An MPLS-Based Forwarding Plane for Service Function Chaining

draft-farrel-mpls-sfc-04/05
Stewart Bryant <stewart.bryant@gmail.com>
Adrian Farrel <afarrel@juniper.net>
John Drake <jdrake@juniper.net>

IETF-101, London, March 2018
Agenda

• Overview and (Non-)Objectives of the Design
• Issues and Changes
 – Nits and Editorial
 – Removal of Discussion of Segment Routing
 – Purpose and Intent
 – Transport Independence
 – SFC-Awareness and SFC Proxies
 – Metadata
 – Control Planes
• Future Plans
Recall the SFC Architecture

- Packets flow from source to destination
- Packets are classified onto a Service Function Path (SFP)
- SFP traverses a series of Service Function Forwarders (SFFs)
- Each SFF delivers packets on the SFP to a specific Service Function Instance (SFI)
- SFC Proxy may be placed between SFF and SFI
Objectives / Non-objectives

1. Not trying to replace or obsolete NSH
2. Looking at a specific environment where deployed MPLS routers can serve as SFFs
 - No change to forwarding plane
 - Work using existing MPLS forwarding operations (push/pop/swap)
 - Able to forward SFC packets “at line speed”
3. Aim to get high level of SFC functionality
 - Possible that some features will be sacrificed in compromise with desire to achieve objectives
 - Must support SFC architecture (RFC 7665)
 - Should support metadata
 - Try to integrate with control plane solutions that work with NSH
 • draft-ietf-bess-nsh-bgp-control-plane
Overview of Solution

• Basic building block is a two-label unit

 • Labels included as Label Stack Entries
 • Neither of the labels can be in the range 0..15
 – I.e., must not overlap with Special Purpose Label values
 • An SFF uses top label to identify “path”
 – Local context
 – Select path to next SFF
 • An SFF uses second label to identify SF

<table>
<thead>
<tr>
<th>SFC Context Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Function Label</td>
</tr>
</tbody>
</table>
Nits and Editorial

• Changes from -02 to -04
 – RFC 8300 published
 – RFC 8174 published
 – MPLS S-bit (not S-flag or S-field)
 – Abbreviation expansions
 – Add a section on Proxies (see later slide)
 – Clarify metadata usage is less functional than NSH
 • (see later slide)
 – Typos in examples
Discussion of Segment Routing

• Called out on mailing list
 – Resulted in Adrian’s mea culpa email

• -05 will
 – Remove all discussion of SR (specifically MPLS-SR)
 – Talk only about the MPLS forwarding plane as already defined
 • push, pop, and swap
 – Not discuss control plane mechanisms in any detail

• Continue to discuss
 – Use of labels to encode information included in NSH
 – How to handle metadata with labels

• Where to discuss this draft?
 – Seems to leave the document as an MPLS draft
 – With necessary SFC review
Purpose and Intent

• As stated in objectives
 – SFFs built from existing (MPLS) routers
 • Able to forward packets at line speed
 – Functionally of 7665 and 8300
 – Authors think this will provide migration assist
 • Experience with SFC
 • Gateway to use of control plane and other tools
 • Easy way to introduce SFC to today’s network

• Debate over whether such an SFF could exist
 – Should authors describe how to do that? Or is that secret-sauce?

• Non-objective
 – Obsolete or modify NSH

• -05 will
 – Add/clarify text on objectives and non-objectives
Transport Independence

• SFC transport means:
 – Between SFFs
 • NSH is transport independent
 – This draft shows MPLS as the transport
 » This is the most likely use case for this work
 – Between SFF and SF
 • NSH and this document are transport independent
 • See also discussion of proxies on next slide
 • SFs are usually Ethernet/VxLAN/PW attached?

• Nothing proposed for -05
 – Anything needed?
SFC-Awareness and SFC Proxies

• “SFC-Aware” means “able to handle the SFC encapsulation”

• SFFs
 • Usually SFC-aware, but...
 • Might be programmed with label forwarding/operations
 – E.g. “pop and forward”, “incoming port maps to label imposition”

• SFs
 • Legacy VNFs and PNFs are not SFC-aware by definition
 • Must use an SFC Proxy
 – Strip encapsulation
 – Pass to SF
 – Receive from SF (on logical port)
 – Impose encapsulation
 • NSH and MPLS encodings have identical requirements and issues

• -04 introduced Section 8 on proxies
 • -05 clarifies and provides early pointer to Section 8
Metadata

