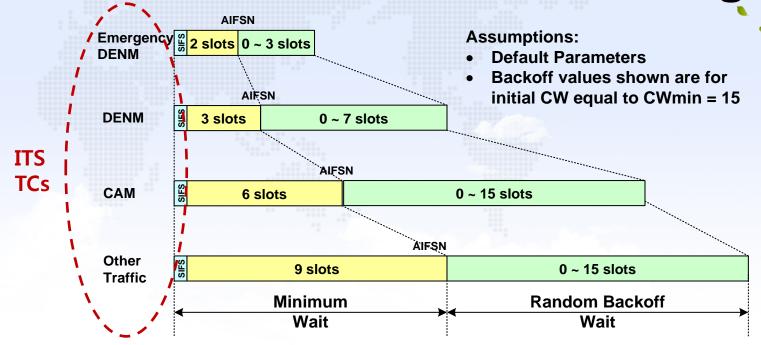
Mapping of IP on WiFi Access Classes for IPv6 over OCB


Potential new WI

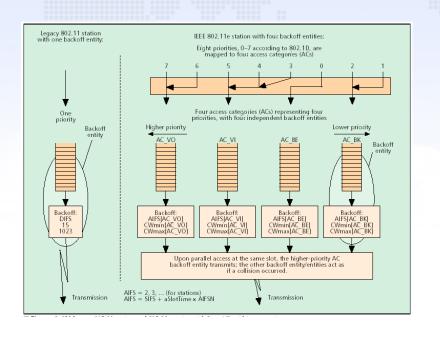
Jérôme Härri

E-mail Address: haerri@eurecom.fr

IEEE 802.11 OCB – Access Categóries

- WiFi Access Categories (QoSData)
 - AC_VO: AIFN=2, CWmin=4 CWmax=8
 - AC_VI: AIFN=3, CWmin=8 CWmax=16
 - AC_BE: AIFN=6, CWmin=16 CWmax=1024
 - AC_BK: AIFN=9, CWmin=16 CWmax=1024
- <u>Disclaimer</u>: the terms VO and Video do not restrict traffic on these AC to voice and video only !!

802.1D User Priority (MAC Bridging)


- User Priorities (UP)
 - 7 different classes of LAN traffic
 - A default '0' for anything not specified or not correspinding

user_priority Acronyn		Traffic type		
Ĭ.	ВК	Background		
2	2 1 - 5	Spare		
0 (Default)	BE	Best Effort		
3	EE	Excellent Effort		
4	CL	Controlled Load		
5	VI	"Video," < 100 ms latency and jitter		
6	VO	"Voice," < 10 ms latency and jitter		
7	NC	Network Control		

Source: IEEE 802.1D

Mapping User Priority to Access Cátegories

Number of queues	Defining traffic type						
ï	BE						
2	BE			vo			
3.	BE			ČL-		vo	
4	ВК		E GI		L,		o
5.	ВК	BÉ:			X	VO	
6	BK	BE	FE	CL.	N.	. Di	O
7	BK	BE	EE	CL.	VI	VO	NC
8	вк —	BE	EE	CL.	VI	vo	NC

UP

- IEEE 802.1D -> 802.11 AC
 - Leads to potential confusion as function of traffic above IEEE 802.11 (Diffserv)

IP traffic classification - Diffser DSCP

- IP Differentiated Service Code Point (DSCP)
 - DF: Default Forwarding
 - AFxy: Assured Forwarding (x=class, y=drop precedence)
 - EF: Expedited Forwarding
 - CS: Class Selector
 - VA: Voice Admit
- IP Traffic classification
 - 8 bits:
 - IPv4: Type-of-Service
 - IPv6: Traffic Class
 - Both ToS / TC
 - DSCP is the 6 MSB of ToS/TC

Service Class Name	DSCP Name	DSCP Value	Application Examples		
Network Control	+====== CS6	110000	Network routing		
Telephony	+ EF	101110	IP Telephony bearer		
Signaling	CS5	101000	IP Telephony signaling		
Multimedia Conferencing	AF41,AF42 AF43	100010,100100	H.323/V2 video conferencing (adaptive)		
Real-Time Interactive	C54 	100000	Video conferencing and Interactive gaming		
Multimedia Streaming	+ AF31,AF32 AF33	011010,011100 011110	Streaming video and audio on demand		
Broadcast Video	 CS3	011000	Broadcast TV & live events		
Low-Latency Data	AF21,AF22 AF23	010010,010100	Client/server transactions Web-based ordering		
OAM	+ C52	010000	OAM&P		
High-Throughput Data	+ AF11,AF12 AF13	001010,001100 001110	Store and forward applications		
Standard	DF (CS0)	000000	Undifferentiated applications		
Low-Priority Data	+ CS1 	001000 	Any flow that has no BW assurance		

