

A First Look at QUIC in the Wild

Jan Rüth¹, Ingmar Poese², Christoph Dietzel³, Oliver Hohlfeld¹

- ¹: RWTH Aachen University
- ²: Benocs GmbH
- ³: TU Berlin / DE-CIX

London / IETF-101 Berlin / PAM, March 2018

http://comsys.rwth-aachen.de/

TCP is difficult to extend

- Only a couple of bytes left to modify
- Middleboxes ossify the protocol evolution

• QUIC is UDP + TCP-like CC + loss recovery + TLS 1.3

- Everything is encrypted \rightarrow Goodbye middleboxes
- QUIC guarantees evolution
- There is Google QUIC and IETF QUIC
 - gQUIC evolves to IETF QUIC when standardization progresses

How much gQUIC is already out there?

• What infrastructures support QUIC?

Perform ZMap scans over IPv4

Is it (practically) used by any website?

- Scan full .com / .net / .org zones
- Scan Alexa Top 1M for "popular" domains

• How much QUIC traffic is there?

- ▶ in a university network
- in a major European Tier-1 ISP
- ▶ in a major European mobile network
- in a major European IXP

; The use of the Data contained in Verisign Inc.'s aggregated ; .com, and .net top-level domain zone files (including the checksum ; files) is subject to the restrictions described in the access Agreement ; with Verisign Inc.

> a.gtld-servers.net. nstld.verisign-grs.com. (1349069308 ;serial 1880 ;refresh very 30 min 900 ;refresh very 15 min 604000 ;expire after a web 80400 panimawn of 15 min

\$TTL 172800 NS A.GTLD-SERVERS.NET. NS G.GTLD-SERVERS.NET. NS C.GTLD-SERVERS.NET. NS C.GTLD-SERVERS.NET. NS I.GTLD-SERVERS.NET.

SORIGIN COM

\$TTL 988

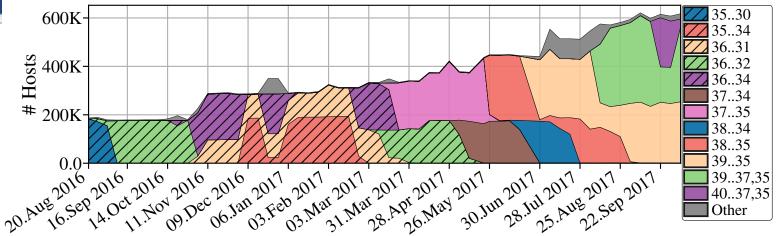
Picture by Seth Stoll (CC BY-SA 2.0): https://www.flickr.com/photos/sethstoll/4079897275

Jan Rüth, Ingmar Poese, Christoph Dietzel, Oliver Hohlfeld

https://netray.io

Enumerating QUIC IPs with ZMap

• QUIC has a version negotiation feature (evolution!)

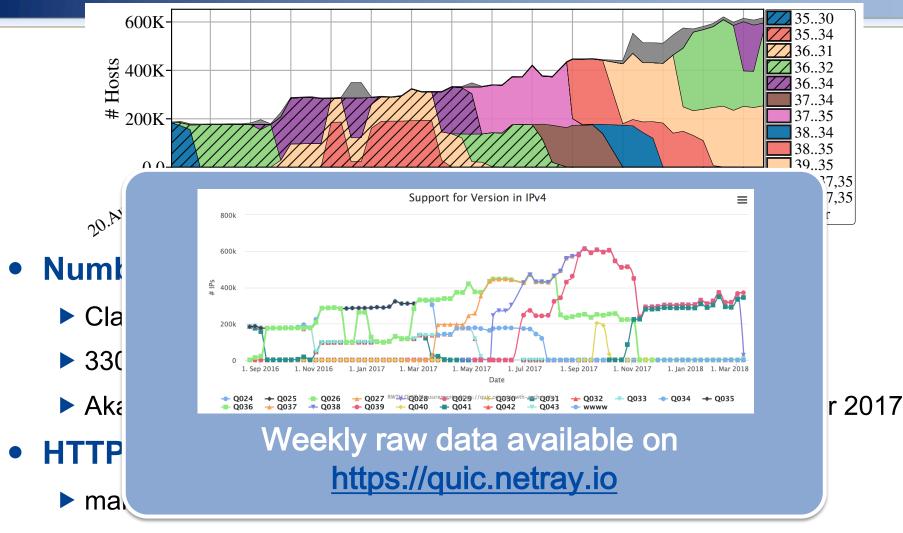

- Send version in first Client Hello (CHLO/Initial)
- If supported, server continues handshake
- Otherwise, sends version negotiation packet

