SOCKS Protocol Version 6 (Update)
draft-olteanu-intarea-socks-6-02

Vladimir Olteanu, Dragoș Niculescu
University Politehnica of Bucharest
Overview

• 0-RTT overhead and TFO support
 – Clients optimistically send as much information upfront
 – 0-RTT authentication

• Run over TLS (protect against malicious 3rd parties)
 – Mitigate early data replay attacks
 – Plaintext password authentication now viable

• setsockopt()-like mechanism (new in -02)
 – MPTCP scheduler
 – Discovery of servers supporting MPTCP (for proxy bypass)
SOCKSv5 vs. SOCKSv6
SOCKSv5 vs. SOCKSv6
Plain text password authentication

• Viable if done over TLS
 - Expected de facto standard
• Initial message from RFC1929 placed in SOCKS Request as an option
 - 0 RTT
 - Only if it fits: ULEN + PLEN <= 249

+---------------+--------------+----+------+----------+----------------+----------+
| Kind | Length | Method = 0x2 | VER | ULEN | UNAME | PLEN | PASSWD |
+------+--------+--------------+----+------+----------+------+----------+
| 1 | 1 | 1 | 1 | 1 | 1 to 255 | 1 | 1 to 255 |
Socket Options

- Part of Requests and Operation Replies
- Inspired by setsockopt()/getsockopt() (from *nix)
 - Not an RPC
 - Individual options must be standardized separately
- Will be renamed in -03

<table>
<thead>
<tr>
<th>Kind</th>
<th>Length</th>
<th>Leg</th>
<th>Level</th>
<th>Code</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2 bits</td>
<td>6 bits</td>
<td>1</td>
<td>Variable</td>
</tr>
</tbody>
</table>

- Leg: Client-Proxy (0x1), Proxy-Server (0x2) or Both(0x3)
- Level: Socket, IPv4, IPv6, TCP, UDP
- Code
TFO Option

• Replaces field in Request
• As part of a CONNECT Request: TFO SHOULD be attempted
 – Absence means TFO MUST NOT be attempted
• As part of an Operation Reply: TFO succeeded

+---------------+--------+--------+------+
| Kind | Length | Leg | Level | Code |
+------+--------+--------+--------+------+
| 1 | 1 | 2 bits | 6 bits | 1 |
+------+--------+--------+--------+------+

• Leg: Proxy-Server (0x2)
• Level: TCP
• Code: 0x17
Proxy Bypass

- Let multihomed clients know when a server supports MPTCP
 - Can contact server directly
- Place MPTCP option in Operation Reply

<table>
<thead>
<tr>
<th>Kind</th>
<th>Length</th>
<th>Leg</th>
<th>Level</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2 bits</td>
<td>6 bits</td>
<td>1</td>
</tr>
</tbody>
</table>

- Leg: Proxy-Server (0x2)
- Level: TCP
- Code: 0x17
Proxy Bypass

• Let multihomed clients know when a server supports MPTCP
 – Can contact server directly
• Place MPTCP option in Operation Reply

<table>
<thead>
<tr>
<th>Kind</th>
<th>Length</th>
<th>Leg</th>
<th>Level</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2 bits</td>
<td>6 bits</td>
<td>1</td>
</tr>
</tbody>
</table>

• Leg: Proxy-Server (0x2)
• Level: TCP
• Code: 0x17
Choosing the MPTCP Scheduler

- As part of a Request: indicates the scheduler to be used
- As part of an Operation Reply: indicates what scheduler is used
- Supports schedulers available in the Linux MPTCP implementation
- Use case: low latency services
 - The REDUNDANT scheduler duplicates data across paths

<table>
<thead>
<tr>
<th>Kind</th>
<th>Length</th>
<th>Leg</th>
<th>Level</th>
<th>Code</th>
<th>Scheduler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Level: TCP
- Code: 0x2b
- Scheduler: Default/Round-Robin/Redundant
Backup Slides
Salt Options

- Clients may make multiple duplicate requests
 - May be encrypted using the same PSK
- Intended to protect against profiling attacks by adding a random value
 - TLS 1.3 forces everyone to use AEAD
 - Salt option is redundant; will remove in -03