Towards Content-Oriented Orchestration for virtual Information Centric Networking

Guillaume DOYEN, on behalf of the Doctor consortium
Troyes University of Technology – Charles Delaunay Institute
Contact: guillaume.doyen@utt.fr
Web: http://www.doctor-project.org

ICNRC – IETF meeting #101 – London – March 20, 2018
Outline

- Context
 - Locks for an ICN deployment

- Leveraging NFV as an ICN enabler
 - Opportunities and challenges
 - NDN Monitoring and Security
 - NDN Management and Orchestration

- Current results
 - Overall deployment and attack scenario
 - Monitoring evaluation
 - Orchestration evaluation

- Conclusion and perspectives
Outline

- **Context**
 - Locks for an ICN deployment

- **Leveraging NFV as an ICN enabler**
 - Opportunities and challenges
 - NDN Monitoring and Security
 - NDN Management and Orchestration

- **Current results**
 - Overall deployment and attack scenario
 - Monitoring evaluation
 - Orchestration evaluation

- **Conclusion and perspectives**
Locks for an ICN deployment

- A decade of research and development
 - Fundamental research topics covered
 - A set of operational implementations

- A pragmatic deployment approach
 - A progressive migration performed according to opportunities
 - Services that would benefit from an ICN stack at most
 - Topological locations (access, edge, core) that best fit with ICN Traffic Engineering features (e.g. symmetric routing, caching)
 - Management and security frameworks are required
 - Cohabitation with IP must be handled
 - This is the position of the 2014-2018 Doctor Project
 - Funded by the (French) National Research Agency (ANR)
 - Selected NDN as a target ICN technology
Outline

- **Context**
 - Locks for an ICN deployment

- **Leveraging NFV as an ICN enabler**
 - Opportunities and challenges
 - NDN Monitoring and Security
 - NDN Management and Orchestration

- **Current results**
 - Overall deployment and attack scenario
 - Monitoring evaluation
 - Orchestration evaluation

- **Conclusion and perspectives**
Where and how ICN stacks can be deployed?

- **Coupling ICN and IP**
 - Mixing protocol stacks (see CISCO H-ICN)
 - Leveraging Software Defined Networking [1-6]
 - Beyond : data-plane programmability for ICN pipelines through P4 [7]

- **Isolating ICN and IP**
 - Parallel combination with dual stacks nodes and end-hosts
 - Serial combination with dedicated gateways

- **Contribution of the Doctor project**
 - Cohabitation with IP can be handled with NFV
NFV: opportunities and challenges

The promise

- By leveraging the isolation property of virtualisation, an ICN stack can be deployed independently from any other networking stack.
- Tenant domains and infrastructure domains are decoupled.
 - ICN is a tenant domain protocol stack in a virtual L2.
 - In the infrastructure domain, IP still remains the networking substrate carrying all Internet traffic.
- NFV aims at reducing CAPEX by enabling commodity servers to host softwarized network functions.

The challenges

- Efficient Virtual Network Functions must be designed and implemented.
 - The stateful and CPU intensive nature of an ICN data-plane is hardly compatible with operations on the fly (spawn, migration, etc.).
- Novel Management and Orchestration solutions for virtual ICN network stacks must be entirely designed and implemented.
Content-Oriented MANO - PoC

Diagram showing components and interactions:

- Tenant Network Controller
- EM: NFV Agent, MMT Probe
- iGW, eGW
- Virtual Computing, Virtual Storage, Virtual Network
- Virtualisation Layer
- Virtualised Infrastructure Manager
- NFVI
- NFD Agent, MMT Probe
- Or-VnfM
- Ve-Vnf-em
- Or-Vi
- Or-Vnf
- NFV Orchestrator
- Orchestration engine
- TOSCA PROCESSOR
- TOSCA Descriptors
- TOSCA Parser
- Cyber CAPTOR
- NFD Agent, MMT Probe
- VNF Manager
- MMT Operator
- NFV Instances
- NFVI Resources
- NS Catalogue
- VNF Catalogue
- VNFM
- vnf-em
<table>
<thead>
<tr>
<th>Component</th>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces</td>
<td>In Interest</td>
<td>Periodic number of incoming Interests</td>
</tr>
<tr>
<td></td>
<td>In Data</td>
<td>Periodic number of incoming Data</td>
</tr>
<tr>
<td></td>
<td>In NACK</td>
<td>Periodic number of incoming NACK</td>
</tr>
<tr>
<td></td>
<td>Out Interest</td>
<td>Periodic number of outgoing Interests</td>
</tr>
<tr>
<td></td>
<td>Out Data</td>
<td>Periodic number of outgoing Data</td>
</tr>
<tr>
<td></td>
<td>Out NACK</td>
<td>Periodic number of outgoing NACK</td>
</tr>
<tr>
<td></td>
<td>Drop Interest</td>
<td>Periodic number of dropped Interests</td>
</tr>
<tr>
<td></td>
<td>Drop Data</td>
<td>Periodic number of dropped Data</td>
</tr>
<tr>
<td></td>
<td>Drop NACK</td>
<td>Periodic number of dropped NACK</td>
</tr>
<tr>
<td>Content Store</td>
<td>CS Insert</td>
<td>Periodic number of Data insert in CS</td>
</tr>
<tr>
<td></td>
<td>CS Miss</td>
<td>Periodic number of cache miss in CS</td>
</tr>
<tr>
<td></td>
<td>CS Hit</td>
<td>Periodic number of cache hit in CS</td>
</tr>
<tr>
<td>Pending Interest Table</td>
<td>PIT Create</td>
<td>Periodic number of PIT entries created</td>
</tr>
<tr>
<td></td>
<td>PIT Update</td>
<td>Periodic number of updates in PIT</td>
</tr>
<tr>
<td></td>
<td>PIT Delete</td>
<td>Periodic number of PIT entries deleted</td>
</tr>
<tr>
<td></td>
<td>PIT unsatisfied</td>
<td>Periodic number of PIT entries unsatisfied</td>
</tr>
<tr>
<td></td>
<td>PIT Size</td>
<td>Periodic number of PIT entries</td>
</tr>
<tr>
<td></td>
<td>PIT Entries time</td>
<td>Average time in PIT for entries</td>
</tr>
</tbody>
</table>
Understanding NFD pipelines for anomaly detection

Correlating events
A TOSCA extension for ICN (1)

- **Virtual Deployment Unit (VDU)**
 - Abstraction describing the virtual resources over which a VNF is executed
- **Virtual Link (VL)**
 - Resources required to link two VDUs
- **Connection Point (CP)**
 - The connection capability which associates a VDU to a virtual link
- **Virtual Network Function (VNF)**
 - The piece of software that will be executed on a VDU
 - NDN router, ingress and egress HTTP gateways and NDN firewall
- **Forwarding Path and Graph**
 - a list of VNFs that a particular set of NDN packets must follow
 - Uses content prefixes instead of L2/L3 flow specifications
- **Policies**
 - Event-Condition-Action rules to apply dynamically
 - Upscaling, signature verification, firewall updates
NDN Orchestration

- Python code + REST APIs: implemented from scratch
- NFVO Core
 - Initial deployment of a NDN service
 - Deploy virtual networks -> Deploy virtual units -> Connect virtual units to virtual networks
 - Retrieve VDU and networks configurations -> Engage VNFs configuration (NDN Engine)
 - Make sure that VNFs are in a correct state -> Start monitoring probes and event correlators
- NDN Engine
 - Generates the appropriate NDN configuration for each VNF
 - NDN forwarding paths + NFVI information (IP addresses, identifiers, etc.) -> FIB entries
- VNF Manager
 - Responsible for the life-cycle management of NDN VNFs
 - VNF <-> VNFM <-> NFVO
 - Receives initial configurations and dynamic reconfigurations from NFVO and pushes them into VNFs
 - Gets notifications (security alerts) from VNF and send them the NFVO
Outline

- Context
 - On the maturity of the ICN paradigm

- Leveraging NFV as an ICN enabler
 - Opportunities and challenges
 - NDN Monitoring and Security
 - NDN Management and Orchestration

- Current results
 - Overall deployment and attack scenario
 - Monitoring evaluation
 - Orchestration evaluation

- Conclusion and perspectives
Evaluation context

- **European telco topology**
 - ClaraNet (4 PoP part of)
 - Points of Presence (PoP) made available through the Internet Zoo Topology Dataset

- **Different NDN VNFs**
 - NDN routers
 - Signature verification module
 - NDN Firewall

- **The whole network is deployed through virtualized means**
 - 1 PoP in 1 Openstack VM