• Use ZMap to test for gQUIC support + version support

- Send a valid CHLO packet
- Include an unused version number that the server does not support
- Module available on github

QUIC in IPv4

• Number of QUIC IPs tripled to 617K IPs


- Classification using AS, certificate data, and reverse DNS
- ▶ 330K (53.53%) IPs can be attributed to Google
- Akamai: 983 in Aug., 44K in Nov. 2016, 251K (40.71%) October 2017

• HTTP via TCP on the remaining IPs reveal

- many timeouts and further Google and Akamai servers
- 7.34K using LightSpeed webserver
- 356 Caddy webservers

QUIC in IPv4

- 7.34K using LightSpeed webserver
- 356 Caddy webservers

Jan Rüth, Ingmar Poese, Christoph Dietzel, Oliver Hohlfeld

https://netray.io

• There are ~150M domains in .com/.net/.org

There are no tools to investigate QUIC

• We build upon quic-go to build a scanner

- We modify the library to trace the whole handshake
- ► We enable to dump all connection parameters that are exchanged
 - Certificates, server config, buffer settings, ...
- Also available on github

• We can efficiently scan TLDs for QUIC support

- We can further analyze the connection parameters
 - Certificates valid?

	06. Oct 2017		03. Oct 2017		04. Oct 2017		08. Oct 2017	
	.com		.net		.org		Alexa 1M	
# Domains	129.36 M	(100.0%)	14.75 M	(100.0%)	10.37 M	(100.0%)	999.94 K	(100.0%)
QUIC-enabled	133.63 K	(0.1%)	8.73 K	(0.06%)	6.51 K	(0.06%)	11.97 K	(1.2%)
Valid Certificate	2.14 K	(0.0%)	181	(0.0%)	159	(0.0%)	342	(0.03%)
Timeout	114.63 M	(88.61%)	10.80 M	(73.23%)	8.09 M	(78.06%)	826.67 K	(82.67%)
Version-failed	29	(0.0%)	6	(0.0%)	1	(0.0%)	5	(0.0%)
Protocol-error	606	(0.0%)	222	(0.0%)	0	(0.0%)	1	(0.0%)
Invalid-IP	322.24 K	(0.25%)	59.24 K	(0.4%)	40.15 K	(0.39%)	15.42 K	(1.54%)
DNS-failure	13.76 M	(10.64%)	2.40 M	(16.26%)	1.18 M	(11.41%)	49.34 K	(4.93%)

► Timeout \rightarrow No QUIC support

In total: 161K domains

- 10% do not deliver any data
- 2.8K with valid certificate
- Only a fraction presents QUIC discovery headers via HTTP(s)

• Is there any QUIC traffic in the Internet then?

