
@
justin _ _ richer 

https://bspk.io/ 

Introduction	to	OAuth	2.0	

Justin	Richer	
Bespoke	Engineering	

1	



@
justin _ _ richer 

https://bspk.io/ 

COURSE	VERSION	1.6	
Feedback	is	welcome!	

2	



@
justin _ _ richer 

https://bspk.io/ 

Try	the	home	edition	
•  OAuth	2	In	Action	
•  Code	is	open	source	
•  Published	March	2017	

3	



@
justin _ _ richer 

https://bspk.io/ 

WHAT	IS	OAUTH	2.0?	

4	



@
justin _ _ richer 

https://bspk.io/ 

From	the	spec	(RFC6749)	
The OAuth 2.0 authorization framework enables a 
third-party application to obtain limited access to an 
HTTP service, either on behalf of a resource owner by 
orchestrating an approval interaction between the 
resource owner and the HTTP service, or by allowing 
the third-party application to obtain access on its 
own behalf. 

5	



@
justin _ _ richer 

https://bspk.io/ 

The	good	bits	
The OAuth 2.0 authorization framework enables a 
third-party application to obtain limited access to an 
HTTP service, either on behalf of a resource owner by 
orchestrating an approval interaction between the 
resource owner and the HTTP service, or by allowing 
the third-party application to obtain access on its 
own behalf. 

6	



@
justin _ _ richer 

https://bspk.io/ 

In	other	words	
OAuth 2.0 is a delegation protocol that lets people 
allow applications to access things on their behalf. 

7	



@
justin _ _ richer 

https://bspk.io/ 

Who	is	involved?	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

8	



@
justin _ _ richer 

https://bspk.io/ 

The	resource	owner	
•  Has	access	to	some	resource	or	API	
•  Can	delegate	access	to	that	resource	or	API	
•  Usually	has	access	to	a	web	browser	
•  Usually	is	a	person	

9	



@
justin _ _ richer 

https://bspk.io/ 

The	protected	resource	
•  Web	service	(API)	with	security	controls	
•  Protects	things	for	the	resource	owner	
•  Shares	things	on	the	resource	owner’s	request	

10	



@
justin _ _ richer 

https://bspk.io/ 

The	client	application	
•  Wants	to	access	the	protected	resource	
•  Does	things	on	the	resource	owner’s	behalf	
•  Could	be	a	web	server		
– But	it’s	still	a	“client”	in	OAuth	parlance	
– Could	also	be	a	native	app	or	JS	app	

11	



@
justin _ _ richer 

https://bspk.io/ 

What	are	we	trying	to	solve?	

Resource 
Owner

The Goal:

Give the client access 
to the protected 

resource on behalf of 
the resource owner.

Protected
Resource

Client

12	



@
justin _ _ richer 

https://bspk.io/ 

THIS	ISN’T	A	NEW	PROBLEM	
People	have	been	solving	this	for	a	long	time	

13	



@
justin _ _ richer 

https://bspk.io/ 

Steal	the	keys	

Resource 
Owner

Copy the resource 
owner’s credentials 

and replay them to the 
protected resource.

Protected
Resource

Client

14	



@
justin _ _ richer 

https://bspk.io/ 

Ask	for	the	keys	

Resource 
Owner

Protected
Resource

Client

?

Ask for the resource 
owner’s credentials 

and replay them to the 
protected resource.

15	



@
justin _ _ richer 

https://bspk.io/ 

Use	a	universal	key	

Resource 
Owner

A universal key that’s 
good for opening the door 
no matter who locked it.

Protected
Resource

Client

16	



@
justin _ _ richer 

https://bspk.io/ 

Service-specific	credentials	

Resource 
Owner

A special password 
(or token) that can be 
used to access just this 

protected resource.

