Compact Alternate Marking Methods for Passive and Hybrid Performance Monitoring

draft-mizrahi-ippm-compact-alternate-marking-01

London, Mar 2018, IETF 101

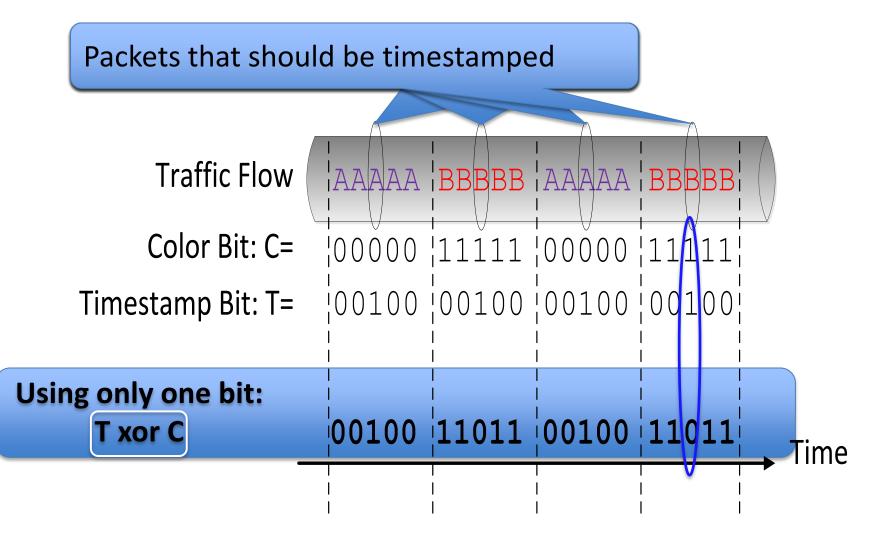
Tal Mizrahi (Marvell) Carmi Arad (Marvell) Giuseppe Fioccola (Telecom Italia) Mauro Cociglio (Telecom Italia) Mach Chen (Huawei) Lianshu Zheng (Huawei) Greg Mirsky (ZTE)

Scope of the Current Draft

- Analysis of RFC 8321 methods
- New alternate marking methods with low overhead:
 - Single bit per packet.
 - Zero bits per packet.
- It makes a summary of alternate marking methods.
- It is possible to understand the most useful method depending on the case.

RFC 8321 Background

Monitor data traffic from MP 1 to MP 2


- Packet Loss Measurement is well-known

- Delay/Delay Variation Measurement
- Single Marking- First/Last Packet
- Single Marking- Mean Delay
- Double Marking

An Additional Variation of RFC 8321: Multiplexed Marking

- <u>A single bit</u> is used for \dot{C} / T
- Same measurement resolution as Double Marking

How to employ RFC 8321 with RFC 5475: Hash-based Selection

- Hash is computed over packet header.
- Zero Marking Hash (RFC 5475):
 - If Hash is equal to a Selected Value then Packet is selected for both loss and delay measurement. Similar to Pulse Marking.
- Single Marking Hash: It uses a mixed approach (RFC 8321 + RFC 5475)
 - Color bit for packet loss measurement
 - Hash-based sampling for delay measurement
 - Static hash has some issues
 - Dynamic hash can be used to pace the number of samples per period

Summary of Marking Methods: focus on Delay Measurement

Marking Methods	# of bits			DM Resilience to Packet Drops	
Single Marking – 1st Packet	1	Yes		-	No
Single Marking – Mean Delay	1	Yes	+	-	Yes
Double Marking	2	Yes	+	=	No
Single Marking Multiplexed	1	Yes	+	=	No
Pulse Marking	1	No	+	=	Yes
Zero Marking Hashed	0	No	+	+	Yes
Single Marking Hashed	1	Yes	+	+	Yes

- + Accurate measurement
- = Invalidate only if a measured packet is lost (detectable).
- No measurement in case of disturbance (detectable).
- -- False measurement in case of disturbance (not detectable).

Next Steps

This document highlights marking methods strengths and weaknesses.

It makes a survey of the available technologies that can be considered if 0 bit, 1 bit or 2 bits are employed for performance measurements.

Ask for working group adoption.

Inputs and Comments always welcome