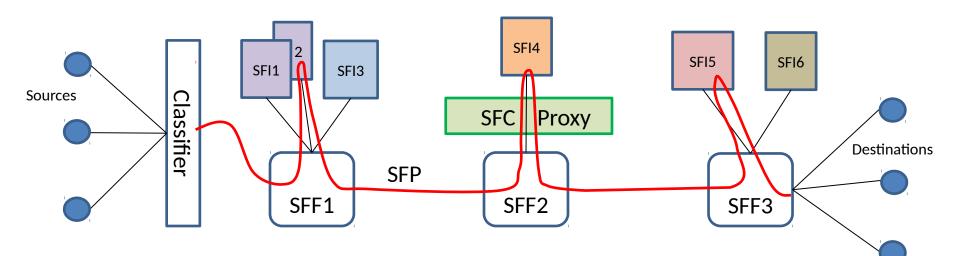
An MPLS-Based Forwarding Plane for Service Function Chaining


draft-farrel-mpls-sfc-04/05 Stewart Bryant <stewart.bryant@gmail.com> Adrian Farrel <afarrel@juniper.net> John Drake <jdrake@juniper.net>

IETF-101, London, March 2018

Agenda

- Overview and (Non-)Objectives of the Design
- Issues and Changes
 - Nits and Editorial
 - Removal of Discussion of Segment Routing
 - Purpose and Intent
 - Transport Independence
 - SFC-Awareness and SFC Proxies
 - Metadata
 - Control Planes
- Future Plans

Recall the SFC Architecture

- Packets flow from source to destination
- Packets are classified onto a Service Function Path (SFP)
- SFP traverses a series of Service Function Forwarders (SFFs)
- Each SFF delivers packets on the SFP to a specific Service Function Instance (SFI)
- SFC Proxy may be placed between SFF and SFI

Objectives / Non-objectives

- 1. Not trying to replace or obsolete NSH
- 2. Looking at a specific environment where deployed MPLS routers can serve as SFFs
 - No change to forwarding plane
 - Work using existing MPLS forwarding operations (push/pop/swap)
 - Able to forward SFC packets "at line speed"
- 3. Aim to get high level of SFC functionality
 - Possible that some features will be sacrificed in compromise with desire to achieve objectives
 - Must support SFC architecture (RFC 7665)
 - Should support metadata
 - Try to integrate with control plane solutions that work with NSH
 - draft-ietf-bess-nsh-bgp-control-plane

Overview of Solution

- Basic building block is a two-label unit
 - Labels included as Label Stack Entries
 - Neither of the labels can be in the range 0..15
 - I.e., must not overlap with Special
 Purpose Label values
 - An SFF uses top label to identify "path" – Local context
 - Select path to next SFF
 - An SFF uses second label to identify SF

SFC Context Label

Service Function Label

Nits and Editorial

- Changes from -02 to -04
 - RFC 8300 published
 - RFC 8174 published
 - MPLS S-bit (not S-flag or S-field)
 - Abbreviation expansions
 - Add a section on Proxies (see later slide)
 - Clarify metadata usage is less functional than NSH
 - (see later slide)
 - Typos in examples

Discussion of Segment Routing

- Called out on mailing list
 - Resulted in Adrian's mea culpa email
- -05 will
 - Remove all discussion of SR (specifically MPLS-SR)
 - Talk only about the MPLS forwarding plane as already defined
 - push, pop, and swap
 - Not discuss control plane mechanisms in any detail
- Continue to discuss
 - Use of labels to encode information included in NSH
 - How to handle metadata with labels
- Where to discuss this draft?
 - Seems to leave the document as an MPLS draft
 - With necessary SFC review

Purpose and Intent

- As stated in objectives
 - SFFs built from existing (MPLS) routers
 - Able to forward packets at line speed
 - Functionally of 7665 and 8300
 - Authors think this will provide migration assist
 - Experience with SFC
 - Gateway to use of control plane and other tools
 - Easy way to introduce SFC to today's network
- Debate over whether such an SFF could exist
 - Should authors describe how to do that? Or is that secret-sauce?
- Non-objective
 - Obsolete or modify NSH
- -05 will
 - Add/clarify text on objectives and non-objectives

Transport Independence

- SFC transport means:
 - Between SFFs
 - NSH is transport independent
 - This draft shows MPLS as the transport
 - » This is the most likely use case for this work
 - Between SFF and SF
 - NSH and this document are transport independent
 - See also discussion of proxies on next slide
 - SFs are usually Ethernet/VxLAN/PW attached?
- Nothing proposed for -05
 - Anything needed?