Protected
Resource

Client

17	



@
justin _ _ richer 

https://bspk.io/ 

WE’RE	GETTING	CLOSER…	

18	



@
justin _ _ richer 

https://bspk.io/ 

Introducing	the	Authorization	Server	
(AS)	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

The Authorization 
Server gives us a 

mechanism to bridge 
the gap between 
the client and the 
protected resource

19	



@
justin _ _ richer 

https://bspk.io/ 

The	Authorization	Server	
•  Generates	tokens	for	the	client	
•  Authenticates	resource	owners	(users)	
•  Authenticates	clients	
•  Manages	authorizations	

20	



@
justin _ _ richer 

https://bspk.io/ 

OAuth	Tokens	
•  Represent	granted	delegated	authorities	
–  From	the	resource	owner	to	the	client	for	the	
protected	resource	

•  Issued	by	authorization	server	
•  Used	by	client	
–  Format	is	opaque	to	clients	

•  Consumed	by	protected	resource	

21	



@
justin _ _ richer 

https://bspk.io/ 

Example	OAuth	Tokens	
•  92d42038006dba95d0c501951ac5b5eb	
•  2df029c6-b38d-4083-b8d9-db67c774d13f	
•  eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiO
iIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiw
iYWRtaW4iOnRydWV9.TJVA95OrM7E2cBab30RM
HrHDcEfxjoYZgeFONFh7HgQ	

•  waterbuffalo-elephant-helicopter-argument	

22	



@
justin _ _ richer 

https://bspk.io/ 

You’ve	used	OAuth	

23	



@
justin _ _ richer 

https://bspk.io/ 

A	BRIEF	HISTORY	OF	OAUTH	2.0	

24	



@
justin _ _ richer 

https://bspk.io/ 

Circa	2006	
•  HTTP	password	authentication	common	for	
API	access	
– “Give	me	your	password”	

•  Internet	companies	have	proprietary	solutions	
for	delegated	access	
– BBAuth,	AuthSub,	a	few	others	

25	



@
justin _ _ richer 

https://bspk.io/ 

The	problem	
•  Two	smaller	sites	want	to	connect	their	APIs	
for	their	users	

•  Both	use	OpenID	for	login	
– No	username/password	to	pass!	

•  Neither	wants	to	use	a	proprietary	solution	

26	



@
justin _ _ richer 

https://bspk.io/ 

A	new	standard	is	born	
•  OAuth	1.0	is	published	independently	
– No	formal	standards	body,	people	just	use	it	

•  A	session	fixation	attack	is	found	and	fixed	
– New	version	is	called	OAuth	1.0a	

•  This	community	document	is	standardized	as	
RFC5849	in	the	IETF	

27	



@
justin _ _ richer 

https://bspk.io/ 

People	start	using	it	
•  OAuth	1.0a	solves	major	pain	points	for	many	
people	in	a	standard	and	understandable	way	

•  Google,	Yahoo,	and	others	replace	their	
solutions	with	the	new	standard	

28	



@
justin _ _ richer 

https://bspk.io/ 

People	start	abusing	it	
•  People	also	decide	to	start	using	OAuth	for	
off-label	use	cases	
– Native	applications	
– No	user	in	the	loop	
– Distributed	authorization	systems	

29	



@
justin _ _ richer 

https://bspk.io/ 

Version	2.0:	The	framework	
•  Modularized	concepts	
•  Separated	previously	conflated	components	
•  Added	explicit	extensibility	points	
•  Removed	pain	points	of	implementers	
•  Standardized	in	RFC6749	and	RFC6750	

30	



@
justin _ _ richer 

https://bspk.io/ 

What	does	this	mean?	
•  Instead	of	a	single	protocol,	OAuth	2.0	defines	
common	concepts	and	components	and	
different	ways	to	mix	them	together	

•  It’s	not	a	single	standard,	it’s	a	set	of	
standards	for	different	use	cases	

31	



@
justin _ _ richer 

https://bspk.io/ 

WHAT	OAUTH	ISN’T	

32	



@
justin _ _ richer 

https://bspk.io/ 

Not	defined	outside	of	HTTP	
•  Core	protocol	defined	only	for	HTTP	
•  Relies	on	TLS	for	securing	messages	
•  There	are	efforts	to	use	OAuth	over	non-HTTP	
protocols	
– GSSAPI	
– CoAP	

