MODERN framework

Jon Peterson MODERN WG IETF 101 (London)

A Win

- It's done (hurrah), will work with the RFC-Ed to get this printed
- Just wanted to draw attention to the IESG review
 - We added a "privacy considerations" section
 - Numerous small editorial fixes for which we are grateful
 - Got a sense that this all makes a lot more sense when you assume STIR exists
 - And ACME telephone related work in progress
 - MODERN is kind of a framework for all those efforts

TeRI/DriP

Jon & Chris MODERN WG IETF 101 (London)

What are TeRI and DRiP?

- TeRI = Telephone-Related Information
 - Record format and client-server operations for acquiring, managing, and resolving telephone numbers
- DRIP = Distributed Registry Protocol
 - Gossip protocol for sharing information about resources like telephone numbers
- Last time we talked a bit about how they might play together
 - Today we have some use cases

First, a picture

Principles

- Ambition: design a distributed registry as an alternative to the centralized TN databases existing today
 - One of the motivating questions for MODERN
 - But this does NOT assume replacing any particular database or existing deployment, just a set of tools
- DRiP provides a way to share TeRI Records between Services
- For the most interesting use cases, DRiP nodes are themselves Authorities for a numbering space
 - Numbering spaces shared by multiple authorities are a key use case
 - We cast these in terms of CSPs, could have said Registrars

Self-Allocation

- Imagine that a CSP has a credential that allows it to sign for telephone numbers in a given range
 - ... but initially no numbers in that range are allocated
 - It is a range shared for potential allocation by multiple CSPs
 - Perhaps easiest to imagine something like a new freephone (8xx) area code
 - Multiple RespOrgs can claim numbers through an administrative process:
 pretend we are automating that process
 - Policy constraints access to resources
 - Perhaps economic policy, perhaps just hard limits (10/month)
 - Imagine something like an experimental North American area code

Self-Allocation Use Cases

- Basically, a CSP creates a TeRI administrative Record, and then
 - signs it with a STIR credential, and then
 - promulgates it with DRiP to its peer nodes
- Two Cases
 - CSP allocates a block to itself
 - CSP allocates a single number to itself
 - Directly comparable to the 8xx case
 - In both cases, policy governs how the distributed registry authorizes the transaction – maybe a "policy node" oversees
 - In both cases a peer node can vote "no" if a glare condition has arisen and the number had been allocated elsewhere in the gossip network
 - Or if a peer node does not trust the STIR credential, say

Assignment

- Once a carrier acquires a number through this process, it can assign it to a consumer
 - This requires creating a new TeRI Record signed by the carrier
 - Perhaps using teri-valid, or a successor mechanism
 - This Record adds an Element for assignment
- Maybe some node in the gossip network can track assignments by listening to gossip
 - Say, to measure allocation inventory.
 - Loops back into policy decisions made about allocation

Porting

- Start with an assigned number, now how does it get ported?
- New CSP issues a new Record for a single number
 - New CSP knows there is an existing Record covering that number in the DRiP network
- If old CSP disagrees about porting the number, it votes "no" on the new Record
 - Otherwise, the new Record is cached by the other nodes in the gossip network
- TeRI Record retrieval operations should process this correctly and use the new single-number Record
- (Again, this is just the use case, glossing over fine details here!)

Policy Node

Policy node votes "no" to enforce policies of the federation

Next Steps

- Gets us a bit closer to an architecture
- Need some feedback/interest

• Need a green light on TeRI, DRiP, etc.

TeRI and the MODERN Framework

Jon Peterson MODERN WG IETF 101 (London)

draft-peterson-modern-teri

- Now a -04
- Made a few (very) small alignment tweaks to the model
 - Mostly to make Records less dependent on Operations
 - The framework here is getting mature
- It remains an abstract model
 - Bindings and encodings are modularized out
 - Elsewhere we mocked up a JSON syntax as an example
 - draft-peterson-modern-teri-json

TeRI Records

- TeRI Records would be available at Services
 - Services could be public, centralized and monolithic
 - Distributed, or private
 - The Operations and Info Model will be the same
 - Each TN might be associated with multiple Records
 - Records are trusted based on the Authority that generated them
 - Usually not based on the Service that shared them
- Entities from the MODERN framework act as
 - Clients
 - Users, CSP, Government Entities
 - Services
 - Registries, Registrars, CSPs

Records: Think SCRUD

- Search, Create, Read, Update, Delete
- Creation begins the lifecycle
 - A Registry always creates the first Record
 - Registrars then acquire Authority from Registries
 - Bootstrap administration record designating the Registry itself
- Should Records be partially updated, or wholly replaced?
 - Currently, only wholly replaced
 - Any Authority can update or delete its own records
 - In hierarchical assignment models, Authorities above the chain can delete the records of their delegates

TeRI Operations

- Acquisition operation
 - How do I request and receive numbers?
- Management operation
 - How do I provision information about a number?
- Retrieval operation
 - How do I get information about a number?
- Core conceit: these protocols access overlapping data
 If you can provision it, you should be able to query for it
- TeRI provides a common information model

The TeRI Interfaces

Operations and Records

- Each Operation consists of a Request and a Response
 - All operate our core building block: **TeRI Records**
- Requests will have a Source, Subject, and Attributes
 - Source indicates the originator of the Operation
 - Subject would typically be a TN itself (or a range)
- Responses will have a Response Code
- TeRI Records contain information about TNs
 - Some Records might cover a range of TNs

The Acquisition Operation

- Query:
 - Source (Query Source, Query Intermediary)
 - Subject (Telephone Number/Range)
 - Used to have SPID, currently removed per MODERN scope
 - Attributes (constrains query, say, to finding a particular number in a range)
- Response:
 - Response Code
 - TeRI Record (newly generated assignment granting authority for this TN/Range)

Result: This makes the Client an Authority for that TN/range

The Management Operation

- Query:
 - Source (Query Source, Query Intermediary)
 - Subject (Telephone Number/Range)
 - Used to have SPID, currently removed per MODERN scope
 - TeRI Records (including Record ID)
- Response:
 - Response Code

Result: This replaces/deletes a previous TeRI Record, or creates a new one

The Retrieval Operation

- Query:
 - Source (Query Source, Query Intermediary)
 - Subject (Telephone Number/Range)
 - Used to have SPID, currently removed per MODERN scope
 - Attributes (constrains query: e.g., "voip" if only looking for VoIP, or Route Source, or Record ID)
- Response:
 - Response Code
 - TeRI Record

Result: Retrieves Record if successful

TeRI Next Steps

- Energy needed, and discussion
- Need more input on Record elements
 Varies by the use case
- Aligning with use cases
 - e.g. DRIP, Chris's Identity registry
 - STIR is another
- Define further profiles and bindings
 - Need to flesh out JSON further, but anything else?
- Interest? Adoption?