
MLS BOF

 Messaging Layer Security

Chair Slides:
Nick & Sean

IETF 101
1

NOTE
WELL

2

This is a reminder of IETF policies in effect on various topics such as patents or code of conduct. It is only meant to
point you in the right direction. Exceptions may apply. The IETF's patent policy and the definition of an IETF
"contribution" and "participation" are set forth in BCP 79; please read it carefully.

As a reminder:

● By participating in the IETF, you agree to follow IETF processes and policies.
● If you are aware that any IETF contribution is covered by patents or patent applications that are owned or

controlled by you or your sponsor, you must disclose that fact, or not participate in the discussion.
● As a participant in or attendee to any IETF activity you acknowledge that written, audio, video, and

photographic records of meetings may be made public.
● Personal information that you provide to IETF will be handled in accordance with the IETF Privacy Statement.
● As a participant or attendee, you agree to work respectfully with other participants; please contact the

ombudsteam (https://www.ietf.org/contact/ombudsteam/) if you have questions or concerns about this.

Definitive information is in the documents listed below and other IETF BCPs. For advice, please talk to WG chairs or
ADs:

● BCP 9 (Internet Standards Process)
● BCP 25 (Working Group processes)
● BCP 25 (Anti-Harassment Procedures)
● BCP 54 (Code of Conduct)
● BCP 78 (Copyright)
● BCP 79 (Patents, Participation)
● https://www.ietf.org/privacy-policy/ (Privacy Policy)

https://www.ietf.org/contact/ombudsteam/
https://www.rfc-editor.org/info/bcp9
https://www.rfc-editor.org/info/bcp25
https://www.rfc-editor.org/info/bcp25
https://www.rfc-editor.org/info/bcp54
https://www.rfc-editor.org/info/bcp78
https://www.rfc-editor.org/info/bcp79
https://www.ietf.org/privacy-policy/

Requests
Minute Taker(s)

Jabber Scribe(s)

Sign Blue Sheets

3

Info
List: https://www.ietf.org/mailman/listinfo/mls

Jabber: mls@jabber.ietf.org

https://www.ietf.org/mailman/listinfo/mls

Agenda

5min Agenda bashing
30min Problem statement
15min Architecture
15min (draft) Protocol
15min State of formal analysis
30min Charter text discussion
10min BOF questions

4

Problem
Statement

5

Messaging
Layer
Security

Problem Statement

Context
Lots of secure messaging apps

Some use similar protocols...

… some are quite different

Wildly different levels of analysis

Everyone maintaining their own libraries

Goals
Detailed specifications for an async group messaging security protocol

Code that is reusable in multiple contexts

Robust, open security analysis and involvement from the academic community

Non-goal: Application-level interoperability

What do we want?
Async - Support sessions where no two participants are online at the same time

Group Messaging - Support large, dynamic groups with efficient scaling

Security Protocol - Modern security properties

Forward security

Post-compromise security

Membership authentication

Non-goals: Full-time deniability, malleability

Endpoint
Compromise

Time

Forward Security Post-Compromise Security

FS / PCS Interval

Establish intuition:
FS ~> DH
PCS ~> Keep around DH, rotate DH

Prior Art
MIKEY Similar options to S/MIME / OpenPGP

GDOI Trusted (symmetric) key server

mpOTR, (n+1)sec No PCS

S/MIME, OpenPGP Linear scaling, difficult to achieve PCS

Client fanout Linear scaling, but good async / PCS properties
Signal, Proteus, iMessage, et al.

Sender Keys Linear scaling, but good async / PCS properties
FB Messenger, OMEMO, Olm, et al.

Key Ideas from Prior Art
Alice Bob

InitKey(g^a)

g^b

g^c

g^d

g^ab

g^bc

g^cd

PCS w.r.t. a

PCS w.r.t. b

k0

k1

k2

k3

...

FS bound
“InitKeys” (or “prekeys”) for async

“Hash ratchets” forward secrecy

“DH ratchets” for PCS

Scope (with analogy to TLS)

Transport
(TCP / UDP)

Message Content
(HTTP, SMTP, SIP, …)

Security Protocol
(TLS / DTLS)

Authentication
(PKI)

Certificate[Verify]

Architecture
14

 Architecture
emadomara@google.com

@emad_omara

MLS

mailto:emadomara@google.com

System Overview

A1 A2

A3

B1 B2 C1

Delivery ServiceAuthentication Service

D1 D2

Group (A,B,C)

Member A Member B Member C Member D

System Overview

Delivery ServiceAuthentication Service

● Stores user ids to
identity key mappings

● Distributes and
delivers messages
and attachments

● Stores initial key
materials (initKeys)

● *Stores group
membership

System Overview

A1 A2

A3

B1 B2 C1 D1 D2

Group (A,B,C)

Member A Member B Member C Member D

● Register
● Send message
● Invite member
● Join group
● Add device

● Create group
● Receive message
● Remove member
● Leave group
● Remove device

Functional Requirements

● Scalable
○ Support group size up to 50,000 clients

● Asynchronous
○ All client operations can be performed without waiting for the other clients to be online

● Multiple devices
○ Devices are considered separate clients
○ Restoring history after joining is not allowed by the protocol, but Application can provide that.