33	



@
justin _ _ richer 

https://bspk.io/ 

Not	an	authentication	protocol	
•  Relies	on	authentication	in	several	places	
– Client	authentication	to	token	endpoint	
– Resource	owner	authentication	at	authorization	
endpoint	

•  Doesn’t	communicate	anything	about	the	user	
•  However:	authentication	protocols	can	be	
built	using	OAuth	(OpenID	Connect)	

34	



@
justin _ _ richer 

https://bspk.io/ 

No	user-to-user	delegation	
•  Allows	a	user	to	delegate	to	a	piece	of	
software	but	not	to	another	user	

•  However,	multi-party	delegation	can	be	built	
using	OAuth	as	a	core	component	(UMA)	

35	



@
justin _ _ richer 

https://bspk.io/ 

No	authorization	processing	
•  Tokens	can	represent	scopes	and	other	
authorization	information	

•  Processing	of	this	information	is	up	to	the	
resource	server	

•  However,	several	methods	(UMA,	JWT,	
introspection)	to	communicate	this	
information	

36	



@
justin _ _ richer 

https://bspk.io/ 

No	token	format	
•  Token	is	opaque	to	the	client	
•  Token	needs	to	be	issued	by	the	authorization	
server	and	understood	by	the	resource	server,	
but	they’re	free	to	use	whatever	format	they	
want	

•  However,	JSON	Web	Tokens	(JWT)	provide	a	
useful	common	format	

37	



@
justin _ _ richer 

https://bspk.io/ 

No	cryptographic	methods	
•  Core	OAuth	relies	on	TLS	for	protecting	
information	in	transit	

•  However,	other	mechanisms	like	JSON	Object	
Signing	and	Encryption	(JOSE)	define	things	
that	can	be	used	with	OAuth	

38	



@
justin _ _ richer 

https://bspk.io/ 

Not	a	single	protocol	
•  OAuth	2.0	is	a	framework	
– Several	core	flows	plus	extensions	

•  Two	things	can	“implement	OAuth”	but	be	
incompatible	with	each	other	

•  However,	code	re-use	and	patterns	between	
common	components	makes	life	simpler	

39	



@
justin _ _ richer 

https://bspk.io/ 

THE	AUTHORIZATION	CODE	FLOW	
A	deep	dive	into	the	canonical	OAuth	2.0	transaction	

40	



@
justin _ _ richer 

https://bspk.io/ 

The	pieces	of	OAuth	

Resource 
Owner

Access 
Token

Authorization 
Server

Protected
Resource

Client

41	



@
justin _ _ richer 

https://bspk.io/ 

The	authorization	code	flow	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Resource owner’s 
credentials

Client’s 
credentials

Authorization 
code

Access token

42	



@
justin _ _ richer 

https://bspk.io/ 

TWO	FORMS	OF	COMMUNICATION	

43	



@
justin _ _ richer 

https://bspk.io/ 

The	back	channel	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Back channel uses 
direct HTTP connections 
between components, 

the browser is 
not involved

44	



@
justin _ _ richer 

https://bspk.io/ 

The	front	channel	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Front channel uses 
HTTP redirects through 
the web browser, no 
direct connections

45	



@
justin _ _ richer 

https://bspk.io/ 

A	front	channel	request/response	

Fr
on

t C
ha

nn
el

 
Re

sp
on

se
Fr

on
t C

ha
nn

el
 

Re
qu

es
t

Resource 
Owner

Authorization 
Server

Client

HTTP Redirect

HTTP Redirect

HTTP Request

HTTP Request

HTTP Response

HTTP Response

46	



@
justin _ _ richer 

https://bspk.io/ 

Why	both?	
•  Separation	of	information	
•  Front	channel	when	the	user’s	involved	
•  Back	channel	when	they’re	not	

47	



@
justin _ _ richer 

https://bspk.io/ 

THE	AUTHORIZATION	CODE	FLOW	
Step	by	step	

48	



@
justin _ _ richer 

https://bspk.io/ 

Authorization	Code:	Step	1	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Client redirects the 
resource owner to the 
authorization server’s 
authorization endpoint

49	



@
justin _ _ richer 

https://bspk.io/ 

Authorization	Code:	Step	2	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Resource owner 
authenticates to the 
authorization server

50	



@
justin _ _ richer 

https://bspk.io/ 

Authorization	Code:	Step	3	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Resource owner 
authorizes the client

?

