Architecture for Delay-Tolerant Key Administration
IETF 101 DTN Working Group
March 23, 2018

Scott Burleigh (Scott.Burleigh@jpl.nasa.gov)
David Horres (David.C.Horres@jpl.nasa.gov)
Kapali Viswanathan (kapaleeswaran.viswanathan@boeing.com)
Michael W. Benson (michael.w.benson@boeing.com)
Fred L. Templin (fred.l.templin@boeing.com)

Recap: Motivation

• On-demand & interactive communication cannot be assumed in DTN
• SSL and Online Certificate Status Protocol (OCSP) require on-demand & interactive communication
• A DTN-friendly public-key distribution and revocation protocol suite is needed
Recap: System Architecture

Key Authority for the Application Domain

- A “Time Synchronization Mechanism” like the Network Time Protocol (NTP)
- Allowed drift in the order of seconds.
- UTC offsets may be present

System Security Configuration:
- Public key of each DTKA Key Agent is securely configured into every Agent, Owner and User in the application domain
- Trust Model Number configuration (New in this version)

Recap: Bulletin authentication

Figure 1: Abstract Data-Flow-Diagram for DTKA

https://tools.ietf.org/html/draft-burleigh-dtnwg-dtk-01
Feedbacks from IETF 100 presentation

• Feedback 1
 • What if bulletins were missed by key users? How will they know? How can they initiate actions to synchronize?

• Feedback 2
 • Can there be different trust models for accepting keys and revoking keys?

• Feedback 3
 • Should consensus mechanism for Key Agents be part of the draft?

Feedback 1: Loss of bulletins

• Introduced a new field in the bulletin called BSN
 • BSN = Bundle Serial Number
• It is a monotonously increasing number
• Receivers store a finite history of successfully received BSNs
 • History will help receivers identify non-receipt of bulletins
• Mechanisms described to request Key Agents for bulletins that were not received

Feedback 2: Allowing multiple trust models

- Introduced a new field in the bulletin called TMN
 - TMN = Trust Model Number
- Defined by the DTKA Key Agents (Key Authority)
 - Defines allowed trust configurations for bulletins in the Key Authority’s domain
 - Example: t-out-of-n for registration and 2-out-of-n for revocation
- Definitions loaded securely into every DTKA Entity during bootstrapping
- Bulletin hash has TMN an input

Version 00

<table>
<thead>
<tr>
<th>Bulletin</th>
<th>Key information message (KIM):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash</td>
<td>{([Node ID, Effective Time, Public Key], KIM}...KIM assert/revoke/roll-over)</td>
</tr>
</tbody>
</table>

Version 01

<table>
<thead>
<tr>
<th>Bulletin</th>
<th>TMN</th>
<th>BSN</th>
<th>Key information message (KIM):</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash</td>
<td>TMN</td>
<td>BSN</td>
<td>{([Node ID, Effective Time, Public Key], KIM} OOBAuth/endorse/revoke/roll_over)</td>
</tr>
</tbody>
</table>
Feedback 3: DTKA-KA consensus mechanism

• Should consensus mechanism for Key Agents be part of the draft?
 • DTKA Key Agents need to agree on the bit-map of the bulletin that they shall authenticate to all DTKA Entities
 • The consensus mechanism for this agreement is a matter of implementation
 • Left out of this Internet Draft

Proactive update

Version 00

<table>
<thead>
<tr>
<th>Bulletin</th>
<th>Key information message (KIM):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash</td>
<td>([Node ID, Effective Time, Public Key], KIM, ... KIM assert/revoke/roll-over)</td>
</tr>
</tbody>
</table>

Version 01

<table>
<thead>
<tr>
<th>Bulletin</th>
<th>TMN</th>
<th>BSN</th>
<th>Key information message (KIM):</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash</td>
<td></td>
<td></td>
<td>([Node ID, Effective Time, Public Key], ... KIM OOBAuth/endorse/revoke/roll_over)</td>
</tr>
</tbody>
</table>

- **Key Information Message Types**
 - No change
 - revoke, roll over
 - Name change
 - assert → OOBAuth (Out-of-band authentication)
 - New type
 - endorse
 - Key owner performs OOBAuth with an authenticated Trusted Third Party (TTP)
 - On behalf of Key Owner, TTP authenticates Key Owner’s key to DTKA Key Agents

Thank you!