
http://comsys.rwth-aachen.de/

On the use of TCP's Initial 
Congestion Window in IPv4 and 
by Content Delivery Networks

Jan Rüth, Christian Bormann, Oliver Hohlfeld

London / IETF-101, March 2018



2 Jan Rüth, Christian Bormann, Oliver Hohlfeld

Why look at Initial Windows?

� Initial Window = bootstrap value for cwnd in slowstart
� Number of unacknowledged bytes in the first round trip
� Typically a multiple of the MSS

0 1 2 3 4
RTT

0

100

200

300

400

500

600

700

800

C
W

N
D

4 10 16 20 32 50
Initial Window

0.00
0.03
0.06
0.09
0.12
0.15
0.18

AF
CT

[s]

RTT 30 ms

4 10 16 20 32 50
Initial Window

0.0

0.1

0.2

0.3

0.4
RTT 100 ms

4 MBit/s 7 MBit/s 26 MBit/s 100 MBit/s

4 10 16 20 32 50
Initial Window

0.00

0.25

0.50

0.75

1.00
RTT 250 ms



3 Jan Rüth, Christian Bormann, Oliver Hohlfeld

Why look at Initial Windows?

� TCP bursts the IW in an unprobed network
� Can lead to loss at the bottleneck à bad

0 1
RTT

12
34

10

32

50

C
W

N
D

At the start,
we don’t know

the bottleneck capacity

4 10 16 20 32 50
Initial Window

0

20

40

#
Av

er
ag

e
Re

tr
an

s

QLIM 4 pkts

4 10 16 20 32 50
Initial Window

0

20

40

QLIM 16 pkts
4 MBit/s 7 MBit/s 26 MBit/s 100 MBit/s

4 10 16 20 32 50
Initial Window

0

20

40

QLIM 32 pkts



4 Jan Rüth, Christian Bormann, Oliver Hohlfeld

IW 1
Van Jacobsen 
SIGCOMM ’88

1985 1990 1995 2000 2005 2010 2015 2020

IW 1
1997: RFC 2001

standardized

IW 2-4
1998: RFC 2414

experimental

IW 2-4
2002: RFC 3390

standardized

IW 10
Dukkipati et al.

SIGCOMM CCR 2010

IW 10
2013: RFC 6928 

experimental

IWs measured 
Medina et al.

SIGCOMM CCR 2005

IWs measured 
Padhye and Floyd 

SIGCOMM ‘01

IWs in ISP
Qian et al.
IMC ‘09

IW 10
Linux Kernel

2011

IW unknown

How large is it?



5 Jan Rüth, Christian Bormann, Oliver Hohlfeld

Measuring IWs

� Announce small MSS and large receive window
� Use ACK to test for more data

� Was the host out of data or was the IW actually full?

IMC ’17, November 1–3, 2017, London, United Kingdom Rüth et al.

2 RELATEDWORK
The relevance of TCP’s initial congestion window (IW) size is re-
�ected in an extensive debate and a successive evolution of its
value in the TCP standards over the last decades. Initially, the IW
was set to 1 segment in 1988 [13] and 9 years later standardized in
1997 [24]. This setting was experimentally extended to 2-4 segments
(or 4380 B) in 1998 [3] and one year later moved to a proposed stan-
dard [4]—a setting that remained untouched for a decade. Motivated
by the increase of network access speeds and the desire to reduce
web page loading times, [9] proposed in 2010 and later RFC 6928 [8]
recommended in 2013 to increase the IW to 10 segments. Most
recently, Allman [2] even argues for abandoning a speci�cation of
the IW size and thus ending a decades-long debate. This argument
is motivated by allowing hosts to con�gure more tailored IWs.