51	



@
justin _ _ richer 

https://bspk.io/ 

Authorization	Code:	Step	4	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Authorization server 
redirects resource owner 
back to the client with an 

authorization code

52	



@
justin _ _ richer 

https://bspk.io/ 

Authorization	Code:	Step	5	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Client sends the 
authorization code 
to the authorization 

server’s token endpoint

Client authenticates 
using its own credentials

53	



@
justin _ _ richer 

https://bspk.io/ 

Authorization	Code:	Step	6	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Authorization server 
issues an OAuth access 

token to the client

54	



@
justin _ _ richer 

https://bspk.io/ 

Authorization	Code:	Step	7	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Client accesses the 
protected resource using 

the access token

55	



@
justin _ _ richer 

https://bspk.io/ 

REFRESH	TOKENS	

56	



@
justin _ _ richer 

https://bspk.io/ 

When	the	user	isn’t	there	
•  Access	tokens	work	after	the	user	leaves	
– One	of	the	original	design	goals	of	OAuth	

•  What	does	a	client	do	when	the	access	token	
stops	working?	
– Expiration	
– Revocation	

57	



@
justin _ _ richer 

https://bspk.io/ 

Getting	a	new	token	
•  Repeat	the	process	of	getting	a	token	
–  Interactive	grants:	send	the	resource	owner	to	the	
authorization	endpoint	

•  But	what	if	the	user’s	not	there	anymore?	

58	



@
justin _ _ richer 

https://bspk.io/ 

Refresh	tokens	
•  Issued	alongside	the	access	token	
•  Used	for	getting	new	access	tokens	
– Presented	along	with	client	credentials	
– Not	good	for	calling	protected	resources	directly	

59	



@
justin _ _ richer 

https://bspk.io/ 

SCOPES	

60	



@
justin _ _ richer 

https://bspk.io/ 

API	Design	
•  Naïve	APIs	(like	what	we	built)	allow	simple	
yes/no	access	
–  If	your	token	is	good,	your	request	is	good	

•  Smarter	APIs	divide	access	

61	



@
justin _ _ richer 

https://bspk.io/ 

Limited	access	
•  Type	of	action	
– Read,	write,	delete	

•  Type	of	resource	
– Photos,	metadata,	profile	

•  Time	of	access	
– User	is	offline,	limited	number	of	accesses	

62	



@
justin _ _ richer 

https://bspk.io/ 

OAuth	Scopes	
•  Strings	that	represent	what	the	token	can	do	
•  Client	can	ask	for	scopes	
•  Resource	owner	approves	scopes	
•  Access	token	is	bound	to	scopes	

63	



@
justin _ _ richer 

https://bspk.io/ 

OTHER	WAYS	TO	DO	OAUTH	2.0	

64	



@
justin _ _ richer 

https://bspk.io/ 

Protocol	flexibility	
•  Canonical	use	case:	web	server	based	
application	accessed	through	a	browser	

•  Authorization	code	flow	is	built	around	this	
use	case	

•  What	about	different	kinds	of	clients?	
•  What	about	different	kinds	of	delegation?	

65	



@
justin _ _ richer 

https://bspk.io/ 

IMPLICIT	FLOW	

66	



@
justin _ _ richer 

https://bspk.io/ 

Stuff	the	client	into	the	browser	
•  Authorization	code	flow	keeps	the	token	out	
of	the	browser	and	in	the	client	

•  But	what	if	the	client	is	inside	the	browser?	

