
Ingemar Johansson, Ericsson Research

BBR
with

L4S support
A few experiments and findings

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 2

› BBR = Bottleneck Bandwidth and RTT (BBR) congestion control

– Developed by Google

– Estimated bottleneck bandwidth and min RTT, based on heuristics derived from normal TCP

ACKs.

› Scope of this work :

– Modify BBR with L4S support, (BBR evo)

– No claims that this is the final, there is room for improvement

– …But the changes so far are very minimalistic

› Note… these are simulations!

Intro

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 3

1. L4S support added (ECN echo code from tcp_dctcp.c)

2. Function bbr_update_bw(…)

Bandwidth estimates takes amount of CE marked packets into account

– bw = (rs->delivered) / rs->interval;

changed to

bw = (rs->delivered-rs->delivered_ce/K) / rs->interval;

where delivered_ce are the amount of delivered and CE marked packets in the given

interval.

K = 4 seems to be OK

– Additional state variable(s) delivered_ce need where ‘delivered’ is specified

BBR evo modifications

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 4

3. Gain cycle changed to 3 RTTs (from 8 RTTs)

– Reduced gain variation [9/8,7/8,1.0] instead of [5/4,3/4,1.0]  less jitter but (sometimes)

slightly slower rate increase

4. Min RTT probing is removed

– L4S gives very short (or zero) queue delay, but min RTT probing may still be needed in

reality

5. BW window reduced to 2 RTTs (was 8 RTTs)

– Warning.. Too short window can reduce performance for app limited traffic

6. BBR mode forced to BBR_PROBE_BW if more than 1 RTT with CE marked

packets and in BBR_STARTUP

BBR evo modifications

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 5

› Update in function

bbr_update_bw(…)

› Additional code in tcp_input.c

– Added delivered_ce counters

– Simulilar to delivered counter

used with rate sample but only

counting CE marked packets

TCP_BBR.c
TCP_input.c
TCP_rate.c
TCP.h

/* Estimate the bandwidth based on how fast packets are delivered */

static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)

{

…

bbr->round_start = 0;

if (rs->delivered < 0 || rs->interval_us <= 0)

return; /* Not a valid observation */

/* See if we've reached the next RTT */

if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {

…

}

bbr_lt_bw_sampling(sk, rs);

/* Divide delivered by the interval to find a (lower bound) bottleneck

* bandwidth sample. Delivered is in packets and interval_us in uS and

* ratio will be <<1 for most connections. So delivered is first scaled.

*/

bw = (u64)rs->delivered * BW_UNIT;

bw -= (u64)(rs->delivered_ce >> 2) * BW_UNIT;

do_div(bw, rs->interval_us);

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 6

0

20

40

60

80

100

Throughput [Mbps]

0 10 20 30 40 50 60 70
0

0.02

0.04

Queue delay [s]

T [s]

BBR

BBR evo

› RTT = 20ms

› L4S mark threshold = 2ms

› BBR evo manages to keep

standing queue < 5ms

› BBR has more problems

› BBR evo is slightly slower in the

rate increase

BBR vs BBR evo comparison
RTT probing

Queue delay = Network queue delay

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 7

0

20

40

60

80

100

Throughput [Mbps]

0 10 20 30 40 50 60 70
0

0.02

0.04

Queue delay [s]

T [s]

BBR

BBR evo

› RTT = 20ms

› Phantom queue

– L4S mark threshold 95% of BW

– Measurement period 5ms

› BBR evo manages to keep

standing queue < 1ms

› ~10% peak bandwidth sacrificed

BBR vs BBR evo comparison
Phantom queue

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 8

0

50

100

150

200
Throughput [Mbps]

0 20 40 60 80 100
0

100

200
Queue delay [s]

T [s]

› Large file transfers

› BBR does not keep standing

queue small

– Mainly an RTTmin estimation issue.