• Classifying QUIC traffic

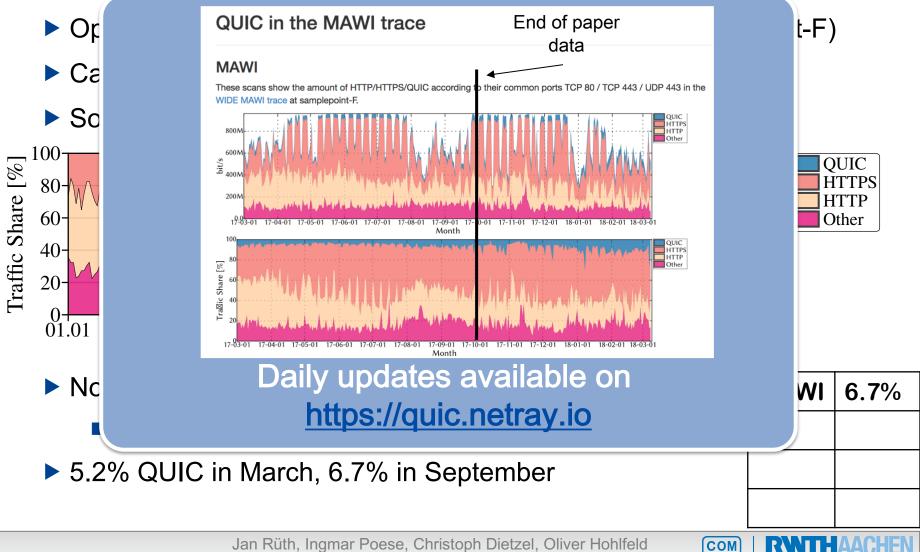
Detecting QUIC on sampled (header) data is hard

• We rely on a port-based classification

- ► UDP Port 443 → QUIC
- ► TCP Port 443 → HTTPS
- ► TCP Port 80 → HTTP


• Depending on the data source we have AS-level information available

QUIC Traffic Shares – Mawi Backbone

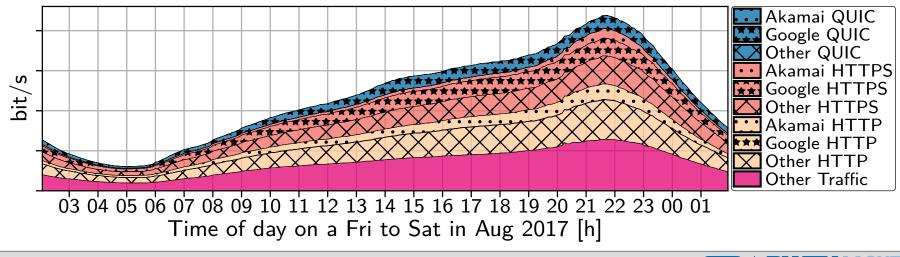

Mawi: University uplink to ISP

- Open dataset: <u>http://mawi.nezu.wide.ad.jp/mawi/</u> (samplepoint-F)
- Capped packet dumps of 15 minutes at 14h each day
- Source and destination have been anonymized

