Group Key Management using IKEv2

Brian Weis
Yoav Nir
Valery Smyslov
IP Multicast Security in the IETF

- The Multicast Security (MSEC) WG was alive in 2001-2011, which looked at the needs of securing IP multicast traffic
- This included:
 - RFC 3740: The Multicast Group Security Architecture
 - RFC 4046: MSEC Group Key Mgmt. Architecture
 - RFC 5374: Multicast Extensions to the Security Architecture for the Internet Protocol
 - RFC 6407: The Group Domain of Interpretation
- Platforms supporting IP multicast security take advantage of IKEv2 benefits by replacing GDOI with G-IKEv2
Securing IP Multicast

- IP multicast applications
 - Contain at least 1 sender, and N receivers
 - Take advantage of the network to route and replicate IP packets, such that the same packet reaches all N receivers.
- This requires senders and receivers to share setup an IPsec SA using the same keys.
 - The IPsec policy and keys cannot be individually negotiated, but instead of distributed by a controller/ key server (GCKS) to group members (GMs)
 - A GM invokes a Registration protocol which requires it to authenticate to the GCKS. The GCKS then authorizes the GM, and distributes IPsec policy and keys to the GM.
 - A Rekey protocol enforces a time-based key rollover strategy.
G-IKEv2 Registration

• GSA_AUTH exchange
 – Preceded with an IKE_SA_INIT exchange

 Initiator (GM) Responder (GCKS)
 ------------------ ------------------
 HDR, SK {IDi, [CERT,] [CERTREQ,]
 [IDr,] AUTH, IDg, [SAg,] [N]} -->
 <- HDR, SK {IDr, [CERT,] AUTH,
 [GSA, KD,] [D,]}

• GSA_REGISTRATION Exchange
 – Used when the IKEv2 SA has already been created

 Initiator (GM) Responder (GCKS)
 ------------------ ------------------
 HDR, SK {IDg, [SAg,] [N]} -->
 <- HDR, SK {GSA, KD, [D]}

IPSECME WG IETF 101
G-IKEv2 Rekey

• GSA_REKEY exchange
 – Usually a multicast message, Intended for large groups, pushed by the GCKS to all GMs, protected by policy previously distributed by the GCKS

 Responder (GM) Initiator (GCKS)
 ---------------- ---------------
 <--- HDR, SK {GSA, KD, [D,] AUTH}

• GSA_INBAND_REKEY exchange
 – Distributed within each IKEv2 SA setup for G-IKEv2 registration, intended for small groups

 Responder (GM) Initiator (GCKS)
 ---------------- ---------------
 <--- HDR, SK {GSA, KD, [D,]}
 HDR, SK {} -->
GSA Payload

Contains policy necessary to participating in the group

• Traffic Encryption Key (TEK)
 – ESP SPI, traffic selectors, single set of transforms, attributes

• Key Encrypting Key (KEK) policy
 – IKE Header SPI, traffic selectors, attributes

• Group Associated Policy (GAP) (other group-wide policy)
 – IPsec SA Activation time, deactivation time
KD payload

• Contains keying material necessary for the policy in the GSA payload
 – TEK (IPsec SPI, keying material)
 – KEK (Rekey SA SPI, keying material)
 – LKH (Logical Key Hierarchy key arrays)
 – SID (Sender-ID (SID) values for a GM)
Reuse of IKEv2 payloads (1)

• IDg (Group Identification payload)
 – ID_KEY_ID MUST be supported.
 – ID_IPV4_ADDR, ID_FQDN, ID_RFC822_ADDR, ID_IPV6_ADDR SHOULD be supported

• SAg (GM Supported Transforms)
 – Declares which Transforms a GM is willing to accept

• D (Delete Payload)
 – Used when the GCKS may want to signal to group members to delete policy (e.g., data flows finished, change of policy)
Reuse of IKEv2 payloads (2)

• N (Notify Payload)
 – INVALID_GROUP_ID (error notify)
 • GCKS informs GM that the requested Group ID in a registration protocol is invalid
 – AUTHORIZATION_FAILED (error notify)
 • GCKS informs GM that it is not authorized to join the requested Group ID
 – SENDER_ID_REQUEST (status notify)
 • GM requests Sender IDs from the GCKS, used as part of a counter-mode transform nonce (RFC 6054)
Draft Maturity & Implementations

• The draft has been in development for several years
• Implementations
 – One known full implementation
 – A couple of known partial implementations, including the “Minimal G-IKEv2” work presented at IETF 99
 – Initial Interop results (Ludwig-Maximilians-Universität München & Cisco):
• The authors request consideration as a WG item.