
TCPCLv4 draft 07
Discussion

Victoria Pritchard, Airbus
IETF 101 - 23rd March 2018

23 March 2018 TCPCLv4 discussion - IETF 101 2

Partial Transfers / Reactive Fragmentation
RFC4838

 Reactive Fragmentation

 DTN nodes sharing an edge in the DTN graph may fragment a bundle

 cooperatively when a bundle is only partially transferred. In

 this case, the receiving bundle layer modifies the incoming bundle

 to indicate it is a fragment, and forwards it normally. The

 previous- hop sender may learn (via convergence-layer protocols,

 see Section 6) that only a portion of the bundle was delivered to

 the next hop, and send the remaining portion(s) when subsequent

 contacts become available (possibly to different next-hops if

 routing changes). This is called reactive fragmentation because

 the fragmentation process occurs after an attempted transmission

 has taken place.

23 March 2018 TCPCLv4 discussion - IETF 101 3

Partial Transfers / Reactive Fragmentation
- draft-07 contents

● Negotiated in Contact Header using a Header Extension Item
– Flags (CRITICAL flag means “peer node has to interpret and negotiate the

reactive fragmentation capability”)
– Type = REACTIVE_FRAGMENT
– Length = 1 octet
– Value = a flags field (CAN_GENERATE and CAN_RECEIVE)

● CAN_GENERATE - the sending node is capable of generating
reactively fragmented bundles

● CAN_RECEIVE - the sending node is capable of receiving and
reassembling reactively fragmented bundles

23 March 2018 TCPCLv4 discussion - IETF 101 4

Partial Transfers / Reactive Fragmentation
- draft-07 contents

● If sender CAN_GENERATE reactive fragments and receiver
CAN_RECEIVE and pass on partial transfers in reactive
fragments:
– Sender CL gets ACKs for received data, informs BPA, which (if transfer

fails) can form a smaller bundle containing the unacknowledged part,
send via any CL

– Receiver CL hands bundle data to BPA even if transfer is interrupted,
BPA encapsulates as Bundle Fragment 1, and trusts that sender is
creating and sending Fragment 2 (outside scope of CL)

23 March 2018 TCPCLv4 discussion - IETF 101 5

Partial Transfers / Reactive Fragmentation
Discussion

● Other combinations
– One side omit, one side include extension → no reactive fragmentation
– Critical/not - “peer node has to interpret and negotiate the reactive fragmentation capability”
– CAN_GENERATE / not CAN_RECEIVE
– Establish session but disable ACKS and reactive fragmentation?

● Is CAN_RECEIVE related to letting BPA peek at incoming bundle?
● Peers can both initiate transfers within this session

– Is the contact header info checked for each transfer to check if the transfer in that direction can
use reactive fragmentation?

– Or does it constrain the session to one-way transfer – if the peer needs to send a bundle back,
would it need to initiate a new session with contact header set up for its own requirements?

23 March 2018 TCPCLv4 discussion - IETF 101 6

Partial Transfers / Reactive Fragmentation
Discussion

● When to transfer received data from CL to BPA?
– Since draft 1, BPA gets to inspect a bundle before it is fully received, and can signal

to the CL to refuse the bundle, to stop the sender transmitting any more of it
– 5.3.5 “A XFER_REFUSE can also be used after the bundle header
or any bundle data is inspected by an agent and determined to
be unacceptable.” + mentioned in other places

● Threshold on amount received before doing reactive fragmentation?
– e.g. sender says if 50% was received, I’ll create a fragment containing the rest.

Receiver needs to agree - 50% was received so I’ll hold on to it and wait for a
fragment with the rest. Should the threshold be configurable? in BPA config? How
do you exchange/agree on this threshold?

23 March 2018 TCPCLv4 discussion - IETF 101 7

Signals between CL and BPA
BPA CL↔

→ Attempt session

→ Shutdown session

← Session started
● TCP connection open

← Session established
● TCPCL session – i.e. contact headers exchanged, ready to use

← Session shutdown

← Session failed

23 March 2018 TCPCLv4 discussion - IETF 101 8

Signals between CL and BPA
- sending a bundle

BPA CL↔

→ Begin transmission - here’s a bundle

← Transmission availability - session open and idle
● Do we get same information from Session Established and Transmission Success/Failure?