● State recovery
○ Lost/Corrupted state must be recovered without affecting the group state.

● Metadata collection
○ AS/DS must only store data required for message delivery

● Federation
○ Multiple implementation should be able to interoperate

● Versioning
○ Support version negotiation

Security Requirements

● Message secrecy, integrity and authentication
○ Only current group member can read messages
○ Messages are only accepted if it was sent by a current group member
○ *Message padding to protect against traffic analysis

● Forward secrecy and post compromise security
● Group membership security

○ Consistent view of group members
○ Added clients can’t read messages sent before joining
○ Removed clients can’t read messages sent after leaving

● Attachments security
● Data origin authentication and *deniability

● Delivery service compromise
○ Must not be able to read or inject messages
○ Modified, reordered or replayed messages must be detected by the clients
○ It can mount various DoS attacks.

● Authentication service compromise
○ Can return incorrect identities to the client
○ Can’t be defeated without transparency logging such as KT

● Client compromise
○ Can read and send messages to the group for a period of time
○ It shouldn’t be able to perform DoS attack.
○ Will be defeated once the compromised client updates their key material

Security Considerations

(draft) Protocol
22

Messaging Layer Security
Draft Protocol

Jon Millican

jmillican@fb.com

Protocol Operations

• Group state at each point in time is an “asynchronous ratcheting
tree”

• Each participant caches a view of the tree
• Protocol operations update the participants’ view of the tree

• Group Creation
• Group-initiated Add
• User-initiated Add
• Key Update
• Remove

Asynchronous Ratcheting Tree

• (Cohn-Gordon et al., 2017, https://eprint.iacr.org/2017/666.pdf)

• Based on a Diffie-Hellman binary key tree.

• Updates to any leaf in logarithmic time.

• Asynchronous operation.

• Proofs of confidentiality of group keys in static groups.

• MLS defines some things that the original paper leaves out of scope:
• More constraints on tree structure
• Membership changes.
• Race conditions.

DH output -> DH key pair

• Derive-Key-Pair maps random bit strings to DH key pairs
• Resulting private key known both original private key holders

 AB = Derive-Key-Pair(DH(A,B))
 / \
A B

e.g.:
 Derive-Key-Pair(X) = X25519-Priv(SHA-256(X))

DH Trees

 ABCDEFG
 / \
 / \
 ABCD EFGH
 / \ / \
 AB CD EF |
 / \ / \ / \ |
A B C D E F G

Part Role
=======================
Root Group Key
Direct Path Update
Copath Add
Frontier Add

leaf + copath -> root
frontier = copath(next)

Group Evolution

 +-> Msg Secret +-> Msg Secret +-> Msg Secret
 | | |
... --> KDF -+-> Init Secret --> KDF -+-> Init Secret --> KDF -+-> Init Secret -->
...
 ^ ^ ^
 | | |
 Update Update Update
 Secret Secret Secret
 ^ ^ ^
 | | |
 Tree Tree Tree
 Root Root Root

Operation 0: Create group

• Can be created directly.
• Can be created by starting with an one-member

group, then doing add operations.

• Current draft does the latter, so there’s no
protocol for creation.

• ART paper specifies the former, but we
don’t use in the draft yet.

 ABCDEFG
 / \
 / \
 ABCD EFGH
 / \ / \
 AB CD EF |
 / \ / \ / \ |
A B C D E F G

Operation 1: Group-Initiated Add

 ABCD
 / \
 AB CD
 / \ / \
A B C D
 / \
 Add Key Init

struct {
 UserInitKey init_key;
} GroupAdd;

// Pre-published UserInitKey for
// asynchronicity

// NB: Add Key has implications
// for removals; “double join”

Operation 2: User-Initiated Add

 ABCD
 / \
 AB CD
 / \ / \
A B C D

struct {
 DHPublicKey add_path<1..2^16-1>;
} UserAdd;

// Pre-published frontier in
// GroupInitKey for asynchronicity

Operation 3: Key Update (for PCS)

 ABCD
 / \
 AB CD
 / \ / \
A B C D

struct {
 DHPublicKey
ratchetPath<1..2^16-1>;
} Update;

// This approach to confidentiality
// is proved in [ART]

Operation 4: Remove

 AXCD
 / \
 AX CD
 / \ / \
A X C D

struct {
 uint32 deleted;
 DHPublicKey path<1..2^16-1>;
} Delete;

// To lock out, update to a key the
// deleted node doesn’t know

// “Double join” issues similar to
// GroupAdd

Open Issues

• Tuning up, proving FS and PCS properties of the operations
• … especially Add, Remove

• Logistical details, especially around Remove
• Message sequencing
• Message protection, transcript integrity
• Authentication

• Current draft has a very basic scheme, needs elaboration
• Deniable authentication?

