MLS BOX

&> Messaging Layer Security ﬂ
Chair Slides: @
Nick & Sean
IETF 101 m

NOTE
WELL

This is a reminder of IETF policies in effect on various topics such as patents or code of conduct. It is only meant to
point you in the right direction. Exceptions may apply. The IETF's patent policy and the definition of an IETF
"contribution" and "participation" are set forth in BCP 79; please read it carefully.

As a reminder:

By participating in the IETF, you agree to follow IETF processes and policies.
If you are aware that any IETF contribution is covered by patents or patent applications that are owned or
controlled by you or your sponsor, you must disclose that fact, or not participate in the discussion.

° As a participant in or attendee to any IETF activity you acknowledge that written, audio, video, and
photographic records of meetings may be made pubilic.
Personal information that you provide to IETF will be handled in accordance with the IETF Privacy Statement.
As a participant or attendee, you agree to work respectfully with other participants; please contact the
ombudsteam (https://www.ietf.org/contact/ombudsteam/) if you have questions or concerns about this.

Definitive information is in the documents listed below and other IETF BCPs. For advice, please talk to WG chairs or
ADs:

BCP 9 (Internet Standards Process)

BCP 25 (Working Group processes)

BCP 25 (Anti-Harassment Procedures)

BCP 54 (Code of Conduct)

BCP 78 (Copyright)

BCP 79 (Patents, Participation)
https://www.ietf.org/privacy-policy/ (Privacy Policy)

https://www.ietf.org/contact/ombudsteam/
https://www.rfc-editor.org/info/bcp9
https://www.rfc-editor.org/info/bcp25
https://www.rfc-editor.org/info/bcp25
https://www.rfc-editor.org/info/bcp54
https://www.rfc-editor.org/info/bcp78
https://www.rfc-editor.org/info/bcp79
https://www.ietf.org/privacy-policy/

Requests Info

Minute Taker(s) List: https://www.ietf.org/mailman/listinfo/mls

Jabber Scribe(s) Jabber: mls@jabber.ietf.org

Sign Blue Sheets

https://www.ietf.org/mailman/listinfo/mls

5min Agenda bashing
30min Problem statement
15min Architecture

15min (draft) Protocol
15min State of formal analysis
30min Charter text discussion
10min BOF questions

Problem
Statement

Layer a
Security @

Problem Statement ﬂ

Lots of secure messaging apps
Some use similar protocols...

... sSome are quite different
Wildly different levels of analysis

Everyone maintaining their own libraries

Detailed specifications for an async group messaging security protocol

Code that is reusable in multiple contexts

Robust, open security analysis and involvement from the academic community

Non-goal: Application-level interoperability

What do we want?

Async - Support sessions where no two participants are online at the same time
Group Messaging - Support large, dynamic groups with efficient scaling
Security Protocol - Modern security properties

Forward security

Post-compromise security

Membership authentication

Non-goals: Full-time deniability, malleability

Establish intuition:
FS ~> DH

PCS ~> Keep around DH, rotate DH

Forward Security

-Z.me

Post-Gompromise Security

EFS / PCS Interval

Prior Art

MIKEY

GDOI

mpOTR, (n+1)sec
S/MIME, OpenPGP

Client fanout

Signal, Proteus, iMessage, et al.

Sender Keys

FB Messenger, OMEMO, OlIm, et al.

Similar options to S/MIME / OpenPGP
Trusted (symmetric) key server

No PCS

Linear scaling, difficult to achieve PCS

Linear scaling, but good async / PCS properties

Linear scaling, but good async / PCS properties

Key Ideas from Prior Art
X Alice Bob

{ InitKey(g”a)

g”b

“InitKeys” (or “prekeys”) for async

FS bound
“Hash ratchets” forward secrecy

DH ratchets” for PCS PCS w.r.t. a

PCS w.r.t. b

Scope (with analogy to TLS)

Certificate[Verify]
Message Content
(HTTP, SMTP, SIP, ..)

Authentication
(PKI)

Security Protocol
(TLS / DTLS)

Transport
(TCP/UDP)

Architecture

@ Archiiecture

emadomara@google.com
@emad_omara

mailto:emadomara@google.com

System Overview

Group (A,B,C)

System Overview

e Stores user ids to
identity key mappings

Distributes and
delivers messages
and attachments
Stores initial key
materials (initKeys)
*Stores group
membership

