

Considerations for MPTCP Operation in 5G

https://tools.ietf.org/html/draft-defoy-mptcp-considerations-for-5g-00

Xavier de Foy, Michelle Perras (InterDigital), Uma Chunduri (Huawei), Kien Nguyen, Mirza Golam Kibria, Kentaro Ishizu, Fumihide Kojima (NICT)

MPTCP @ IETF 101 - London

What Changed Since IETF 100 (new ID)

- A draft [previous-ID] was presented in IETF 100. Feedback included:
 - Attendees showed interest on the topic and pointed to related work (NICT research including on dual connectivity, community bits in draft-duchene-mptcp-add-addr).
 - Handling of multiple IP addresses per network interfaces by itself was not seen as a problem (e.g. it is common with IPv6). Our conclusion: we need to clarify the problem for example, those multiple IP addresses are, in 5G, provided by different network anchors. What does this mean for MPTCP?
- A new draft [current-ID] presented today in IETF 101 takes a step back towards a higher level and broader analysis:
 - It describes how new behavior in 5G can impact MPTCP especially the Session and Service Continuity feature.
 - It describes how MPTCP can complement 5G especially for the Dual Connectivity feature.
- Possible outcomes for this work include:
 - A set of guidelines for MPTCP and 5G stack developers.
 - A set of derived requirements on MPTCP, on 5G, or both (whether they are new is TBD).

SSC and Related Concepts in 5G

Session and Service Continuity (SSC) addresses various continuity requirements of applications.

- SSC is based on a distributed mobility system (where network anchors have a service area).
- It has multiple SSC modes (1:fixed anchor, 2:distributed anchors + BBM, 3:distributed anchors + MBB).
- A 5G device selects an appropriate SSC mode for each application, based on local policy otherwise the network selects it.

PDU Session is a unit of network service that can hold multiple QoS flows.

- Connected to a single data network, through one or more network anchors ("multi-homed PDU sessions").
- Associated with a single, non-modifiable session continuity mode, network slice, and type (IPv4/IPv6/Ethernet/Unstructured).
- Goes over a single radio access type at a given time.
- Corresponds to a network interface on the device (probably it's a likely implementation choice).
- Different applications running on a device may use different PDU sessions (e.g. for different data network, SSC mode or slice).

When used with 5G, MPTCP should...

- Be aware of the SSC mode, to adjust its behavior.
- Know the mapping between applications and PDU sessions (i.e. network interfaces).

SSC Mode 1

5G behavior:

- A fixed network anchor provides a fixed IP address to the device (i.e. device mobility is not visible to application nor MPTCP).
- The network MAY add/remove an additional network anchor dynamically (i.e. a new IP address may be added/removed dynamically to the network interface in use).

MPTCP in SSC mode 1 should...

- Always keep using the initial IP address, which is guaranteed to stay available over time.
- Use new IP addresses while they are available to the application.

SSC Mode 2

5G behavior:

- The IP address changes when the device leaves a network anchor's service area.
- This is a break-before-make IP address change.

MPTCP in SSC mode 2 should...

- Use existing BBM behavior even when only on cellular (application should not request a specific network interface when opening a socket).
- Maintain a valid backup IP address by using this BBM behavior.

SSC Mode 3

5G behavior:

- The IP address changes when leaving a network anchor's service area.
- This is a make-before-break on the same or a new network interface.
- The lifetime of the old IP address is communicated by the network to the device.

MPTCP in SSC mode 3 should...

- Always create and use new subflows when a new IP address becomes available to the application.
- Stop using older subflows gracefully (after slow start, before release) this is to help for performance and to recycle resources faster.
- Not close subflow(s) using the latest IP address (since only this IP address will remain after a transition period).
- Maintain a valid backup IP address using the latest SSC mode 3 IP address.

Dual Connectivity (DC) in 5G

5G behavior:

- DC relies on two paths over radio access individual QoS flows (in same or different PDU sessions) use one path or the other.
- Typically DC is not visible outside of the radio access technology layer.

Our proposal: the Dual Connectivity feature of 5G can leverage MPTCP to support robustness/ reliability and bandwidth aggregation.

• This avoids duplicating MPTCP features in 5G, and implements them at higher layer, with some exposure to applications.

To use MPTCP for DC...

- Multiple DC radio links should be exposed by 5G for use by MPTCP (through different or over the same network interfaces/PDU sessions).
- MPTCP should split or possibly duplicate traffic between subflows over different DC radio links.

Next Steps

Collect feedback on this new draft

• Discuss value for MPTCP and 5G communities

Moving the draft forward

- Refine SSC aspect, develop DC aspect, integrate feedback
- Identify clearly new requirements for MPTCP and possibly 5G
- Looking for any additional 5G features with potential MPTCP impact...