67	



@
justin _ _ richer 

https://bspk.io/ 

The	implicit	flow	

Resource 
Owner Authorization 

Server

Protected
Resource

Client Inside 
the Browser

Implicit grant type 
uses only the front 

channel since the client 
is inside the browser

68	



@
justin _ _ richer 

https://bspk.io/ 

CLIENT	CREDENTIALS	FLOW	

69	



@
justin _ _ richer 

https://bspk.io/ 

Client	acts	on	its	own	behalf	
•  No	explicit	resource	owner	
•  Replacement	for	API	keys	

70	



@
justin _ _ richer 

https://bspk.io/ 

The	client	credentials	flow	

Authorization 
Server

Protected
Resource

Client

Client credentials 
grant type: Client trades 
its own credentials for a 

token, uses only the back 
channel since the client is 
acting on its own behalf

71	



@
justin _ _ richer 

https://bspk.io/ 

RESOURCE	OWNER	PASSWORD	FLOW	

72	



@
justin _ _ richer 

https://bspk.io/ 

Stealing	the	password	
•  Codify	the	anti-pattern:	ask	the	user	for	their	
credentials	and	replay	them	

•  Instead	of	saving	the	credentials,	trade	for	an	
access	token	

73	



@
justin _ _ richer 

https://bspk.io/ 

The	resource	owner	password	flow	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

?

Resource owner 
credentials grant type: 

Client trades username 
and password for an OAuth 
token over the back channel

74	



@
justin _ _ richer 

https://bspk.io/ 

HOLD	ON!	
Didn’t	we	say	it	was	bad	to	steal	the	credentials?	

75	



@
justin _ _ richer 

https://bspk.io/ 

ASSERTION	FLOWS	

76	



@
justin _ _ richer 

https://bspk.io/ 

Third-party	authorization	
•  Have	a	trusted	third	party	hand	authorization	
to	the	client	

•  Client	trades	that	for	a	token	

77	



@
justin _ _ richer 

https://bspk.io/ 

The	assertions	flows	

Authorization 
Server

Assertion provider

Protected
Resource

Client

Client trades a 
cryptographically 
protected element 

(assertion) for a token

78	



@
justin _ _ richer 

https://bspk.io/ 

DEVICE	FLOW	

79	



@
justin _ _ richer 

https://bspk.io/ 

Limited	interactivity	
•  Not	every	client	has	a	web	browser	
– Set-top	boxes	
– Smart	devices	

•  How	do	we	get	user	interaction?	
– Split	the	pieces	
– Use	the	user	to	carry	the	information	

80	



@
justin _ _ richer 

https://bspk.io/ 

The	device	flow	
Device grant type 

gives the resource owner 
a user code to enter at 
the authorization server

Resource 
Owner Authorization 

Server

Protected
Resource

Device

Device Code

User Code

Device code 
is presented 
in the back 

channel

81	



@
justin _ _ richer 

https://bspk.io/ 

NATIVE	CLIENTS	

82	



@
justin _ _ richer 

https://bspk.io/ 

What’s	a	native	client?	
•  Runs	on	the	end	user’s	system	
– Not	hosted	on	a	remote	web	server	
– Not	executed	inside	of	a	web	browser	

•  Can	be	desktop	or	mobile	
– Local	self-contained	web	server	apps	qualify	

83	



@
justin _ _ richer 

https://bspk.io/ 

What	makes	a	native	client	different?	

•  Functionality	lives	outside	the	browser	
•  Can’t	keep	secrets	from	the	user	
– Especially	configure-time	secrets	

•  Requires	adaptations	to	redirect	URI	to	use	
the	front	channel	

84	



@
justin _ _ richer 

https://bspk.io/ 

Dealing	with	secrets	
•  Application	is	copied	and	run	many	times	
– Shouldn’t	give	each	copy	the	same	secret	

•  Dynamic	client	registration	
– Give	each	instance	its	own	ID	and	secret	

•  Public	clients	
– Share	an	ID	and	don’t	use	secrets	

85	



@
justin _ _ richer 

https://bspk.io/ 

Redirect	URIs	
•  Custom	URI	scheme	
– myapp:/oauth_callback?code=ABC123	

•  Locally	hosted	web	server	
–  http://localhost:39103/myapp?code=ABC123	

•  Remote	host	with	push	notification	
–  https://push.example.com/app-942/code=ABC123	