System Overview

e Register e Create group

e Send message e Receive message
e Invite member e Remove member
e Join group e Leave group

e Add device e Remove device

Group (A,B,C)

e Scalable
o Support group size up to 50,000 clients
e Asynchronous
o All client operations can be performed without waiting for the other clients to be online
e Multiple devices
o Devices are considered separate clients
o Restoring history after joining is not allowed by the protocol, but Application can provide that.
e State recovery
o Lost/Corrupted state must be recovered without affecting the group state.
e Metadata collection
o AS/DS must only store data required for message delivery
e Federation
o Multiple implementation should be able to interoperate
e \ersioning
o Support version negotiation

Security Requirements

Message secrecy, integrity and authentication
o Only current group member can read messages
o Messages are only accepted if it was sent by a current group member
o *Message padding to protect against traffic analysis
e Forward secrecy and post compromise security
e Group membership security
o Consistent view of group members
o Added clients can’t read messages sent before joining
o Removed clients can’t read messages sent after leaving
e Attachments security
e Data origin authentication and *deniability

Security Gonsiderations

e Delivery service compromise
o Must not be able to read or inject messages
o Modified, reordered or replayed messages must be detected by the clients
o It can mount various DoS attacks.
e Authentication service compromise
o Canreturn incorrect identities to the client
o Can’t be defeated without transparency logging such as KT
e Client compromise
o Canread and send messages to the group for a period of time
o It shouldn’t be able to perform DoS attack.
o Will be defeated once the compromised client updates their key material

(draft) Protocol

Messaging Layer Security

Draft Protocol

Jon Millican
jmillican@fb.com

Protocol Operations

* Group state at each point in time is an “asynchronous ratcheting
tree”

* Each participant caches a view of the tree
* Protocol operations update the participants’ view of the tree
* Group Creation
* Group-initiated Add
» User-initiated Add
* Key Update
* Remove

Asynchronous Ratcheting Tree

* (Cohn-Gordon et al., 2017, https://eprint.iacr.org/2017/666.pdf)
* Based on a Diffie-Hellman binary key tree.

e Updates to any leaf in logarithmic time.

* Asynchronous operation.

* Proofs of confidentiality of group keys in static groups.

* MLS defines some things that the original paper leaves out of scope:
* More constraints on tree structure
* Membership changes.
* Race conditions.

DH output -> DH key pair

* Derive-Key-Pair mapsrandom bit strings to DH key pairs
* Resulting private key known both original private key holders

AB = Derive-Key-Pair (DH(A,B))

/\
A B

e.g.:
Derive-Key-Palr (X) = X25519-Priv (SHA-256 (X))

DH Trees

/

ABCDEFG

\

\

EF

Root Group Key
Direct Path Update

Copath Add
Frontier Add

leaf + copath -> root
frontier = copath (next)

Group Evolution

+-> Msg Secret +-> Msg Secret +-> Msg Secret

--> KDF -+-> Init Secret --> KDF -+-> Init Secret --> KDF -+-> Init Secret -->

| | |
Update Update Update
Secret Secret Secret

| | |
Tree Tree Tree

Root Root Root

Operation O: Create group

* Can be created directly.

* Can be created by starting with an one-member
group, then doing add operations.

* Current draft does the latter, so there’s no
protocol for creation.

* ART paper specifies the former, but we
don’t use in the draft yet.

Operation 1: Group-Initiated Add

struct {
UserInitKey init key; /
} GroupAdd;

// Pre-published UserInitKey for / \ /
// asynchronicity 2 B C

// NB: Add Key has implications /
// for removals; “double join” Add Key Init

Operation 2: User-Initiated Add

struct ABCD
DHPublicKey add path<l..2716-1>; / \
} UserAdd;
AB CD
// Pre-published frontier in / \ /

// GroupInitKey for asynchronicity N B C

\

Operation 3: Key Update (for PCS)

struct { ABCD
DHPublicKey / \
ratchetPath<l..2%16-1>;
} Update; AB CD
/ 0\ /

// This approach to confidentiality
// is proved in [ART]

Operation 4: Remove

struct {

uint32 deleted;

DHPublicKey path<l..2716-1>;
} Delete;

// To lock out, update to a key the
// deleted node doesn’t know

// “Double join” issues similar to
// GroupAdd

A

/

AXCD

Open Issues

* Tuning up, proving FS and PCS properties of the operations
e ... especially Add, Remove

* Logistical details, especially around Remove
* Message sequencing
* Message protection, transcript integrity

 Authentication

* Current draft has a very basic scheme, needs elaboration
* Deniable authentication?

e *Attachments

Summary

* Group keys derived from an Asynchronous Ratcheting Tree
* Group operations update the tree

Creation

Group-Initiated Add

User-Initiated Add

Update

Remove

e Several open issues to address in the WG

Formal Analysis

the ART of analysing
MLS

Katriel Cohn-Gordon
University of Oxford

people involved

Karthik (HACL", miTLS, F")
Benjamin (F*, NSS)

