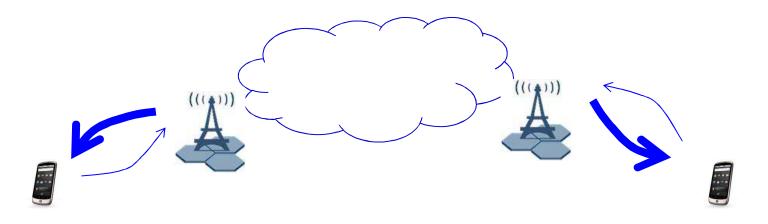
One Way Latency Considerations for MPTCP

draft-song-mtcp-owl-03 F. Song, H. Zhang, H. Chan, and A. Wei

Page 1 March 22, 2018

Asymmetric data rate in cellular networks

- Cellular networks provide lower speed in uplink than downlink
 - The global average 4G download: 16.6Mbps in Nov 2017 [1]. Yet the upload speed is much lower
 - E.g. LTE: 5-12Mbps download, 2-5Mbps upload [2]



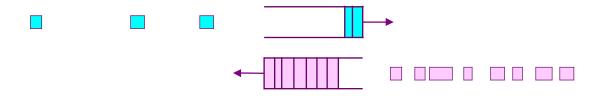
- [1] https://opensignal.com/reports/2017/11/state-of-lte
- [2] https://www.verizonwireless.com/articles/4g-lte-speeds-vs-your-home-network/

Page 2 March 22, 2018

Asymmetric data rate in cellular networks

- Asymmetric for client side
- May also be asymmetric at server side

Page 3 March 22, 2018


Cellular radio access latency 3GPP TS36.881

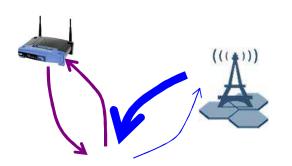
Uplink	Time (ms)	Downlink	Time (ms)
Wait for PUCCH (10ms/1ms SR)	5/0.5		
UE sends scheduling request	1		
eNB decodes request and generates scheduling grant	3		
Transmission of scheduling grant	1		
UE processing delay	3	Process incoming data	3
		TTI alignment	0.5
Transmit UL data	1	Transmit DL data	1
Data decoding in eNB	3	Data decoding in UE	3
Total delay	17/12.5	Total delay	7.5

Page 4 March 22, 2018

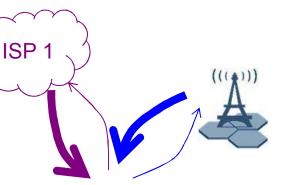
Cannot assume queue lengths are symmetric

 Long queue in one direction does not imply same long queue in reverse direction

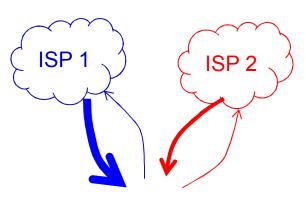
 Increased RTT caused by near-congestion condition cannot conclude that both directions are near congestion


Page 5 March 22, 2018

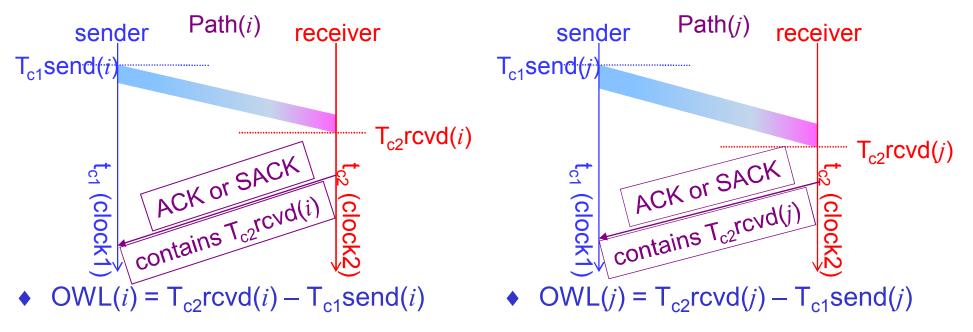
Asymmetric ISP data rates


- ISP's typically also provide higher data rate for download than upload
- Example: FCC (in USA) definition of broadband [3]: minimum data rates of: (2015) (2015, mobile) (before 2015)
 25Mbps 3Mbps 10Mbps 10Mbps 4Mbps 11Mbps
- [3] source: https://fas.org/sgp/crs/misc/R45039.pdf

Page 6 March 22, 2018

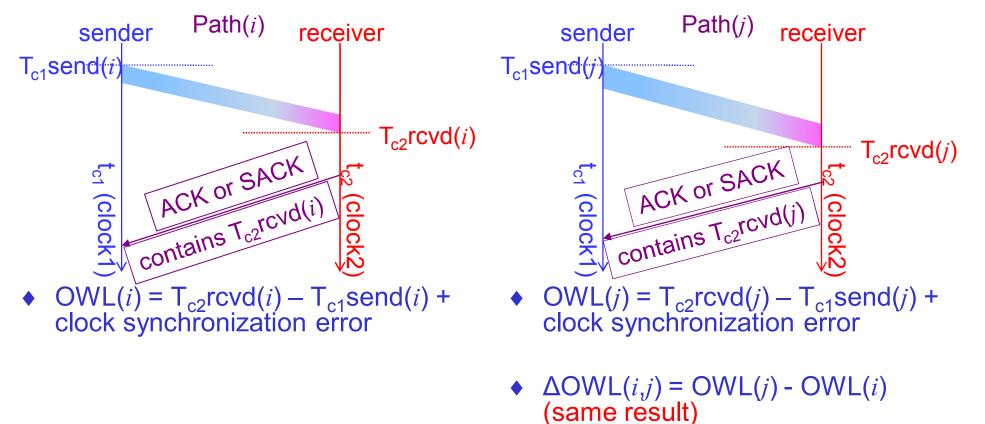

Path selection compare which one has smaller one-way delay Choosing among more than one paths:

2 paths of wireless access


1 path with wireless access and 1 with wired connection

Dual homed to 2 ISPs

Page 7 March 22, 2018


Exact one-way delay with clock synchronization $(t_{c1}=t_{c2})$

- TS in reply \neq Trcvd especially with $\diamond \Delta OWL(i,j) = OWL(j) OWL(i)$ SACK

Page 8 March 22, 2018

Relative one-way delay does not need synchronization

Page 9 March 22, 2018

One way latency measurement

- ♦ Capability negotiation to be defined
- Sender

Page 10 March 22, 2018

Many approaches for OWL

- Client remembers Tsend
 - client stores Tsend when sending data to server
 - server ACK/SACK with Trcvd
 - client calculates OWL, and compares OWL among different paths
- Client sends Timestamp
 - client sends Tsend
 - server echoes Tsend and includes Trcvd
 - client calculates OWL, and compares OWL among different paths
- Server calculates OWL
 - client sends timestamp when sending data
 - server notes Trcvd, calculates OWL and sends OWL back to client
 - client calculates OWL, and compares OWL among different paths

Page 11 March 22, 2018

Download

Client calculates OWL

>server sends timestamp (Tsend) information

- Client checks Trcvd to calculate OWL for each path
- >client compares OWL for different paths

Page 12 March 22, 2018

Questions/Comments please

Page 13 March 22, 2018