Given the relevance of the IW on both �ow completion times and
Internet tra�c burstiness, an empirical understanding of the IW is
necessary to understand current network performance. This under-
standing has been gained in both active and passive measurement
studies. With regards to active measurements, Medina et al. [15]
probed 85 k servers in 2004. The size of the probe set was limited
since prior knowledge of the targets was required—a property that
is not needed in our scan methodology which enables us to probe
the entire IPv4 address space. With regards to passive measure-
ments, Qian et al. [20] inferred IW distributions from several traces
in 2009. While their data set covers traces captured in a diverse
set of networks and also covers non-publicly visible hosts, our IW
assessment based on active measurements allows probing of the
entire IPv4 address space containing all publicly reachable hosts. A
small-scale study by CDNPlanet [7] probed 15 CDNs via HTTP and
found 6 to use IW10 and others to use larger IWs. Further, since no
large-scale assessment is available to track recent changes in IW
parameterization (e.g., IW10 [8] and the proposed abandoning [2]
of default IWs), we argue that an updated view on the current IW
deployment is required. We update this view with an assessment
of TCP’s IW for reachable IPv4 HTTP and TLS hosts.

3 INITIAL WINDOW SCAN DESIGN
We use active measurements to extensively assess TCP’s IW con-
�gurations deployed by HTTP/TLS hosts in the IPv4 space. This
enables us to assess all publicly reachable IPv4 hosts, including con-
tent infrastructure such as CDNs for which the IW can be a relevant
performance aspect. Since the IW size is not advertised in the TCP
headers (e.g., unlike the Maximum Segment Size), the IW size can
only be inferred from the sender’s behavior. This IW size inference
is thus at the core of our methodology, which we detail next.

3.1 General Initial Window Size Inference
We base our scan on the method of Padhye and Floyd [18], which
we summarize and extend next and depict in Figure 1. The IW
estimation starts with performing TCP’s 3-way handshake in which
a certain MSS and a large receive window is announced within
the SYN packet. Advertising a large receive window ensures that
sending is only limited by the IW and not by �ow control. To
infer the IW size, we send a request to trigger a data transfer by
the remote host upon completion of the handshake. The remote
host will either have su�cient data to send, utilizing the full IW,

Our Scanner Probed Host

SYN [MSS=...,WIN=...]
SYN, ACK

ACK, REQUEST

ACK, SEG 1

SEG n
SEG 1

ACK n+1, WIN=2 · MSS
SEG n+1
SEG n+2

RST

Estimate
MSS Timeout

RetransmissionEstimate
IW=n

Verify
IW
full

Figure 1: Scan procedure: A small MSS is announced and ver-
i�ed, preventing to run out of data prior to reaching IW. The
estimated IW is the # bytes received before retransmission.

or stop sending before reaching the full IW size if the request
did not trigger a large enough response. As in [18], we do not
send acknowledgments causing the remote end not to increase the
congestion window and to eventually trigger a retransmit of its
�rst segment. Our scanner can then simply count the bytes and
packets it received and assume this to be the IW.

This basic procedure is challenged by the presence of packet
reordering and loss. To account for these challenges, we inspect
the sequence numbers to detect both events. While this approach
enables us to easily detect reorderings, the detection of packet
loss can be more di�cult. First, if one needs to further analyze
the received data besides the IW assessment, lost packets would
need to be retransmitted, which given the scanners methodology is
impossible. Second, packet loss at the end of the stream (tail loss), i.e.,
in the last packet, cannot be detected and thus may lead to erroneous
IW estimates. Furthermore, TCP tail loss probes could set o� the
estimated value, thus we do not enable selective acknowledgement
e�ectively disabling tail loss probes. Performing multiple scans of
the same host can increase the likelihood of detecting tail loss.

However, the biggest challenge when applying this technique
to an unknown set of hosts is triggering large enough responses
that �ll up the senders IW. This is because, in the absence of prior
knowledge, the response size to a generic request is unknown. In
the event of responses smaller than the con�gured IW, the IW size
cannot be estimated. We address this challenge in two ways.

