Identifier Locator Addressing
ILA

Tom Herbert
<tom@quantonium.net>

Kalyani Bogineni
<kalyani.bogineni@verizonwireless.com>
Goal

Provide seamless mobility for multiple use cases using highly efficient identifier/locator techniques
Use cases

- Mobility
- Data center virtualization
- Network virtualization (multi-tenant)
- Converged network (all three of above)
Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Applicable Use cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encapsulation is perf. and overhead hit</td>
<td>General problem</td>
</tr>
<tr>
<td>Tunneling considerations</td>
<td>General problem</td>
</tr>
<tr>
<td>Identity tied to location</td>
<td>General problem</td>
</tr>
<tr>
<td>Support for “alternate” protocols</td>
<td>Mostly virtualization</td>
</tr>
<tr>
<td>Privacy in addressing</td>
<td>Public network problem</td>
</tr>
<tr>
<td>Mobile anchor points</td>
<td>Mobile</td>
</tr>
<tr>
<td>Low latency application (AR/VR) support</td>
<td>Mobile</td>
</tr>
</tbody>
</table>
Addressing and transformations

Standard Identifier Representation (SIR). Address visible to apps

Locator address. Routes packets to physical location of logical node

SIR prefix	Identifier

Transform destination for transit across an underlay network

SIR prefix	Identifier

Locator	Identifier

Reverse transformation to deliver or forward to application

SIR prefix	Identifier
Salient properties of ILA

- Identifier/locator split
- Performs address transformation (not NAT)
- No wire overhead (no encap or EH)
- Contained within network layer
- Transparent to the endpoints and network
Scope

● Data plane
 ○ Process of transformation
 ○ Checksum neutral
 ○ Address encodings

● Control plane
 ○ Mapping system (identifier to locator mappings)
 ○ Manage by standalone protocols
 ○ Leverage existing 3GPP control plane
Limitations

- ILA is IPv6 only
- ILA is not extensible
- Complexity of data plane vs. control plane
- Does not naturally support multicast
- ICMP error handling needs consideration
Considerations

- Scalability
- Security
- Privacy
- DOSability
Scalability aspects

- Number of mappings in the system
- Rate of update to mappings
- Throughput dataplane
- Managing state in a mapping system
- Mapping caches
Security aspects

- Mapping system contains sensitive PII
 - Identity: IP address to device (user for personal dev)
 - Geo-location: of device and hence possibly user

- Mapping system needs to be secure
 - Secure control protocols
 - Limit visibility of data (no global mapping system)
 - Law enforcement considerations

- Interdomain solutions
Privacy aspects

- Privacy in addressing
 - Privacy issue with prefix assignment
 (draft-herbert-prefix-address-privacy)
 - Privacy vs. scalability

- Locator privacy
 - Location likely implies location
 - Third parties can’t see such locators
DOSability

- Mapping cache
 - Potential target
 - Cache driven by a third party
 - Need quantitative explanation for an DOS mitigation
Virtualization use case

- **Datacenter virtualization**
 - Every task gets its own IP address
 - Eventually *everything* gets an address
 - Everything is mobile or location independent
 - Performance is critical

- **Network virtualization**
 - Like datacenter virtualization
 - Tenant isolation
 - Common services (with resorting to NAT)
Thank you!
References

- draft-herbert-intarea-ila
- draft-mueller-ila-mobility
- draft-lapukhov-bgp-ila-afi
- draft-herbert-ila-ilamp
- draft-lapukhov-ila-deployment
- draft-herbert-ila-mobile
- draft-rodrigueznatal-ila-lisp
- draft-herbert-ipv6-prefix-address-privacy
- draft-bogineni-dmm-optimized-mobile-user-plane