QUIC Traffic Shares – Mawi Backbone

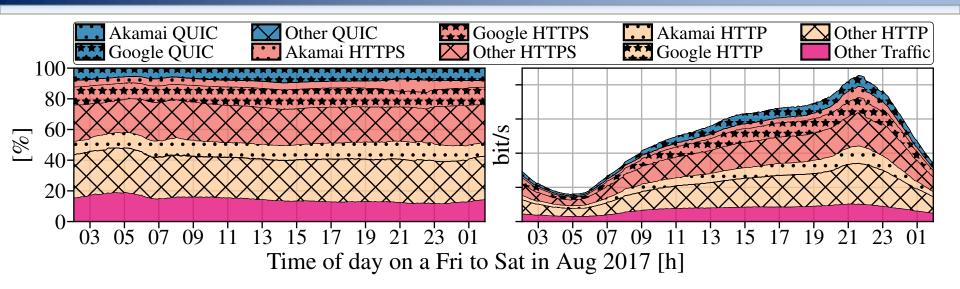
Mawi: University uplink to ISP

Jan Rüth, Ingmar Poese, Christoph Dietzel, Oliver Hohlfeld

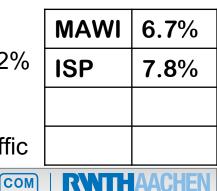


SYS

QUIC Traffic Shares – European Tier-1 ISP

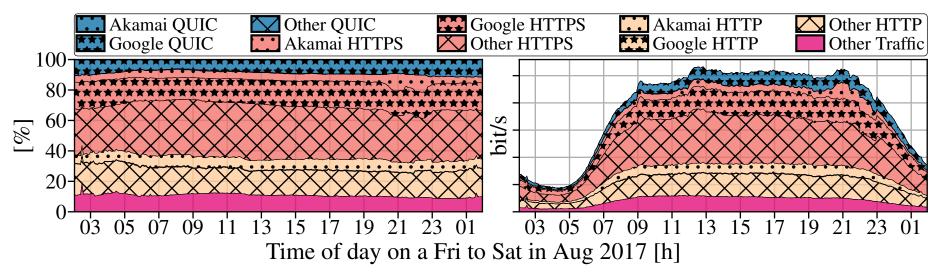

• Anonymized Netflows of all boarder routers

- 1 full day in August 2017 (a Friday to Saturday)
- Netflows aggregated to 5 minute bins
- Upstream and Downstream
- IPs have been replaced by AS numbers
- Contains: edge (DSL,..), cellular, and transit backbone traffic

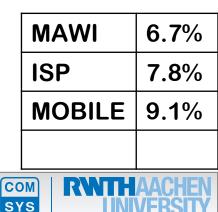


Jan Rüth, Ingmar Poese, Christoph Dietzel, Oliver Hohlfeld

QUIC Traffic Shares – European Tier-1 ISP

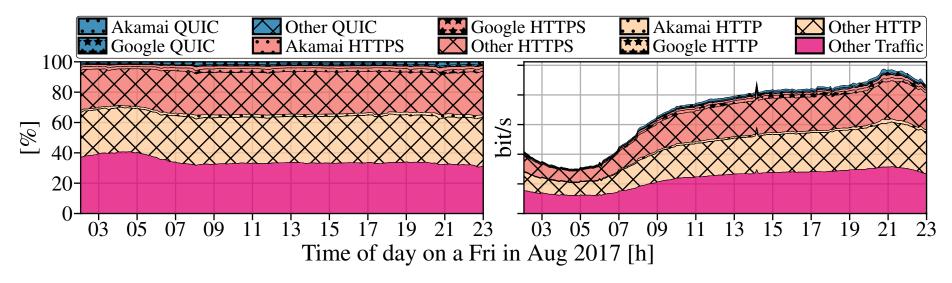


- QUIC share is stable over the day
- QUIC at around 7.8% (±1%)
- HTTP (~38%) and HTTPS (40%) dominate the shares
- 98% of the QUIC traffic is from/to Google AS
 - Of all Google traffic QUIC accounts for ~39% peaking at ~42%
- Almost no QUIC traffic to Akamai (0.1%)
 - Still Akamai causes ~15% of all traffic → Potential QUIC traffic



SYS

QUIC Traffic Shares – Mobile ISP



- ISP told us how to extract mobile traffic from trace
- Mobile traffic pattern differs from classic daily pattern
- QUIC share slightly larger 9.1% (±1.4%)
- Google dominates again
 - ► 34% of their traffic via QUIC

QUIC Traffic Shares – European IXP

- Sampled flow data for the same day in August
 - Flows annotated by customer port
 - Aggregated to 5 minute bins

- QUIC only 2.6% overall
- Akamai accounts for ~60% of the QUIC traffic
 - 33% by Google
- Different traffic engineering strategies?

MAWI	6.7%			
ISP	7.8%			
MOBILE	9.1%			
IXP	2.6%			

SYS

Jan Rüth, Ingmar Poese, Christoph Dietzel, Oliver Hohlfeld

https://netray.io

• QUIC is on the rise!

- A zoo of versions exist! Future compatibility?
- More and more infrastructure is enabled
- Some domains map to this infrastructure, only few can actually use it

• Non-negligible fraction of Internet traffic is QUIC

- Hard to detect in sampled data
- Very vantage point dependent
- Single companies have potential to drastically increase QUIC share
- How does QUIC impact Internet traffic? e.g., Fairness?

COM

SYS

We provide our tools and measurement data, visit <u>https://quic.netray.io</u>

Thank you!

Any questions?

PAM paper on arXiv: https://arxiv.org/abs/1801.05168

Thanks to RWTH Aachen ITC for enabling our measurements

This research is funded by the DFG SPP 1914

COM

SYS

Jan Rüth, Ingmar Poese, Christoph Dietzel, Oliver Hohlfeld

