Usage of Non Shortest Path Forwarding (NSPF) Ids in IGPs

draft-ct-isis-nspfid-for-sr-paths-00
draft-ct-ospf-nspfid-for-sr-paths-00

Uma Chunduri, Jeff Tantsura, Yingzhen Qu

LSR WG, IETF 101, London
SR Non Shortest Path:

- All nodes: A1 to A7 and B1 to B7 (In the above Picture uses SR-MPLS)
- Shortest Path from A1 to A7: A2-A3-A4-A5-A6-A7
- The above SR path uses both node and adjacency SIDs a stack of 8 labels.

-----

- This number can be higher based on MSD Capabilities of intermediate nodes and ELI/EL pair
- If this were to use for IPv6 data plane – RFC8200 IPv6 Encap. + SRH with 8 SRv6 SIDs
Deployment Scenarios & Issues

**Issues:**

- Potential MTU/Fragmentation issues with large SID stack (SR-MPLS, SRH)

- Hardware capabilities/performance Related
  - MSD only helps to mitigate, if there is an alternate NSP, which meets the operator requirements

- NW/Path overhead relative to actual application data (this is critical in some deployments)
NSPF ID TLV (IS-IS)

- MT aware control plane prefix
- Data Plane type (e.g. MPLS, SRH, IPv6 etc.)
- Data plane identifier (NSPF-ID)
- Non Shortest Path description with set of TLVs
- Other Sub TLVs – Described in the draft (but being revisited).
In Summary:

- Change the next hop from actual shortest path NH to the NH of the immediate segment in the advertised NSP.
- Data-plane: IGP programs the received NSPF-ID to the corresponding NH calculated as above (based on the data plane type)
- All local protections/IP-FRR works as is; per new NH.

- NSP: R1-R8-R9-R10-R4 for a FEC from R4
- After R9 receives the path, immediately after SPF computation it check if R9 is itself on the path
- For E.g.: @R9: Without the above NSP, for R4’s FEC, R9 would have set the NH to R11, but it changes to R10.
- Same applies to all the nodes in the path (R1, R8 etc..).
Relation To Binding SID

- Not related
  - Earlier version of SR draft has EROs
  - IS-IS Binding SID advertises the SID on behalf of one or *more* nodes in the network

Being Updated..

- From where to advertise
  - **OPT1**: Ingress node/node where the NSP is received from (controller)
  - **OPT2**: From the node where FEC/Prefix belongs to
    - Advantages in case of anycast SIDs

- Traffic Accounting Statistics for the NSP with NSPF-ID
  - **OPT1**: Provisioning and collecting from the nodes as needed based on the operator
    - NSPF-ID representing the NSP simplifies this operation for Operators
  - **OPT2**: Dynamically enable stats for certain NSPs through optional TLVs (traffic accounting with fine granularity for some NSPs as needed automatically)
Data plane after NSPF-ID (MPLS)

8 Node NSP with RLD = 6

Summary:

This can be seen as equivalent of single shortest path SID (LDP equivalent); i.e., NSP is represented with one label in the DP
Data plane after NSPF-ID (MPLS & SRH)

SRH with 8 Segment NSP
DMM WG is responding to 3GPP Study item for optimized 5G data plane

- 3GPP Study Item http://www.3gpp.org/ftp/tsg_ct/WG4_protocollars_ex-CN4/TSGCT4_82_Gothenburg/Docs/C4-181380.zip

- 3GPP Scenarios, Requirements, Solution Comparison https://www.ietf.org/id/draft-bogineni-dmm-optimized-mobile-user-plane-00.txt


✓ This draft helps most of the proposals to reduce the transport overhead on N9 interface.
Next Steps:

- Adding OSPF equivalent
- Taking care of offline comments received
- Feedback?

Thank you!