

Community Cellular Network: Towards 5G

Mohamed Kassem m.m.m.kassem@sms.ed.ac.uk

Internet User Penetration as of 2017

Rural Population Worldwide

- > 40% world population live in rural areas
- The percentage is much higher in South Asia and Sub-Sahara Africa

Infrastructure for Rural Connectivity

Non-Affordability

Key challenges for connecting the unconnected (52% of world population)

Universal Internet access is not just a developing country issue

5G Objectives

- Extending the Internet connectivity is one of 5G objectives
- Towards that Universal Internet access, several solutions have been proposed in literature, including:
 - Leveraging the superior characteristics of low frequencies (e.g. 700 MHz)
 - Mobile base station such as unmanned aerial vehicles base station and Google balloon
 - Open source software-defined wireless access platform including OpenCellular (Facebook), openairinterface (Eurecom)

New Deployment model for the cellular network in Rural areas (1/2)

- Design Principles:
 - Simplicity
 - Plug and Play deployment
 - Community driven
 - Scalability
 - Applicability to serve new emerged services
 - High Broadband speeds
 - Cost efficient
 - Adaptability

New Deployment model for the cellular network in Rural areas (2/2)

- Three main components
 - Access Network platform
 - Either commercial plug and play LTE small cells
 - Or, software-defined access such as openairinterface.
 - TVWS backhauling link
 - We are using the 8 MHz channel commercial TVWS devices
 - Core in the cloud
 - Implements different core functions as a service
 - Flexibility

New Deployment model for the cellular network in Rural areas

• Design Principles:

- Simplicity
 - Plug and Play deployment
 - Community driven
- Scalability
- Applicability to serve new emerged services
 - High Broadband speeds
- Cost efficient
- Adaptability

High Level Network Architecture

- High Broadband Speed as a use case
 - High capacity backhauling (Middle mile) infrastructure
- Building a low-cost middle mile infrastructure is crucial in order to achieve that objective in rural cellular network.

TV White Space and Middle Mile Infrastructure

- To assess if the TVWS can be used to build a low-cost Middle mile infrastructure, we asked the following research questions:
 - How many *usable* channel are available?
 - How the spectrum is distributed? Contiguous or fragmented?

TVWS Usability? (1/2)

- TVWS availability is the commonly used term in literature referring to the quantity of available/free channels.
 - Unrealistic/overoptimistic
- TVWS usability is more reliable and receiver-oriented.
- The key difference is:
 - TVWS usability identify the *quality* (I.e., in terms of SINR) of TV channel at a receiver side.
 - Different than TVWS availability which identify the quantity at the transmitter side.

TVWS Usability? (2/2)

 The difference between TVWS usability and availability is significant.

• The median is 25 channels = 200 MHz

Spectrum Fragmentation

- TVWS spectrum is fragmented.
- To achieve high capacity middle mile infrastructure, 6/8 MHz channel would not be sufficient
- Efficient aggregation techniques for adjacent and non-adjacent channels are crucial

Rural Area Deployment: Balquhidder

Thank you