Source: IETF RFC 4594

DSCP – UP Mapping at TX

- Mapping Proposal (default):
 - L3 DSCP: 6 bits
 - L2 UP: 3 bits
 - Mapping: take 3 MSB from L3 DSCP for L2 UP
 - Example: DSCP: 101110 -> UP: 101
- Yet, just one option...just a best practice
- Confusion Examples:
 - Voice (EF-101110) will be mapped to UP 5 (101), and treated in the Video Access Category (AC_VI) rather than the Voice Access Category (AC_VO), for which it is intended
 - Multimedia Streaming (AF3-011xx0) will be mapped to UP 3 (011) and treated in the Best Effort Access Category (AC_BE) rather than the Video Access Category (AC_VI), for which it is intended
 - Broadcast Video (CS3-011000) will be mapped to UP 3 (011) and treated in the Best Effort Access Category (AC_BE) rather than the Video Access Category (AC_VI), for which it is intended
 - OAM traffic (CS2-010000) will be mapped to UP 2 (010) and treated in the Background Access Category (AC_BK), which is not the intent expressed in [RFC4594] for this service class

6

UP - DSCP Mapping at RX

- Mapping Proposal (default):
 - L3 DSCP: 6 bits
 - L2 UP: 3 bits
 - Mapping: multiply UP by 8 (shift 3 and add 000)
 - Example: DSCP: 101 -> UP: 101000
- Confusion Examples:
 - Mapping UP 6 (which would include Voice or Telephony traffic, see [RFC] 4594]) to CS6, which [RFC4594] recommends for Network Control
 - Mapping UP 4 (which would include Multimedia Conferencing and/or R eal-Time Interactive traffic, see [RFC4594]) to CS4, thus losing the ability to differentiate between these two distinct service classes, as recomm ended
 - Mapping UP 3 (which would include Multimedia Streaming and/or Broa dcast Video traffic, see [RFC4594]) to CS3, thus losing the ability to differ entiate between these two distinct service classes
 - **Mapping UP 2** (which would include Low-Latency Data and/or OAM traffic, see [RFC4594]) to **CS2**, thus losing the ability to differentiate between the ese two distinct service classes, as recommended in [RFC4594]
 - **Mapping UP 1** (which would include High-Throughput Data and/or Low-P riority Data traffic, see [RFC4594]) to **CS1**, thus losing the ability to differe ntiate between these two distinct service classes, as recommended in [RFC45941 Source: IETF RFC 8325

RFC 8325 - Mapping Diffserv to IEEE 802.11

- Describes the issues of DSCP to UP mapping and related confus ions
- Proposes a default mapping to correct them
- Examples:

IETF Diffserv Service Class	PHB	Reference RFC	IEEE 802.11 User Priority Access Category
Network Control (reserved for future use)	CS7	 RFC 2474 	7 AC_VO (Voice) OR 0 AC_BE (Best Effort) See Security Considerations-Sec.8
 Network Control 	CS6	 RFC 2474 	7
Telephony	EF	RFC 3246	6 AC_VO (Voice)
VOICE-ADMIT	VA	RFC 5865	6 AC_VO (Voice)
Signaling	CS5	RFC 2474	5 AC_VI (Video)

Source: IETF RFC 8325

Input to IPWAVE

- Need to define the type of IPWAVE traffic & need to harmonize it with L2 prioritization
- Traffic Mapping must be seen from two levels:
 - L3 IP (DSCP): how would IPWAVE traffic type fit to DSCP definitions
 - L2 UP: would the RFC 8325 proposed mapping fit to IPWAVE traffic
 - L2 UP AC: cannot play with this (not IETF)

Tasks:

- Define IPWAVE type of traffic
- Check compliancy with RFC 8325
- Propose modification if necessary
- Objective: no confusion on IP traffic class due to UP and IEEE 802.11 OCB

Challenges:

- So far: AC_BK for IPv6-over-OCB for all type of DSCP...
 - UP 0 is mapped by default to AC_BE!!
- If IP sends traffic with DSCP as high as a CAM, what to do?