that we receive from
the Dutch National Detection Network (IoCs
received from, a.o., intelligence agencies)

2. Detection of queries for "DDoS-as-a-Service"
providers (aka Booters/Stressers)

3. Analysis of blacklist hits from our e-mail filtering
service

Open source

• Bloom filter library we use developed as open
source by Quarantainenet, funded by SURFnet  
(BSD 3-clause license)

• SURFnet also provided funding for integration in
Unbound (will be DNSTAP), NLnet Labs is working
on this

• Expecting to release code somewhere this year, no
definitive data yet

Conclusions

• We set out to find a privacy-conscious way to
collect information on DNS queries, with the goal of
looking for certain queries for security purposes

• In collaboration with Quarantainenet and NLnet
Labs, we are implementing a solution based on
Bloom filters, that will be released in open source

• We currently have a master student integrating this
and testing this in our DNS production environment

F

L

✉

nl.linkedin.com/in/rolandvanrijswijk

@reseauxsansfil

roland.vanrijswijk@surfnet.nl

Thank you for your attention!
Questions?