› Flow rates converge.. eventually

BBR multiple flows

RTT=20ms

BW = 200Mbps

5 flows poisson arrival,

intensity = 0.2/s

[ms]

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 9

0

50

100

150

200
Throughput [Mbps]

0 20 40 60 80 100
0

10

20
Queue delay [s]

T [s]

› L4S mark threshold = 2ms

› Quite low queue delay

– But higher than 2ms threshold

› Reasonably good convergence

when new flows arrive

› Newly arrived flows ramp up more

slowly

BBR evo multiple flows

[ms]

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 10

0

50

100

150

200
Throughput [Mbps]

0 20 40 60 80 100
0

2

4

Queue delay [s]

T [s]

› Phantom queue

– L4S mark threshold 95% of BW

– Measurement period 5ms

› Very low queue delay

– But not zero

BBR evo multiple flows
phantom queue (95%)

[ms]

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 11

0

50

100

150

200
Throughput [Mbps]

0 20 40 60 80 100
0

1

2
Queue delay [s]

T [s]

› Phantom queue

– L4S mark threshold 90% of BW

– Measurement period 5ms

› Very low queue delay, but not

zero

BBR evo multiple flows
phantom queue (90%)

[ms]

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 12

0

50

100

Throughput [Mbps]

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60
Queue delay [ms]

T [s]

BBR

BBR-EVO 2ms

BBR-EVO ph-Q 90%

› RTT = 10ms

› Channel bandwidth reduced from

100 to 10 Mbps in 400ms

› BBR evo reacts better but there is

room for improvement

› General problem that throughput

is overestimated

Bitrate ramp

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 13

0

0.005

0.01

0.015

0.02
Queue delay [s]

1 1.1 1.2 1.3 1.4 1.5
0

50

100

T [s]

Throughput [Mbps]

pace rate

BW max

› Max BW is slightly overestimated

› More conservative bandwidth

probing may help

– But that can harm flow fairness

Bitrate ramp, Zoom in

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 14

› BW = 100Mbps

› 100s simulation

› TCP flow # 1: RTT = 10ms

› TCP flow # 2: RTT = 10,12,20,30,50ms

› BBR evo: L4S mark threshold = 2ms

RTT fairness

RTT flow #2 BBR BBR evo

10ms 46/50 50/46

12ms 30/65 41/53

20ms 12/82 33/62

30ms 10/90 66/30

50ms 7/87 71/22

Throughput ratio

Flow #1 [Mbps]/ Flow #2 [Mbps]

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 15

› BW = 100Mbps

› 100s simulation

› TCP flow # 1: RTT = 2ms

› TCP flow # 2: RTT = 2,5,10,15,20ms

› BBR evo: L4S mark threshold = 2ms

RTT fairness
Cont..

RTT flow #2 BBR BBR evo

2ms 41/55 46/51

5ms 21/75 39/57

10ms 12/84 92/3

15ms 6/88 59/37

20ms 7/88 55/40

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 16

Conclusion

65.567221N,22.155360E © Maine Jäderberg

› BBR is quite easy to modify for L4S

support

– But there are probably better ways to do this

› The evolved BBR with L4S support

– Converges quite well when multiple flows

compete for the same bottleneck

– Keeps standing queue small (or very small

with phantom queues)

– A certain degree of jitter, a result of the

necessity to be a bit aggressive in order to

achieve convergence for multiple flows

Comments are welcome

ingemar.s.Johansson@ericsson.com

mailto:ingemar.s.Johansson@ericsson.com

BBR evolution | Public | © Ericsson AB 2018 | 2018-03-21 | Page 17

› BBR = Bottleneck-Bandwidth-RTT

› L4S = Low Loss Low Latency Scalable throughput

› Phantom queue = Link bitrate is measured at e.g. 5ms intervals. Packets are

marked when the link bitrate exceeds a given fraction (e.g 95%) of the

maximum rate.

Buzz words

