Changes since -09 (July 2017)

- Handling MP_FASTCLOSE with RST (i.e. MP_REALYFASTCLOSE)
- TCP Fast Open Considerations
MP_FASTCLOSE

- Original MP_FASTCLOSE design had reliability; all but one subflows could all be closed with TCP-level RST, but remaining one had ACKed MP_FASTCLOSE to ensure synchronisation
- Still too much state required in some circumstances
- New update specifies ability to do this on a RST packet too:
 - Send RST+MP_FASTCLOSE on all subflows and drop state immediately
 - Receiver does the same across all subflows if receiving RST+MP_FASTCLOSE on any subflow
TCP Fast Open (TFO)

- RFC7413 - goal to save 1xRTT before sending data
- This is done by exchanging cookies in TCP Options in initial SYN, and then using these cookies in subsequent SYN along with data in the SYN
- Naturally care must be taken not to exceed TCP options space
- We only care about TFO on initial subflow; later subflow setup has authentication delays so no TFO benefit
TCP Fast Open (TFO) Interactions

● **TFO Cookie Request on MP_CAPABLE SYN**
 ○ Enough space for TFO + MP_CAPABLE in SYN
 ○ Not so much space in SYN/ACK; max TFO cookie length would be 7 bytes if using 19 bytes on “typical” options
 ○ Recommendation on servers to consider which options are needed and choose whether cookie length is sufficient for needs

● **Data Sequence Mapping and TFO**
 ○ It would be possible for a middlebox to mess with initial TFO data, and since no mapping in SYN, no ability to discover this until it is too late
 ○ Therefore, explicitly exclude TFO data from Data Sequence Space
 ○ TFO data delivered to application as normal
 ○ Data Sequence Space starts at IDSN+1 after SYN/ACK exchange
Ready for WGLC?