By claranet (claranet) [CC0], via Wikimedia Commons
Evaluation topology
TOSCA VNF and VDU specifications

router_2:
- type: tosca.nodes.nfv.doctor.VNF
- properties:
 - id: 2
 - vendor: orange
 - version: 1.0
- requirements:
 - VDU: VDU2

firewall_1:
- type: tosca.nodes.nfv.doctor.VNF.firewall
- properties:
 - id: 6
 - vendor: orange
 - version: 1.0
 - configuration:
 - mode: accept
 - rules:
 - action: append-drop
 - prefix: [/foo]
- requirements:
 - VDU: VDU4

VDU2:
- type: tosca.nodes.nfv.doctor.VDU
- properties:
 - name: VDU2
 - sw_image: maouadj/ndn_router:v1
 - config: /doctor/launch_nfd_router.sh
 - flavor: medium
 - placement_policy: ['popLocation==uk']

VDU4:
- type: tosca.nodes.nfv.doctor.VDU
- properties:
 - name: VDU4
 - sw_image: maouadj/ndn_firewall:v1
 - config: /doctor/launch_ndn_firewall.sh
 - flavor: medium
 - placement_policy:
 - popLocation==netherlands
http_from_r2_to_as1:
 type: tosca.nodes.nfv.doctor.FP
 description: creates path for /http from r2 to as1
 properties:
 id: 2
 policy:
 type: NDN
 prefix: [/com/google]
 path:
 - forwarder: router_2
 capability: VDU2_VL10_CP
 - forwarder: router_x
 capability: VDUX_VL10_CP
 - forwarder: router_x
 capability: VDUX_VL2_CP
 - forwarder: router_4
 capability: VDU3_VL2_CP
 - forwarder: router_4
 capability: VDU3_VL3_CP
 - forwarder: firewall_1
 capability: VDU4_VL3_CP
 - forwarder: firewall_1
 capability: VDU4_VL4_CP
 - forwarder: peering_router_1
 capability: VDU5_VL4_CP
TOSCA mitigation policies specifications

- Starts the signature verification enforcement if a CPA alert is raised

 policies:
 - CPA_countermeasure:
 type: tosca.policies.nfv.doctor.security.signature_verification
 targets: [router_4, router_5]
 triggers:

 peeringPoint1_verification:
 event_type: tosca.nfv.doctor.security.alert.cpa
 condition:
 constraint: triggered_by router_2
 action:
 action_type: update_router_mode
 mode: signing
 target_router: router_4

- Updates the firewall black list with prefixes whose signature is invalid

- Spawn NDN routers to cope with the resource exhaustion due to signature verification
Monitoring and detection results

Relevance of the Bayesian Network Classifier (BNC) [NOMS 2018]

Guarantee of prescribed PFA for micro-detectors

Learning curve of the proposed BNC
Orchestration and mitigation

- Delay for the mitigation policy enforcement [ongoing work]

Weak attack footprint (8 Interests/s)
Strong attack footprint (128 Interests/s)
Orchestration and mitigation

- **Overall mitigation evaluation** [ongoing work]

![Graph 1: Average mitigation delay according to the attack rate](image1)

![Graph 2: Mitigation efficiency (bad/good packets ratio) according to the attack rate](image2)

Average mitigation delay according to the attack rate

Mitigation efficiency (bad/good packets ratio) according to the attack rate

21
Outline

- Context
 - Locks for an ICN deployment

- Leveraging NFV as an ICN enabler
 - Opportunities and challenges
 - NDN Monitoring and Security
 - NDN Management and Orchestration

- Current results
 - Overall deployment ant attack scenario
 - Monitoring evaluation
 - Orchestration evaluation

- Conclusion and perspectives
Conclusion and perspectives

- An ongoing work toward the design and implementation of NFV-MANO components for NDN
 - A proof of concept of the whole architecture
 - (Part of) code availability
 - https://github.com/DOCTOR-ANR
 - Some components are still under development

- Doctor and ICNRG
 - Doctor is open to serve ICNRG efforts to push forward the deployment and standardization of this network paradigm
 - Toward a standardized management plane for ICN?

- Future work
 - Evaluate the benefits of an NDN virtual network carrying web traffic with real end-users
 - Further explore the content orchestration
 - Explore micro-services orchestration for NDN
Questions ?
References

Related Project publications