• *Attachments

Summary

• Group keys derived from an Asynchronous Ratcheting Tree
• Group operations update the tree

• Creation
• Group-Initiated Add
• User-Initiated Add
• Update
• Remove

• Several open issues to address in the WG

Formal Analysis
36

the ART of analysing
MLS

Katriel Cohn-Gordon
University of Oxford

people involved

● Karthik (HACL*, miTLS, F*)
● Benjamin (F*, NSS)
● Cas (Tᴀᴍᴀʀɪɴ, TLS 1.3)
● Katriel (Signal, PCS)
● ...

similar projects
● F*
● miTLS
● TLS 1.3: the swamp
● 5G-ENSUUUUURE
● ...

analysis status

● properties fairly well understood
○ secrecy, authentication
○ agreement on members
○ post-compromise security

● ART construction is new but has
some early formal analysis
○ On Ends-to-Ends Encryption

https://ia.cr/2017/666
○ Katriel, Cas, Luke, Kevin, Jon

● full group protocol: more to do!

a bit more on the formal analysis

going forward

● precise definitions of the
properties we would like
○ interactions with “practical”

constraints such as recovery
from lost devices

○ general enough to cover
different use cases

● proofs for the whole system
○ authentication
○ malicious insiders
○ adding and removing people

● verified implementations in F*?

tl;dr

no proofs yet, but early work on
ART and we’re still going :)

Charter Text
43

44

Several Internet applications have a need for group key establishment and message

protection protocols with the following properties:

● Asynchronicity - Keys can be established without any two participants being

online at the same time

● Forward secrecy - Full compromise of a node at a point in time does not

reveal past group keys

● Post-compromise security - Full compromise of a node at a point in time does

not reveal future group keys

● Membership Authentication - Each participant can verify the set of members in

the group

● Message Authentication - Each message has an authenticated sender

● Scalability - Resource requirements that have good scaling in the size of the

group (preferably sub-linear)

45

Several widely-deployed applications have developed their own protocols to meet

these needs. While these protocols are similar, no two are close enough to

interoperate. As a result, each application vendor has had to maintain their own

protocol stack and independently build trust in the quality of the protocol. The

primary goal of this working group is to develop a standard messaging security

protocol so that applications can share code, and so that there can be shared

validation of the protocol (as there has been with TLS 1.3).

It is not a goal of this group to enable interoperability between messaging

applications beyond the key establishment, authentication, and confidentiality

services. Full interoperability would require alignment at many different layers

beyond security, e.g., standard message transport and application semantics. The

focus of this work is to develop a messaging security layer that different

applications can adapt to their own needs.

46

In developing this protocol, we will draw on lessons learned from several prior

message-oriented security protocols, in addition to the proprietary messaging

security protocols deployed within existing applications:

- S/MIME | OpenPGP | Off the Record | Signal

The intent of this working group is to follow the pattern of TLS 1.3, with

specification, implementation, and verification proceeding in parallel. By the

time we arrive at RFC, we hope to have several interoperable implementations as

well as a thorough security analysis.

The specifications developed by this working group will be based on

pre-standardization implementation and deployment experience, and generalizing the

design described in:

● draft-omara-mls-architecture

● draft-barnes-mls-protocol

https://tools.ietf.org/html/rfc5751
https://tools.ietf.org/html/rfc4880
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html
https://signal.org/docs/

47

Note that consensus is required both for changes to the current protocol

mechanisms and retention of current mechanisms. In particular, because something

is in the initial document set does not imply that there is consensus around the

feature or around how it is specified.

Milestones:

May 2018 Initial working group documents for architecture and key management

Sept 2018 Initial working group document adopted for message protection

Jan 2019 Submit architecture document to IESG as Informational

Jun 2019 Submit key management protocol to IESG as Proposed Standard

Sept 2019 Submit message protection protocol to IESG as Proposed Standard

Scoping
Questions

48

Should the IETF
do the work?

Does the scope sound reasonable?

Are the boundaries presented suitable for a
security analysis?

Do we agree that the application layer
interface is the correct place to enable visibility
requirements should they exist?

Do the documents presented represent a
good starting point?

Is this proposal flexible enough for the
common use cases of secure messaging
applications?

49

BOF Questions
50

Successful
BOF Questions

→→→→→→→→

Is the problem sufficiently understood?

Is the problem tractable?

Is this the right place to address
“the problem”?

Who is willing to author specs?

Who is willing to review specs?

51

Backup
52

