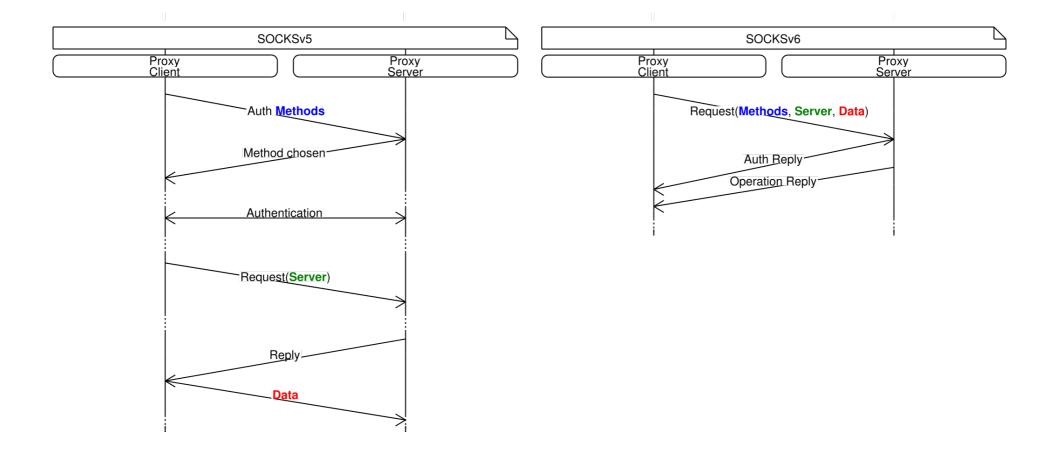

SOCKS Protocol Version 6 (Update) draft-olteanu-intarea-socks-6-02

Vladimir Olteanu, Dragoș Niculescu University Politehnica of Bucharest


Overview

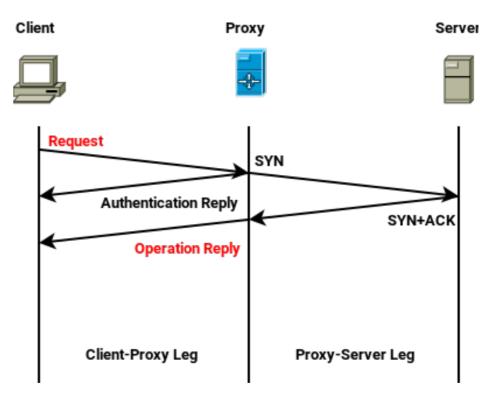
- 0-RTT overhead and TFO support
 - Clients optimistically send as much information upfront
 - 0-RTT authentication
- Run over TLS (protect against malicious 3rd parties)
 - Mitigate early data replay attacks
 - Plaintext password authentication now viable
- setsockopt()-like mechanism (new in -02)
 - MPTCP scheduler
 - Discovery of servers supporting MPTCP (for proxy bypass)

SOCKSv5 vs. SOCKSv6

SOCKSv5 vs. SOCKSv6

Plain text password authentication

- Viable if done over TLS
 - Expected de facto standard
- Initial message from RFC1929 placed in SOCKS Request as an option
 - 0 RTT
 - Only if it fits: ULEN + PLEN <= 249


Kind	Length	+ Method = 0x2	VER	ULEN	UNAME	PLEN	PASSWD
•	•	1	1	1	1 to 255	1	1 to 255

Socket Options

- Part of Requests and Operation Replies
- Inspired by setsockopt()/getsockopt() (from *nix)
 - Not an RPC
 - Individual options must be standardized separately
- Will be renamed in -03