86	



@
justin _ _ richer 

https://bspk.io/ 

Redirect	URIs	with	custom	schemes	

•  Apps	need	to	register	for	namespace	
•  Any	app	can	take	any	namespace	
•  Malicious	apps	can	try	to	grab	items	coming	in	
on	redirect	URIs	
– Authorization	codes	(for	code	flow)	
– Tokens	(for	implicit	flow)	

87	



@
justin _ _ richer 

https://bspk.io/ 

PKCE:	Sending	the	challenge	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Client generates the 
code verifi er and 

challenge, includes the 
challenge in the front-
channel request to the 
authorization server

88	



@
justin _ _ richer 

https://bspk.io/ 

PKCE:	Sending	the	verifier	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Client sends the 
verifi er in the back-

channel request to the 
authorization server

89	



@
justin _ _ richer 

https://bspk.io/ 

PKCE:	Verifying	the	challenge	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Authorization server 
re-generates the 

challenge from the 
verifi er and compares 

it to the challenge 
previously sent

90	



@
justin _ _ richer 

https://bspk.io/ 

MANAGING	THE	GRANT	TYPES	

91	



@
justin _ _ richer 

https://bspk.io/ 

Different	use	cases	
•  Authorization	code	flow:	web	applications,	
some	native	applications	

•  Implicit	flow:	in-browser	applications	
•  Client	credentials	flow:	non-interactive	
•  Password	flow:	trusted	legacy	clients	
•  Assertion	flows:	trust	frameworks	

92	



@
justin _ _ richer 

https://bspk.io/ 

HOW	TO	CHOOSE	A	GRANT	TYPE	

93	



@
justin _ _ richer 

https://bspk.io/ 

94	

Can the client display a 
simple code, image, or 

URL to the user?

Is the client acting 
on behalf of a 

resource owner?

Is the client running 
completely inside of a 

web browser?

Is the client a native 
application?

Yes

YesYes Yes

Yes

Yes

Yes Yes

No

No

NoNo

Can the resource owner 
interact with a web browser 

while using the client?

Does the user have a 
simple set of credentials 

like a password?

Is the client acting 
on its own behalf?

Authorization 
Code

Add PKCE 
or DynReg

Assertion

Resource Owner 
Credentials

Client 
Credentials

Implicit

Is the client acting 
on the authority of a 
trusted third party?

Choose the appropriate 
OAuth grant type for 

the type of application 
you’re building

Device



@
justin _ _ richer 

https://bspk.io/ 

OpenID	Connect	

End User

Session at the 
Relying Party

Identity Provider

Identity Profi le APIReyling Party
(Application)

End User’s Credentials, 
Authorization of the Relying Party

ID Token and 
Access Token

Access Token and User Information

95	



@
justin _ _ richer 

https://bspk.io/ 

Dynamic	Client	Registration	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

Request: Display name, 
redirect URIs, etc.

Response: Client identifi er, 
client secret, etc.

96	



@
justin _ _ richer 

https://bspk.io/ 

Software	statements	
•  Third	party	generates	an	assertion	that	contains	
fixed	attributes	of	the	client	
–  Client	can’t	change	or	override	what’s	in	the	
statement	

•  Client	presents	the	statement	alongside	any	
variable	attributes	

•  Server	generates	unique	ID	and	secret	for	client	

97	



@
justin _ _ richer 

https://bspk.io/ 

Why	use	a	software	statement?	
•  Many	instances	of	a	client	software	
– Each	instance	needs	its	own	ID/secret	
– All	instances	should	be	“recognizable”	

•  Allow	pre-registration	across	domains	
– Software	statement	from	trusted	server	
–  Individual	AS	registrations	for	clients	

98	



@
justin _ _ richer 

https://bspk.io/ 

TOKEN	INTROSPECTION	

99	



@
justin _ _ richer 

https://bspk.io/ 

OAuth	tokens	are	opaque	
•  But	they’re	only	opaque	to	the	client	
•  Protected	resource	needs	to	know	the	token	
– What’s	it	good	for?	
– Who	issued	it?		
–  Is	it	valid?	

