Breaking out of the cloud: Local trust management and rendezvous in Named Data Networking of Things

Wentao Shang, Zhehao Wang, Alexander Afanasyev, Jeff Burke, Lixia Zhang
UCLA

2017 ACM/IEEE Int. Conf. on Internet-of-Things Design and Implementation
“As we were finalizing this paper, a benign operational error brought down Amazon cloud service and impacted *a large number* of IoT services as well as other applications. This incident reminds us that cloud services are not immune to failures, further underscoring the value of this work”
One of the inputs to the command was entered incorrectly and a larger set of servers was remove than intended.

These servers supported two other S3 subsystems. One of them, the index subsystem, manages the metadata and location information of all S3 objects in the region....
Cloud-centric (Silo) Approach to IoT

Some of them started delegating certain basic functions locally, after configuration phase
So, the existing cloud-centric IoT systems

- Use remote services to achieve local functions
 - Add/remote devices and users
 - Discover, authenticate & authorize access to local data and services
- Can hurt real-time interactive experience when local interactions have to go through cloud
- Subject local IoT operations to remote failures
 - Public Internet connectivity to the cloud may be lost
 - Cloud services are not immune to failures, either
- Expose private data to cloud providers
Named Data Networking of Things (IoTDI’16)

- Name-based network forwarding
- Interest-Data exchange model matches REST API
- Data-centric security
Rethink the IoT Service Architecture

Example: AWS IoT platform
Amazon Resource Name (ARN) of my living room lamp:
arn:aws:iot:us-west-1:wentao:things/LivingRoomLamp
Enabling Cloud-independent IoT by NDN

- **Named entities**: name “things” *within local context*
- **Trust management**: define the relation between data names and signing key names, *within local context*
- **Rendezvous**: publish & synchronize application names under a local discovery namespace, *within local network/context*

1. Other services/applications can be bootstrapped from the above
2. Cloud services, whenever available, can provide functions beyond the capability of local IoT systems
 - e.g., voice recognition, data analytics, long term storage, etc
Experimentation: Flow – a cloud-independent home entertainment system over NDN

A multi-user “exploration game” prototype, utilizing:

- *Indoor positioning*: player’s physical position modifies virtual game world
- *Wearable sensing*: player wears gyroscope to control orientation of virtual camera
- *Mobile phone interface*: used by player to control actions in virtual game world
- *Game engine*: visualization rendered in Unity.
Indoor Positioning: OpenPTTrack
Application prefix: /AliceHome/flow1/tracking1
Device name: /AliceHome/devices/ubuntu/123

1A. Unity asks for a “track_hint”
1B. names when asking for a track location

2A. Mobile phone sends command interest and initiates “track matching” of phone’s ID to Track ID provided by OPT
2B. command interest to control the dropping of images in Unity

Mobile Phone Interface: Android web browser
Device name: /AliceHome/devices/phone/345

Visualization: Unity3D
Application prefix: /AliceHome/flow1/visualization1/
Device name: /AliceHome/devices/osx/234

Wearable sensing: RFduino/Gyro (ble peripheral)
Packetized NDN data with HMAC signature

Bridging RFduino: RaspPi2 (ble central)
Application prefix: /AliceHome/flow1/gyros/gyro1
Device prefix: /AliceHome/devices/rpi2/456

3A. Unity asks for gyroscope data, produced by RaspberryPi helper on behalf of RFduinos connected via Bluetooth LE
Naming and Identity

/com/RF-digital/ Manufacturer prefix

/AliceHome Home prefix

RFduino
SN12345
updates
software
firmware
version#
version#

Manufacturer namespace

devices
authentication
server
schemas
ID-CERT
_meta
flow1
version#

Device namespace

rduino/123

App instance name

flow1

Application namespace

gyro1
_tracking1
visualization1

_meta
data
_run_id

 temporada

seq#

version#

version#

version#

version#

version#
Trust Management

Trust relationship example

- /AliceHome/devices/as1/
 - signs
 - /AliceHome/devices/raspberry_pi/234
 - signs
 - /AliceHome/flow1/gyro1/data/#seq

AS identity (trust anchor)

Device identity in “/AliceHome”

Application data produced by that device

AS: Authentication server
Rendezvous

Device namespace

Device prefix

Authentication server

rfduinos/123

schemas

ID-CERT

_meta

_flow1

_dev

_version#

App instance name

flow1

gyro1

 Application label

_tracking1

visualization1

App instance name

digest#
digest#

Application namespace

骑士

_data

seq#

run_id

track#

timestamp

seq#
Architecture: AWS-IoT vs. NDN-IoT
Implementation

• Indoor positioning with OpenPTrack over NDN
 • Publish position data at 30Hz and metadata at lower rate

• Wearable sensing with RFduino22301 and gyroscope MPU6050
 • RFduino generates NDN data at 2Hz and transfers to a Raspberry Pi 2 controller for signing and publishing

• Mobile interface on Android phone using NDN.JS library
 • Generates command Interests to control virtual environment and update player’s position

• Visualization with Unity3D game engine
 • Consumes positioning and gyro data, and receives command Interests
Links to code

• **Code repository** (https://github.com/remap/ndn-flow)
 • **NDN-IoT framework** (https://github.com/remap/ndn-flow/tree/master/framework)
 • **Functionality overview**
 • **Interface description**
 • **Flow application** (https://github.com/remap/ndn-flow/tree/master/application)

• **Technical guide** (installation and troubleshooting)
• **Demo poster**
• **Application screen recording**
Takeaway

• Existing cloud-centric IoT systems: developed along a path of least resistance
 • Readily available point-to-point TCP/IP communication infrastructure
 • Leveraging economy of scale

• Cloud dependency leads to a number of problems
 • Service availability, privacy, end user autonomy, and more.

• This work: exploring NDN in enabling cloud-independent IoT systems
 Application-defined data naming within local context
 • Discovering local components and services through local sync
 • Expressing trust relations by names with schematized trust
 • Securing and exchanging named data at network layer