• Document acknowledges it cannot do everything that NSH can do
 – Not carry metadata in user data packet
 • Cannot do per-packet metadata
 – Use same technique as draft-farrel-sfc-convent
 • (On RFC Editor queue with SFC WG consensus)
 • Send metadata in dedicated packets following the SFP
 • Point to metadata from packet using label

• Technique is not seamless
 – SFF can forward metadata just as user data
 – SFC Proxy must map metadata as SF is not MPLS-aware
 • But this is exactly how SFC Proxy must behave for all metadata

• Draft already includes explanation
 – No changes planned for -05 but welcome input
Control Planes

• This document does not depend on any control plane
 – But a control plane will probably be needed
• Want a YANG model?
 – Write one, probably in SFC WG
• Like SR?
 – Probably in SPRING where Xiaohu Xu has a draft
• Want to use BGP?
 – See draft-ietf-bess-nsh-bgp-control-plane
• Legacy world?
 – See draft-ietf-bess-service-chaining
 • This is a BGP VPN approach
 • Popular way to introduce the technology
 • SFP is achieved by programming SFFs (i.e., not following SFC WG)
Next Steps

• There are always things to polish, but...
 – This is now relative stable
 – Support for swapping and stacking in a common way took some effort, but has good benefits

• Fits with BESS control plane work

• To the authors approach seems “obvious”
 – What do other people think?

• The authors think this is in charter for MPLS WG
 – Use of special purpose labels belongs in MPLS
 – But obviously it needs review by SFC WG

• Actions for chairs
 – Decide where this belongs
 – Resolve adoption issues

• Actions for participants
 – Objective discussion of the design.
Backup Slides
Where To Have This Discussion?

• SFC WG has developed problem statement and architecture for SFC
 – We re-use these

• SFC chartered to work on “generic encapsulation” that is “agnostic to the layer at which it is applied”
 – Has developed the NSH

• This work is specific to an MPLS forwarding plane and uses an MPLS encapsulation
 – Need review from experts
 • Want to be sure MPLS parts work
 • Want to be sure SFC parts work
 – Some functions need specific MPLS extensions and codepoints

• Let the chairs and ADs work out where the work belongs
MPLS Label Swapping

- Tunnels between SFFs “as normal”
 - Of course, we are interested in MPLS as the transport
- SPI and SI used “as normal” for NSH
 - Some limitation as SPI is constrained here to 20 bits

MPLS-SFC processing...
- Labels are looked up and acted on by SFF to determine next hop
 - Maybe forward to SFI or SFC proxy
 - Maybe forward to next SFF
- In some cases action can be achieved simply through SPI
- In other cases need the two label context
 - SI is updated before further forwarding (it’s a swap)
 - SPI and SI set during classification
 - Potentially also during re-classification

<table>
<thead>
<tr>
<th>Tunnel Labels</th>
<th>SFC Context Label = SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Function Label = SI</td>
<td></td>
</tr>
<tr>
<td>Payload</td>
<td></td>
</tr>
</tbody>
</table>
Metadata

- MPLS encapsulation not well suited for carrying “arbitrary” metadata
- We define an Extended Special Purpose Label
 - This three-label sequence can be included at the bottom of the label stack
 - Metadata label is an index into a store of metadata
 - Must also not use 0..15
 - Store may be populated through management plane, control plane, or in-band (next slide)
 - This approach is not good for “per-packet metadata” (e.g., hashes)
 - Works fine for per-SFP or per-flow metadata

<table>
<thead>
<tr>
<th>Metadata Label Indicator (MLI)</th>
<th>Metadata Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 = Extended Special Purpose Label Follows</td>
<td></td>
</tr>
</tbody>
</table>
In-Band Metadata Distribution

- Consider draft-farrel-sfc-convent
 - Defines use of NSH with Next Protocol == None
 - Can be used to send NSH packets along an SFP without carrying payload (but still carrying metadata)
 - This draft defines how to do this in MPLS

<table>
<thead>
<tr>
<th>Metadata Present Indicator (MPI)</th>
<th>15 = Extended Special Purpose Label Follows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metadata Label</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>Type</td>
</tr>
<tr>
<td>Metadata</td>
<td></td>
</tr>
</tbody>
</table>

- Use an Extended Special Purpose Label
 - Hence, a three label sequence
 - Placed at the bottom of the label stack
 - Rest of stack exactly as for SFP
 - Metadata carried as payload
 - Formatted as TLV
 - Type field defined by SFC WG for NSH
 - Metadata as defined by SFC WG