SFC-Awareness and SFC Proxies

- "SFC-Aware" means "able to handle the SFC encapsulation"
- SFFs
 - Usually SFC-aware, but...
 - Might be programmed with label forwarding/operations
 - E.g. "pop and forward", "incoming port maps to label imposition"
- SFs
 - Legacy VNFs and PNFs are not SFC-aware by definition
 - Must use an SFC Proxy
 - Strip encapsulation
 - Pass to SF
 - Receive from SF (on logical port)
 - Impose encapsulation
 - NSH and MPLS encodings have identical requirements and issues
- -04 introduced Section 8 on proxies
 - -05 clarifies and provides early pointer to Section 8

Metadata

- Document acknowledges it cannot do everything that NSH can do
 - Not carry metadata in user data packet
 - Cannot do per-packet metadata
 - Use same technique as draft-farrel-sfc-convent
 - (On RFC Editor queue with SFC WG consensus)
 - Send metadata in dedicated packets following the SFP
 - Point to metadata from packet using label
- Technique is not seamless
 - SFF can forward metadata just as user data
 - SFC Proxy must map metadata as SF is not MPLS-aware
 - But this is exactly how SFC Proxy must behave for all metadata
- Draft already includes explanation
 - No changes planned for -05 but welcome input

Control Planes

- This document does not depend on any control plane
 But a control plane will probably be needed
- Want a YANG model?

– Write one, probably in SFC WG

• Like SR?

- Probably in SPRING where Xiaohu Xu has a draft

- Want to use BGP?
 - See draft-ietf-bess-nsh-bgp-control-plane
- Legacy world?
 - See draft-ietf-bess-service-chaining
 - This is a BGP VPN approach
 - Popular way to introduce the technology
 - SFP is achieved by programming SFFs (i.e., not following SFC WG)

Next Steps

- There are always things to polish, but...
 - This is now relative stable
 - Support for swapping and stacking in a common way took some effort, but has good benefits
- Fits with BESS control plane work
- To the authors approach seems "obvious"
 - What do other people think?
- The authors think this is in charter for MPLS WG
 - Use of special purpose labels belongs in MPLS
 - But **<u>obviously</u>** it needs review by SFC WG
- Actions for chairs
 - Decide where this belongs
 - Resolve adoption issues
- Actions for participants
 - Objective discussion of the design.

Backup Slides

Where To Have This Discussion?

 SFC WG has developed problem statement and architecture for SFC

– We re-use these

• SFC chartered to work on "generic encapsulation" that is "agnostic to the

layer at which it is applied"

- Has developed the NSH
- This work is specific to an MPLS forwarding plane and uses an MPLS encapsulation
 - -Need review from experts
 - Want to be sure MPLS parts work
 - Want to be sure SFC parts work
 - -Some functions need specific MPLS extensions and codepoints
- Let the chairs and ADs work out where the work belongs

MPLS Label Swapping

• Tunnels between SFFs "as normal"

– Of course, we are interested in MPLS as the transport

- SPI and SI used "as normal" for NSH
 - Some limitation as SPI is constrained here to 20 bits

• MI	LS-SFC processing
Tunnel Labels	Labels are looked up and acted on by SFF to determine
SFC Context Label = SPI	next hop
	 Maybe forward to SFI or SFC proxy
Service Function Label = SI	 Maybe forward to next SFF
•	In some cases action can be achieved simply through SPI
Payload •	In other cases need the two label context
 SI is updated before further forwarding (it's a swap) 	
 SPI and SI set during classification 	

• Potentially also during re-classification

Metadata

- MPLS encapsulation not well suited for carrying "arbitrary" metadata
- We define an Extended Special Purpose Label

(MLI)

Metadata Label

• This three-label sequence can be included at the bottom of the label stack

15 = Extended Special • Purpose Label Follows Metadata Label Indicator
•
Metadata label is an index into a store of metadata

• Must also not use 0..15

• Store may be populated though management plane, control plane, or in-band (next slide)

- This approach is not good for "per-packet metadata" (e.g., hashes)
- Works fine for per-SFP or per-flow metadata

In-Band Metadata Distribution

- Consider draft-farrel-sfc-convent
 - Defines use of NSH with Next Protocol == None
 - Can be used to send NSH packets along an SFP without carrying payload (but still carrying metadata)
 - This draft defines how to do this in MPLS

15 = Extended Special			
Purpose Label Follows			
Metadata Present			
Indicator (MPI)			
Metadata Label			
Length	Туре		
Metadata			

- Use an Extended Special Purpose Label
 - Hence, a three label sequence
- Placed at the bottom of the label stack
- Rest of stack exactly as for SFP
- Metadata carried as payload
 - Formatted as TLV
 - Type field defined by SFC WG for NSH
 - Metadata as defined by SFC WG