First, we maximize the number of transmitted segments by lim-
iting the MSS advertised in the TCP handshake. This is possible,
since the IW is con�gured in bytes depending on the advertised
MSS [8]:

IW = min(10 · MSS,max(2 · MSS, 14600)).
This de�nition is twofold: on the one hand, it de�nes an upper limit
in bytes. On the other hand, it suggests to reference the IW just by
the factor employed to the MSS, i.e., by the number of packets. Thus,
by announcing a small MSS, we can e�ectively lower the amount of
response bytes that are required to �ll the IW. However, no standard
de�nes the smallest possible MSS, only a default MSS of 536 B is
de�ned. We therefore examined fresh copies of multiple operating
systems to test for the smallest possible MSS. We observed that

� Loss is a problem
� Actually tail-loss
� Do multiple scans
� Disable tail-loss probes

¾ Do not enable SACK



6 Jan Rüth, Christian Bormann, Oliver Hohlfeld

Scanner implementation

� We want to probe all reachable IPv4 HTTP/TLS hosts

� We implement the methodology in ZMap
� Bypasses the kernel stack

� Typically only used for enumeration
� We enable Zmap to send multiple packets

� We can manually craft connections and manipulate them

� Modified ZMap, HTTP/TLS scanners available on Github
� https://github.com/COMSYS/zmap

https://github.com/COMSYS/zmap


7 Jan Rüth, Christian Bormann, Oliver Hohlfeld

� TLS and HTTP do not agree
� Many TLS hosts still use IW 4

� HTTP scan triggers many abuse mails
� In contrast to TLS, this appears in access logs

� How much scanning is enough?

1 2 3 4 5 6 9 10 11 20 25 30 48 64
Initial Window Size

0
10
20
30
40
50
60

Fr
ac

tio
n

of
IP

s
[%

]
HTTP

TLS HTTP

TLS
HTTP

TLS

HTTP 1%
HTTP 30%
HTTP 100%
TLS 50 %
TLS 10 %

HTTP 10%
HTTP 50%
TLS 100 %
TLS 30 %
TLS 1 %

Results – IPv4 HTTP/TLS



8 Jan Rüth, Christian Bormann, Oliver Hohlfeld

Results – Alexa 1M

� Most people in the Alexa list follow current RFCs
� Here: similar distribution for HTTP and TLS

� Generally, we see older IWs in Access Networks
� What about CNDs?

1 2 3 4 5 6 9 10 11 14 16 24 48
Initial Window Size

101

102

103

104

105

106

#
IP

s

7% 7%

85%

8%
11%

80% HTTP
TLS



9 Jan Rüth, Christian Bormann, Oliver Hohlfeld

� Get large URLs from HTTPArchive for each CDN
� Use regular-sized MSS (enough data)

� Use HTTP to request resources

� Also announce Window Scaling Option 

� CDN B is 10x over current IETF standard, most are under IW 50

� CDNs customize IWs for different customers

5.8
14.6
23.4
35.0
46.7

73.0

102.2

146.0

In
iti

al
W

in
do

w
[k

B]

CDN A
CDN B
CDN C
CDN D
CDN E
CDN F

CDN Q

CDN B

CDN G
CDN I
CDN J

CDN G
CDN H

CDN K
CDN L
CDN M

CDN E CDN N
CDN O

CDN P

4
10
16
24
32

50

70

100

In
iti

al
W

in
do

w
[S

eg
m

en
ts

]

Content Delivery Networks



10 Jan Rüth, Christian Bormann, Oliver Hohlfeld

Conclusion

� Distributions dominated by RFC-recommended values
� Still a lot of IW 2 and IW 4

� Popular hosts seem to be on IW 10

� We also find some customization
� Some hosts have very large IWs

� CDNs are far beyond current standards

¾Some even customize for different networks

� Periodic 1% scans are available at 
https://iw.netray.io

� Source code available at
https://github.com/COMSYS/zmap

https://iw.netray.io/
https://github.com/COMSYS/zmap


11 Jan Rüth, Christian Bormann, Oliver Hohlfeld

Thank you!

Any questions?

Thanks to RWTH Aachen ITC for enabling our measurements