Cas (TAMARIN, TLS 1.3)
Katriel (Signal, PCS)

similar projects
-
MITLS

TLS 1.3 the swamp
5G-ENSUUUUURE

On Ends-to-Ends Encryption

Asynchronous Group Messaging with Strong Security Guarantees

Abstract—In the past few years secure mesaging has become
‘mainstream, with over a bilion active users of end-to-end encryp-
tion protocols through apps such as Whats App, Signal, Facehaak
Messenger, Google Allo, Wire and many mare. While thee
users’ two-purty communications now enjoy very strong security
guarantees, it turns out that many aof these apps provide, without
notifying the users, a weaker property for group messaging: an
adversary who compromises a single group member can intercept
communications indefinitely.

One reason for this discrepancy in security guarantees, despite
the large body of work on group Key agreement, i that most
existing protocol designs are fundamentally synchronous, and
thus cannol be used in the asynchronous workl of mobile
communications. In this paper we show that this i not necessary,
presenting a design for a treebased group Key exchange protocal
in which no two parties ever need to be online at the same
time, which we call Asynchronous Ratcheting Tree (ART). ART
achieves strang security guarantees, in particular induding post-
compromise security.

We give a computational security proof for ART's core design
s well as a proof-al-concept implementation, showing that ART
scakes efficiently even to large groups. Our results show that
strong security guarantees for group messaging are achievable
even in the madern, aynchronous setting, without resorting to
using inefficient paint-to-paint communications for karge groups.
By building an standard and well-studied constructions, our
hope i that many existing salutions can be applied while still
respecting the practical constraints of mobile devices.

L INTRODUCTION

The level of security offered by secure messaging systems
has improved substantially over recent years: for example,
WhatsApp now provides end-10-end encryption for its bil-
lion active users, basad on Open Whisper Systems' Signal
Protocol (34, 45), and the Guardian publishes Signal contact
details for its investigative joumalism teams [21). An imporntant
constraint of modem messaging systems, compared to related
prowcols such as those used for key exchange, is that they
must allow for asynchronous communicagon: Alice must be
able © send a message © Bob even if Bob b curmently offline.
Typically, the encrypted message is emporasily stored on a
{possibly untrusted) server, 10 be delivered to Bob once he
comes online again.

Asynchronicity means tha standard solutions to achieve
perfect forward secrecy (PFS), such as a Diffie-Hellman
{DH) key exchange, do not apply directly. This has driven
the development of nowl techniques 1o achieve PFS without
ineraction, e.g., using sets of “prekeys™ [33] that Bob uploads
10 a server, essentially serving as precomputed DH keys, or
by using punctursble encryption [20].

Mareover, some modern messaging protocols offera property
called Post-Compromise Secusity (PCS) [12], sometimes

referred 1o as “future secrecy™ or “self-healing™. For PCS, even
after Alice's device is entirely compromied by an adversary,
she may later be abk to establish secure communications
with others after a single unintercepted exchange. PCS limits
the scope of a compromise, forcing an adversary 1o act as a
permanent active man-in-the-middle if they wish 1o exploit
knowledge of a long-term key. Thus far, PCS-styke properties
have only been proven for point-to-point protocols [11], and
they are only achievable by stateful protocok [12).

In practice however, point-to-point communication does not
suffice for real-world messaging applications, in which group
and multi-device messaging are ofien imponant features. In
theory, it is easy 1o solve this: Alice uses the point-1o-point
protocol with each of her communication panners. However,
& group sizes become larger, this leads o ineflicient systems
in which the bandwidth and computational cost for sending a
message grows linearly with the group size (as each recipient
gets their own, differently encrypied, copy of the message). In
many real-world scenarios, this inefliciency can be problematic,
especially in aress with restricted bandwidth or high data costs.
{e.g.. 2G natworks in the developing workd). The 2015 Stax
of Connectivity repont by inemetorg [22) lists affordability
of mobile data as one of the four major barriers 10 glhobal

ity, with a developing-world average monthly dat
use of just 255 MB/device.

Instead of using a point-10-point protocol with each group
member, a theoretical altemative is to use a graup prowecd (7,
8, 14, 24, 25, 26, 27, 28, 31, 37, 38). These typically use
tree structres based on DH keys 1o combine the participans’
individual keys ino a group key. This reduces both the
computational effort and bandw idth required 1 send a message,
& the sender sends only one copy of each message encrypted
under the group key. However, such prowcols are in general
not asynchronous, and do not consider PCS—they do not make
any guarankees afier the adversary complktely compromises a
participant.