100	



@
justin _ _ richer 

https://bspk.io/ 

How	does	the	resource	know?	
•  Database	lookup	
– AS	and	RS	are	in	the	same	box	

•  Pack	information	into	the	token	itself	
– Remember	JWT?	

•  Query	the	AS	
– Runtime	lookup	over	the	network	

101	



@
justin _ _ richer 

https://bspk.io/ 

“What’s	this	token	good	for?”	
•  Protected	resource	queries	the	AS	about	a	
token	it	received	

•  AS	responds	with	a	JSON	structure	describing	
the	token’s	status	

102	



@
justin _ _ richer 

https://bspk.io/ 

Introspection	trade-offs	
•  Requires	extra	credentials	(at	the	RS)	
•  More	network	traffic	
•  Subject	to	cache	consistency	problems	
–  Introspect	every	time?	Only	on	timeout?	

103	



@
justin _ _ richer 

https://bspk.io/ 

TOKEN	REVOCATION	

104	



@
justin _ _ richer 

https://bspk.io/ 

Completing	the	token	lifecycle	
•  OAuth	defines	how	to	get	a	new	token	and	
refresh	a	dead	token	

•  Revocation	allows	clients	to	proactively	throw	
away	tokens	they	no	longer	use	

105	



@
justin _ _ richer 

https://bspk.io/ 

Why	revoke	tokens?	
•  Native	application	being	uninstalled	
•  User	selects	“log	out”	or	“de-authorize”	from	
the	client	(not	the	AS)	

106	



@
justin _ _ richer 

https://bspk.io/ 

A	simple	protocol	
•  Client	POSTs	to	the	revocation	endpoint	
–  Token	included	in	body	

•  Server	deletes	the	token	if	it	finds	it	
•  Server	tells	the	client	everything	is	OK	
–  Even	if	no	token	was	deleted,	we	pretend	we	did	
– Otherwise	clients	could	use	this	to	fish	for	token	
values	

•  Client	throws	out	its	copy	of	the	token	
107	



@
justin _ _ richer 

https://bspk.io/ 

POP,	MTLS,	AND	TOKEN	BINDING	

108	



@
justin _ _ richer 

https://bspk.io/ 

Beyond	bearer	tokens	
•  Bearer	tokens	are	sent	as-is	over	the	wire	
•  Anyone	who	has	access	to	the	token	can	use	it	
•  Proof	of	Possession	(PoP)	tokens	require	
cryptographic	proof	of	a	key	
– Token	is	transmitted	as-is	
– Key	is	used	to	sign	something,	not	transmitted	
itself	

109	



@
justin _ _ richer 

https://bspk.io/ 

Two	parts	

Token:
Opaque to client

Associated with scopes and RO
Sent as-is to PR

Key:
Known to client

Associated with token
Used to sign request

110	



@
justin _ _ richer 

https://bspk.io/ 

Mutual	TLS	
•  Client	presents	certificate	to	token	endpoint	
•  AS	hashes	certificate	and	ties	it	to	token	
•  Client	presents	same	certificate	to	RS	
•  RS	hashes	certificate	and	sees	if	it’s	the	same	
as	the	one	bound	to	the	token	

•  Client	does	not	have	to	authenticate	with	TLS	

111	



@
justin _ _ richer 

https://bspk.io/ 

Token	binding	

Resource 
Owner Authorization 

Server

Use TLS Channel ABC

Here’s a cookie, 
only use it on TLS 

Channel ABC

Here’s that cookie 
again, this is TLS 

Channel ABC

112	



@
justin _ _ richer 

https://bspk.io/ 

A	problem	with	token	binding	

Resource 
Owner Authorization 

Server

Protected
Resource

Client

1

2 3

4

5

113	



@
justin _ _ richer 

https://bspk.io/ 

WRAPPING	UP	

114	



@
justin _ _ richer 

https://bspk.io/ 

THANK	YOU	
http://oauthinaction.com/	

115	


