SCHC for NB-IoT
(draft-minaburo-lpwan-nbiot-hc-00)

Authors:
Edgar Ramos<edgar.ramos@ericsson.com>
Anna Minaburo<ana@ack.io>
Sivasothy Shanmugalingam <sothy@ackl.io>
Architectural Issues

<table>
<thead>
<tr>
<th>Issues</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different transmission modes</td>
<td>Different requirements</td>
</tr>
<tr>
<td>Bearer handling</td>
<td>How to move from one transmission mode to another</td>
</tr>
<tr>
<td>Mobility handling</td>
<td>Data flows and mobility procedures impact</td>
</tr>
<tr>
<td>LTE-M & 5GNR-MTC</td>
<td>Possibilities to cover additional 3GPP technologies</td>
</tr>
</tbody>
</table>
Transmission modes

• Data Over Non-Access-Stratum (DoNAS)
 – Encryption at MME
 – PDCP, RLC Transparent mode (No headers, No segmentation or concatenation)
 – HARQ (Hybrid Automatic Repeat reQuest)
• Connected mode User Plane
 – Encryption at PDCP
 – RLC (Segmentation and Concatenation)
 • Acknowledged mode (Additional Reliability layer)
 • Unacknowledged mode (from Rel 15)
 – HARQ (Hybrid Automatic Repeat reQuest)
NB-IoT System Architecture

User Plane Stack for DoNAS

User Plane Stack for Connected mode
Operation parameters

• Fragmentation Parameters
 – Rule ID
 – DTag
 – FCN
 – Retransmission Timer
 – Inactivity Timer
 – MAX_ACK_Retries
 – MAX_ATTEMPS

• Padding treatment

• Rule ID
 – In the SCHC C/D context the Rule used to keep the Field Description of the header packet.
 – In SCHC Fragmentation the specific modes and settings.
 – And at least one Rule ID may be reserved to the case where no SCHC C/D nor SCHC fragmentation were possible.
Use cases

• NB-IoT data over NAS example
• NB-IoT example with mobility
• LTE-M considerations (and potentially 5GNR)