Synchronicity of existing group protocols, among other
considerations, means that modem messaging protocols which
provide PCS for two-party communications generally drop
this guarankee for their group messaging implementations
without notifying the users. For example, WhasApp, Facebook
Messenger and the Signal app have mechanisms 1o achieve
PCS for wo-pany communications, but for conversations
contining three or more devices they use a simpler key-
transport mechanism (“sender keys”) which does not achieve
PCS [16, 45). Indeed, in all three systems, an adversary who
fully compromises a single group member can indefinitely and
passively read future communications in that group (though

analysis status

properties fairly well understood
o secrecy, authentication
o agreement on members
O post-compromise security

ART construction is new but has
some early formal analysis
o On Ends-to-Ends Encryption
https.//ia.cr/2017/666
o Katriel, Cas, Luke, Kevin, Jon

full group protocol: more to do!

a bit more on the formal analysis

Theorem VI.1. Let np, ng and nt denote bounds on the num-
ber of parties, sessions and stages in the security experiment
respectively. Under the decisional DH assumption, where . is
instantiated as a random oracle, the success probability of any
ppt adversary against the key indistinguishability game of our
protocol is bounded above by

npnsnrt
+ ((21) +7(npnsnt?)” (eppr + 1/a) + negl(A)

where eppy bounds the advantage of a PPT adversary against
the decisional DH game.

N | =

going forward

e precise definitions of the
- —. properties we would like
- o interactions with "practical’
constraints such as recovery
from lost devices
o general enough to cover
different use cases

e proofs for the whole system
o authentication
o malicious insiders
o adding and removing people

e verified implementations in F*?

tl:dr

No proofs yet, but early work on
ART and we're still going :)

Charter Text

Several Internet applications have a need for group key establishment and message
protection protocols with the following properties:
e Asynchronicity - Keys can be established without any two participants being
online at the same time
e Forward secrecy - Full compromise of a node at a point in time does not
reveal past group keys
® Post-compromise security - Full compromise of a node at a point in time does
not reveal future group keys
e Membership Authentication - Each participant can verify the set of members in
the group
Message Authentication - Each message has an authenticated sender
Scalability - Resource requirements that have good scaling in the size of the
group (preferably sub-linear)

44

Several widely-deployed applications have developed their own protocols to meet
these needs. While these protocols are similar, no two are close enough to
interoperate. As a result, each application vendor has had to maintain their own
protocol stack and independently build trust in the quality of the protocol. The
primary goal of this working group is to develop a standard messaging security
protocol so that applications can share code, and so that there can be shared
validation of the protocol (as there has been with TLS 1.3).

It i{s not a goal of this group to enable interoperability between messaging
applications beyond the key establishment, authentication, and confidentiality
services. Full interoperability would require alignment at many different layers
beyond security, e.g., standard message transport and application semantics. The
focus of this work is to develop a messaging security layer that different
applications can adapt to their own needs.

45

In developing this protocol, we will draw on lessons learned from several prior
message-oriented security protocols, in addition to the proprietary messaging
security protocols deployed within existing applications:

- S/MIME | OpenPGP | Off the Record | Signal

The intent of this working group is to follow the pattern of TLS 1.3, with
specification, implementation, and verification proceeding in parallel. By the
time we arrive at RFC, we hope to have several interoperable implementations as
well as a thorough security analysis.

The specifications developed by this working group will be based on
pre-standardization implementation and deployment experience, and generalizing the
design described in:

e draft-omara-mls-architecture

e draft-barnes-mls-protocol

https://tools.ietf.org/html/rfc5751
https://tools.ietf.org/html/rfc4880
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html
https://signal.org/docs/

Note that consensus is required both for changes to the current protocol
mechanisms and retention of current mechanisms. In particular, because something
is in the initial document set does not imply that there is consensus around the
feature or around how it is specified.

Milestones:

May 2018 Initial working group documents for architecture and key management
Sept 2018 Initial working group document adopted for message protection

Jan 2019 Submit architecture document to IESG as Informational

Jun 2019 Submit key management protocol to IESG as Proposed Standard

Sept 2019 Submit message protection protocol to IESG as Proposed Standard

47

48

Should the IETE

do the work?

Does the scope sound reasonable?

Are the boundaries presented suitable for a
security analysis?

Do we agree that the application layer
interface is the correct place to enable visibility
requirements should they exist?

Do the documents presented represent a
good starting point?

Is this proposal flexible enough for the
common use cases of secure messaging
applications?

49

50

Successful
BOF Questions

> =p=p = =p =p ==

Is the problem sufficiently understood?
Is the problem tractable?

Is this the right place to address
“the problem™?

Who is willing to author specs?

Who is willing to review specs?

51