← Transmission success - bundle fully transferred

← Transmission intermediate progress
● at the granularity of each transferred segment - number of bytes acknowledged?

← Transmission Failure
● Why not send number of bytes sent so far here?
● “The TCPCL supports positive indication of certain reasons for bundle
transmission failure” - are the reason codes to be sent to the BPA too?

23 March 2018 TCPCLv4 discussion - IETF 101 9

Signals between CL and BPA
- receiving a bundle

BPA CL↔

← Reception intermediate progress
● at the granularity of each transferred segment

● Does this mean data from each segment is passed up to BPA as it arrives, or is it a segment count
or byte count?

● Intermediate reception indication allows a BP agent the chance to inspect bundle header
contents before the entire bundle is available, and thus supports the "Reception
Interruption" capability.

→ Interrupt reception
● Send a XFER_REFUSE to stop transfer before it has completed (see Reception intermediate

progress)

← Reception success - bundle fully received

← Reception Failure

23 March 2018 TCPCLv4 discussion - IETF 101 10

23 March 2018 TCPCLv4 discussion - IETF 101 11

Session Shutdown
● When can you use SHUTDOWN message?

– To refuse session setup (but after contact header exchange)
– Not while a TCPCL message is currently being sent (but can close the TCP

connection in this case)
– Before in-progress transfers have completed, i.e. after XFER_INIT or

XFER_SEGMENT have completed transmission
– After an idle period (where only keepalives are being sent)
– Up to the implementation

● Can include a reason code
● Receiver of SHUTDOWN SHOULD send a SHUTDOWN in reply

23 March 2018 TCPCLv4 discussion - IETF 101 12

Session Shutdown
● After SENDING a SHUTDOWN

– Do not initiate any new transfers
– Not forbidden to accept any new transfers
– MAY immediately shutdown TCP connection

● If closing due to idle, not an issue
● If not idle, sender of the SHUTDOWN may still need to ACK segments

from the peer

23 March 2018 TCPCLv4 discussion - IETF 101 13

Session Shutdown
● After RECEIVING a SHUTDOWN

– SHOULD send a SHUTDOWN in reply (then see previous slide)
– Don’t accept new transfers

● Ignore? Refuse? Reject? Send a(nother) SHUTDOWN?
– Not forbidden to initiate new transfers here (unless a SHUTDOWN is

sent)
– SHOULD send all ACKs before closing the TCP connection

23 March 2018 TCPCLv4 discussion - IETF 101 14

Session Shutdown
- Unclean

● Unclean SHUTDOWN

– Draft defines this as closing TCP connection immediately after sending
SHUTDOWN

– If session is idle, is that an unclean SHUTDOWN?
– Is it more accurate that an unclean SHUTDOWN is when you close the

TCP connection before a transfer is finished (since this can be done
mid-segment or before the final ack)?

23 March 2018 TCPCLv4 discussion - IETF 101 15

Session Shutdown
- Unclean

● When performing an unclean shutdown, a receiving node SHOULD acknowledge all received
data segments before closing the TCP connection.

– Does receiving node mean the receiving side of a transfer?
– SHOULD send all ACKs before closing TCP connection, i.e. SHOULD NOT perform unclean

SHUTDOWN?
● When performing an unclean shutodwn, a transmitting node SHALL treat either sending
or receiving a SHUTDOWN message (i.e. before the final acknowledgment) as a failure
of the transfer.

– If “performing” an unclean SHUTDOWN (I.e. TCP close), why mention send/receive of a SHUTDOWN?
– Also numerous places where draft says to continue sending ACKs, finish in-progress transfers, so after

a SHUTDOWN the transfer can still complete successfully
– Make it more general? If the TCP connection is closed, before the final acknowledgment has been

sent/received, this is a failure of the transfer.

23 March 2018 TCPCLv4 discussion - IETF 101 16

Session Shutdown
● Reason codes

– If a transfer is in progress, only relevant code is Resource Exhaustion,
but the draft allows transfers to finish

● Reconnection delay

– Sending 0 means “never reconnect” - is this wise? Can it be un-done?

23 March 2018 TCPCLv4 discussion - IETF 101 17

Thank you
Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