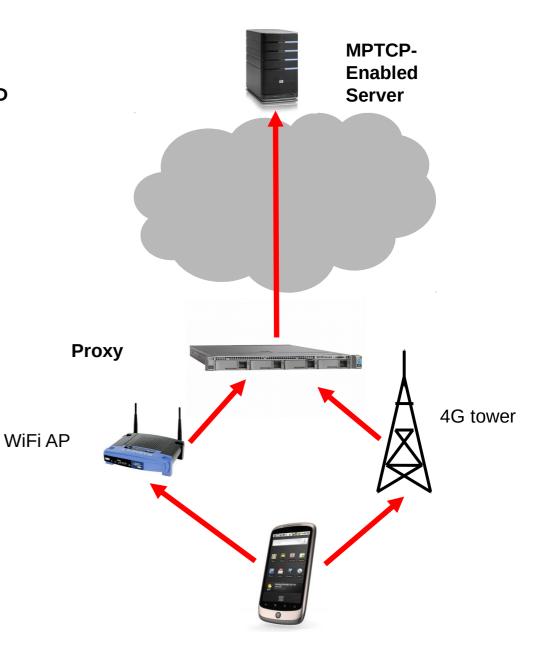
Kind	Length	Leg	Level	Code	+ Data
1	1	2 bits	6 bits	1	Variable

- Leg: Client-Proxy (0x1), Proxy-Server (0x2) or Both(0x3)
- Level: Socket, IPv4, IPv6, TCP, UDP
- Code

TFO Option

- Replaces field in Request
- As part of a CONNECT Request: TFO SHOULD be attempted
 Absence means TFO MUST NOT be attempted
- As part of an Operation Reply: TFO succeded

Kind	Length	+ Leg +	Level	Code	
1	1	2 bits +	6 bits	1	

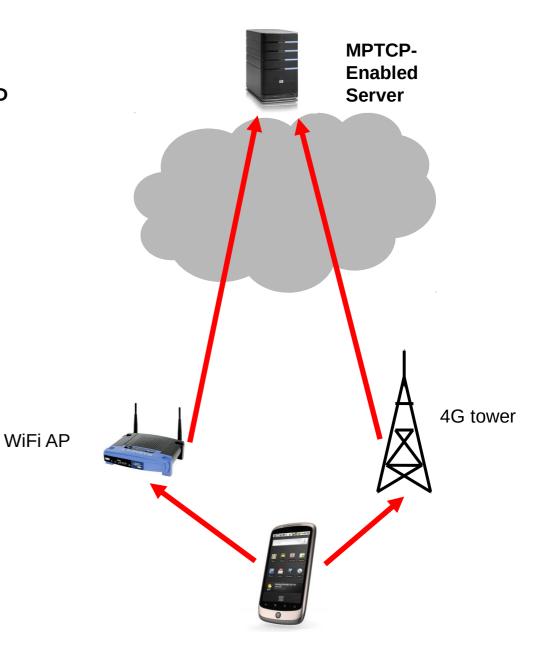

- Leg: Proxy-Server (0x2)
- Level: TCP
- Code: 0x17

Proxy Bypass

- Let multihomed clients know when a server supports MPTCP
 - Can contact server directly
- Place MPTCP option in Operation Reply

	Kind	I	Length	I	Leg	I	Level	Code	l
I	1	İ	1	İ	2 bits	İ	6 bits	1	I

- Leg: Proxy-Server (0x2)
- Level: TCP
- Code: 0x17



Proxy Bypass

- Let multihomed clients know when a server supports MPTCP
 - Can contact server directly
- Place MPTCP option in Operation Reply

	Kind	I	Length	I	Leg	Ì	Level	Code	
I	1	İ	1	İ	2 bits	İ	6 bits		

- Leg: Proxy-Server (0x2)
- Level: TCP
- Code: 0x17

Choosing the MPTCP Scheduler

- As part of a Request: indicates the scheduler to be used
- As part of an Operation Reply: indicates what scheduler is used
- Supports schedulers available in the Linux MPTCP implementation
- Use case: low latency services
 - The REDUNDANT scheduler duplicates data across paths

+ Kind Length	Leg	Level	Code	Scheduler
1 1	2 bits	6 bits	1	

- Level: TCP
- Code: 0x2b
- Scheduler: Default/Round-Robin/Redundant

Backup Slides

Salt Options

- Clients may make multiple duplicate requests
 - May be encrypted using the same PSK
- Intended to protect against profiling attacks by adding a random value
 - TLS 1.3 forces everyone to use AEAD
 - Salt option is redundant; will remove in -03